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SEMIPARAMETRIC DENSITY ESTIMATION
BY LOCAL L,-FITTING!

By KANTA NAITO
Shimane University

This article examines density estimation by combining a parametric ap-
proach with a nonparametric factor. The plug-in parametric estimator is seen
as a crude estimator of the true density and is adjusted by a nonparamet-
ric factor. The nonparametric factor is derived by a criterion called local
Lo-fitting. A class of estimators that have multiplicative adjustment is pro-
vided, including estimators proposed by several authors as special cases, and
the asymptotic theories are developed. Theoretical comparison reveals that
the estimators in this class are better than, or at least competitive with, the
traditional kernel estimator in a broad class of densities. The asymptotically
best estimator in this class can be obtained from the elegant feature of the
bias function.

1. Introduction. Smoothing is a very important area of statistical analysis
and has a wide range of applications in mathematical sciences. The present article
is concerned especially with density estimation. Ket . .., X,, be independently
and identically distributed with density. The problem is in estimating the density
function f from the data. In considering this problem, two approaches exist.

The first is called the parametric approach. In this approach, we prepare a
parametric model

{g(x,0):0 € B},

wheref is a p-dimensional parameter vector a@ds the parameter spacelRy .

In practice the family of densities is constructed from previous experience and
preanalysis of the underlying structure. Then estimation of the density function is
replaced by estimation of the unknown parameter vegtdfinally, we obtain a
density estimator

f) =gx,0),

wheref is an estimator. This approach is called the plug-in parametric approach
and is justified only when the trug is exactly as in the model or at least in the
neighborhood of the model.
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The other approach is nonparametric. Several methods for nonparametric den-
sity estimation have been proposed and investigated. Izenman (1991) summarized
a number of these methods. A representative method is the traditional kernel den-
sity estimator off,

~ 170
(1.1) Fo)==2 Ki(X; —x),
i=1

where K, (z) = h™1K (h™'z), K(-) is some chosen density which is symmetric
about zero, and is the bandwidth. The basic propertiesfofre well known and
under smoothness conditions we have

2

~ h
Ef(0) =10+ S nax ")+ o),

s R(K 2 h
Varf(x):%f(x)—f(:;) +0< )

(1.2)

n

where g g = [2°G(z)dz and R(G) = [ G(z)2dz for some kernel functiorG

[cf. Simonoff (1996) and Wand and Jones (1995)]. The traditional kernel
estimator is by construction completely nonparametric in the sense that it has no
preferences and works reasonably well for almost all shapes of densities. Like the
kernel estimator, all nonparametric methods can be used without the structural
assumption that the underlying structure is controlled or captured by a finite-
dimensional parameter. Thus, nonparameipproaches have attractive flexibility;
however, the parametric model is difficult to discount because a well-estimated
structure by the parametric approach is easy to understand.

This motivates us to propose an approach which includes both the parametric
approach and the nonparametric approach. We propose and investigate a class
of semiparametric density estimators which have precision comparable to, and
sometime better than, that gt One class considered herein is the set of density
estimators derived fronine local L»-fitting criterion with index «. In the proposed
approach, the parametric plug-in density estimatat, ) is utilized, but it is seen
as a crude guess gf(x). This initial parametric approximation is adjusted via
multiplication by an adjustment factgr= £ (x). That is, the initial approximation
is adjusted via the forng(x, 6)¢. The local fitting approach is used to determine
the adjustment factor. Throughout the present artigle, £(x) is determined by
minimization of the empirical version of the function

2 2
{f(@®)— g(Ax, 0)&} "
g, 0)«

for a fixed target pointc. This method is called the locdl,-fitting criterion,
whereq is a real number called the index. Observe that local fitting is obtained
using the kernel functiolX. The symmetric densitK creates the fitting locally

(1.3) Q(x,s|a>=/1<h<r—x>



1164 K. NAITO

around the target point. This local approach is based on the simple intuition that
observed data which are far from the target peigio not have information about

the adjustment. The minimizer of the empirical version of (1.3) is our objective and
is denoted by = £ (x). Using thisé, we finally obtain a density estimatgi(x) =

g(x, 0)& (x). This approach is shown to be effective and yields a theoretically good
estimator in the sense of mean integrated squared error (MISE). A similar but
somewhat different approach was proposed by Copas (1995) in conjunction with
the likelihood method under censoring. Eguchi and Copas (1998) also discussed
a class of local likelihood methods and developed asymptotics under a large
bandwidth/. Their approach is the local estimation &fin the modelg(x, 6)

and the adjustment fact@r does not appear. The present approach is the local
estimation of using a previously obtained plug-in parametric estimgtar, 6).

This multiplicative approach is closely related to studies performed by Hjort and
Glad (1995) and Hjort and Jones (1996). Hjort and Glad (1995) proposed a density
estimator based on th®ive estimator of¢. In addition, Hjort and Jones (1996)
suggested and investigated two versions of multiplicative density estimators. One
class of density estimators considered here includes these estimators as special
cases, so this article may be seen as a generalization of these previous works.

The class of density estimators is developed in Section 2, and the estimators
proposed by Hjort and Glad (1995) and Hjort and Jones (1996) are reviewed
through examples. The behavior of the present estimators is investigated in
Section 3, which also reveals that the present result is indeed a generalization
of the results of Hjort and Glad (1995). The variance of the present estimator
is the same as that of the traditional kernel estimgtobut the structure of the
bias has a different form that depends on the initial parametric approximation.
As an important property, we confirm thatffis in the model, the estimator has
reduced bias. Approximate or asymptotic MISE (AMISE) is derived in Section 4.
Furthermore, the best estimator in the class is determined from the simple result
that the bias ifinear in «. In Section 5 we compare the present estimator itbr
the case in whicly belongs to a class of normal mixture densities. In particular,

a comparison is performed for 15 different test densities proposed by Marron
and Wand (1992). In addition, a similar comparison for the case in wliich

the skew-normal distribution proposed by Azzalini (1985) is also discussed in
Section 5. In Section 6 a simple algorithm to choose the désiproposed. This
algorithm is a variant of that used by Hjort and Glad (1995). Furthermore, two
methods of data-based selectiorwodire discussed, and theoretical results and the
practical algorithm are documented. These methods are constructed by reference
to the theory of estimating the density functional discussed by Hall and Marron
(1987) and Wand and Jones [(1995), Section 3.5]. Finite sample performance of
the proposed estimators, and comparison tofthtéae Hjort and Glad and the Hjort

and Jones estimators are investigated by Monte Carlo simulation in Section 7.
Supplementary remarks are presented in Section 8. It is trivial that the integral of
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the estimator is not unity, but the expansion formula &snds to zero shows that

itis 1+ O(h*) provided that we adopt a Gaussian density as an initial parametric
model. A practical expression of the proposed estimator under the case using
a Gaussian kernel and model is presented. Proofs of the theoretical results are
presented in Section 9.

2. Local Ly-fitting criterion. This section is devoted to the construction
of the present density estimator. First, we prepare a plug-in parametric density
estimatorg (x, 0), wheref is an estimator of the least false valég according
to a certain distance measure betwegeland g(-, 8). The maximum likelihood
estimator is a representative candidate doin which the distance measure is
known as the Kullback—Leibler distangef (x) log{f(x)/g(x,0)}dx and 8y is
defined as the minimizer of the Kullback—Leibler distancefoif his parametric
estimator is seen as a crude guessfofNext, we aim to adjust this initial
approximation by the forng(x, 6)&, whereé = &(x) is the adjustment factor.
The problem is determination &f. To explain this method more clearly and to
introduce the approaches proposed by Hjort and Glad (1995) and Hjort and Jones
(1996), we present three examples below. Note that the kernel funktiea
symmetric density and the notation utilized in (1.1) and (1.2) is used throughout.

ExamMPLE 1 (Hjort and Jones estimator). To determine the adjustment
factor&, Hjort and Jones (1996) suggested that the functianief

q(x.6) = / Kn(t — 0)[f (1) — g(t.6))2dr.

The optimak is determined by minimization of the estimategk, £) on&. That
is, we seek to minimize

~ 2e ~
an(e.6) =8 [ Kt =003 02dt = 2 3" Ky (Xi — 008X, ).
i=1
which gives

n"IY" ) Kn(Xi —x)g(X:.0)
[ Kn(t —x)g(t.0)2dt

§=§<x>=argn;inqn<x,s>=

The density estimator is obtained by

n LY Kn(Xi — x)g(Xi, 6)
[Kn(t —x)g(t,0)2dr

(2.1)  frax) = g(x, 0)Ex) = g(x, )

Although not fully discussed, thig; is the resultant estimator suggested by Hjort
and Jones [(1996), page 1636].
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ExAmMPLE 2 (Local likelihood estimator). The factar is determined by
minimizing the empirical form of

f@ A }
L(x, &)= | Kj(t — [ — — —g(t,0 dt,
)= [ Kutt =0 £ 09 i~ U0~ .00 |as
which is equivalent to maximizing that of

L(x,&) =/Kh<r — 0| f()loglg(t,H)E} — g(1,0)& ) dt.

The term{(x, §) can be seen as a local version of the Kullback—Leibler distance
from f(x) to g(x, 6)&. The resultant adjustment factor is

[0
[ Kn(t —x)g(t,0)dt

A

=E@) =

e

and the ensuing estimator is
ML) = g(x,0)E (x)
(2.2) . N
_ A J(x) oz g(x,0)
=g(x,0) —=fx —,
[ Kp(t —x)g(t,0)dt [ Kp(t —x)g(t,0)dt
where f is as in (1.1). Thisf._._ was proposed by Hjort and Jones [(1996),

page 1635], who derived and discussed several estimafesyand f, | are two
special estimators with respect to the multiplicative adjustment scheme.

EXAMPLE 3 (Hjort and Glad estimator). If we may assurfier) = g(x, )¢,
then true adjustment is = f(x)/g(x,0). Hjort and Glad (1995) proposed the
naive estimator

. - . 13 Kn(Xi —x)
E)=(f)/gx,0))==) ———F—,
X (fX/gx ) n; )
which gives
. ~ 1IN Kn(X; —x)
2.3 = ,0)— _ .
(2.3) fHe(x) = g(x )",-221 XD

In Hjort and Glad (1995) the behavior gfic was investigated and was shown to
be better than the traditional kernel estimator in the sense of MISE on a certain
class of normal mixture densities.

In the present article we are concerned with a function, namely (1.3), in
conjunction with Examples 1-3. Considering the empirical versio® 6f, & |«)
gives, by omitting the irrelevant term, the objective function

~ 2t ~
0n(x, 5100 =87 [ Kt = 003,07 di = 2 3 Ky(X; 006, D).
i=1
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Obviously,a = 0 givesg,(x, &), so Q,(x, &|x) is a generalization of, (x, &)
in Example 1 and has weight functiqr(z, ). The minimizer can be easily
determined as

nTIY L Kp(X; —x)g(X;, )1
[Kp(t —x)g(t,0)2dt

which is the proposed adjustment factor. Since the estimator depengshyn
adding the symbal we have

E=E(x)=arg minQ, (x, &) =

n T Y Kn(Xi —x0)g(Xi, 6)
[ Kn(t —x)g(t.0)2dt
From (2.1)-(2.4), the following relationships hold:

fo) = frux), A = fiL@),  fox) = fucx).

The casex = 0 is trivial. The casex = 1 is confirmed by noting the defini-
tion £(x, &) and the Taylor expansion @i + y)log(1+ y) aty = 0. This is also
noted in Hjort and Jones (1996). The equalfty= fig claims that the naive
estimatoré proposed by Hjort and Glad (1995) is characterized by the minimizer
of 0,,(x, £]2). Therefore the estimators determined in Examples 1-3 are connected
by «. We thus propose a class of density estimators ugiag the index. As de-
scribed in the following sections, the introduction wfis essential and enables

us to progress toward the theory of optimality in density estimation by the multi-
plicative adjustment scheme. In the following sections we discuss the behavior of
estimators in this class. In addition, the best estimator in this class is determined.

(2.4)  fo(x)=gx,0)Ex) =g(x,0)

3. Asymptotic theory. In this section, we investigate various statistically
important quatities aboutf,, such as bias and variance. From the featureg, of
it is trivial that its behavior depends on thatéfncluded in the initial parametric
approximatiorg (x, 8). To proceed with the theoretical study, we allow a somewhat
more general setting for the choice of estimatot.et F be the true distribution
function, the cumulative off, and letF;,, be the empirical distribution function.

We consider functional estimators @fof the formé = T'(F,) for some smooth
functionalT having the influence function

I(x)= IimO[T((l —e)F +¢&8y) —T(F)]/e,

whereé, is the unit point mass at, and assume that; = E¢[/ XHI(X)HTis
finite. The best parametric approximatiga(x) = g(x, o) to f(x) thatg(x, )
aims for is determined by = T(F). It is well known for the case of the
maximum likelihood estimator thdt(F) is defined as the solution of the equation
[(3/90)logg(x,0)dF(x) =0, and sol(x) = J~1(d/86)logg(x, 60), Where

J = —Ef[(82/89 307 )logg(X;,60)]. We may refer to Serfling (1980) for such
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a functional estimator. Under regularity conditions [see, e.g., Shao (1991)] we have

d
(3.1) 6 =060+~ ZI(X)+ + &n,
l =1
wheres, = 0,(1/n) with meanO(l/nz). Then we have the following theorem.

THEOREM 1. Let go(x) = g(x, 6p), with 69 = T'(F), be the best parametric
approximationto f. Then,asn — oo, h — 0,

2 1-« " 2—a\/r
Biasfa(x)=h_M2,K[(g0(x) S S0 >]
o)™ go(x)>~®
. h? 1
+0<h +_+_2),
n n
2
Var fu(m = 252 f - L8 o (24 ),
n n n

The proof is included in Section 9. Note that the leading term of the variance
of f, is independent of the estimation 6fand, with reference to (1.2), it is
the same as that of. Consistency of the density estimator requires bioth 0
andnh — oco. The optimal size of: is proportional ton =Y/, which is also the
same as that forf. Furthermore, it is worth noting that if is in the model
{g(x,0):0 € ®}, that is,go(x) = f(x), then theO (h?) term of the bias vanishes.
From the above observations, the essential difference between the behavior
of f, and that of f appears in the bias. As seen in the next section (i)
term of the bias mfa has a nice expression (4.5), which allows the best estimator
in the sense of MISE to be determined.

4. Goodness of estimators. In this section, the goodness of estimators is
evaluated in the sense of MISE. In additiofy, and f are compared. LeR(f)

denote the integral of the squarédh?) term of the bias of a density estimatpr
From Theorem 1 and (1.2), the AMISE ¢f and f are, respectively, given by

ht R(K
AMISE(f,) = Mz kR (fa) + %
and
nt o, R(K)

AMISE(f) = 2 — 5 R(f) + —
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where

-« 7 2—ay\/ 2
4.1) R(f) =/[(go(x) JO)"  fx)(go(x)T™) } dx.

go(x)1—« go(x)2«
@2  R(H= / (" ()2 dx.

So it suffices to compar®( /) and R(f) in the AMISE comparison, provided
that we use the same kernel functikn The AMISE comparison will be discussed
for special choices of the underlying using the same kernel.

Now we consider the function in the bracket in (4.1) to discover the best
estimator. Let us define

(4.3) bax) = 1) — 08,
go(x)
20/ (x) f/(x) g0/ ()2
4.4 bo(x) =24 890 ) .
(44) 2(x) { 2000 (x)<g0(X)) }

Then it is easily verified that

l-« /" 2—aynr
(o) ST FOGOITINT ) 1 po () — abao).

(4.5)

go(x)1—« go(x)%—
That s, theO(hz) term of the bias mfa is linear in «. Therefore, writing
(4.6) c1= [ tha()dx,
(4.7) c2= [ b)) (ba(x) + ba() d,
(4.8) ca= [ b1 + ba()2d
we obtain
(4.9) JQ(fa) = c10% — 2c00 + c3.

Using (4.9), we have the leading terms of the integrated squared biag,ofi .
and fig by substitutingr = 0, 1 and 2, respectively. For instanea,= R (fo) is
found to be the integrated squared biasfq§. The quadratic expression of (4.9)
establishes the following proposition.

PROPOSITIONI. JR(f:X) is minimized over « at

(4.10) o, = 2
c1
and its minimum valueis
2
(4.11) minR(f,) = cg — 2
c1

where c1—3 aregiven in (4.6)—(4.8) respectively.
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The linear structure (4.5) is essential in the derivation of Proposition 1. This
is obtained by introducingr through the weightingg(z,6)"% in Q(x, &|a),
so that such a generalization indeed has an advantage. Theoreticaligeahe
estimator faa is the best estimator in the class which surpasses estlmm@,rs
f|_|_ andeG in the sense of AMISE.

5. Asymptotic comparison. In this section the proposefy, is compared tof
based on the AMISE formulas described in Section 4.

5.1. Comparison in normal mixture. Here we comparg?a and f for the case
in which f belongs to the class of normal mixture densities. Let

k
F@) =) pifix),

i=1

where

fir) = (%_qﬁ(x “) = = )

1
¢ is the standard normal density function aEézl pi = 1. The family of such
mixtures forms a very wide and flexible class of densities. Marron and Wand
(1992) studied such mixtures and singled out 15 different densities which are
often used as test densities in the study of the performance of density estimators
[Hjort and Glad (1995), Jones and Signorini (1997) and Jones, Linton and
Nielsen (1995)]. It is easy to see that

k
MOE/xf(X)dx =mei,

Uo—/(x—uo) f(x)dx—Zpl o2+ (i — 1o)?).

i=1

For the present estimatq?a, we adopt here the normal densify,(x — o)
asgo(x) = g(x, 6p). This corresponds to the use of maximum likelihood estimates
(MLE) for estimation of6p, since the normal density that has meag and
variancecro2 minimizes the Kullback—Leibler distance frofi(x) to g(x,0) =

¢o (x — 1), whered = (i, 02) anddp = (1o, o).

The previous section indicates that the AMISE comparison is performed by
comparingR( f,) andR(f). Both can be calculated through (4.1) and (4.2) using
numerical integration. However, whefiis a normal mixture angg is normal,
we obtain the analytic expression m‘(fa) by obtaining those of1, c2 andcs.
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Referring to (4.3) and (4.4), direct computation yields

S 1 — Hi 1 —
oo =E ol i 32) (2]

i=1 ‘ o0

balx) = Zépifi(x){ () m () - (P

o0 (o] 0p

whereH, is thekth order Hermite polynomial. Sinaeg, c» andcs are all integrals

of these functions, we find their analytic expressions using the properties of
the Hermite polynomials. The detailed calculations are found in Naito [(1998),
Sections 4 and 6]. On the other hand, the expressiomRof) has already
been presented in Marron and Wand (1992). Thus, by using (4.1) and (4.2),
we comparef, and f for 15 representative test densities used in Marron and
Wand (1992). The values of the raﬁb(fo,)/ﬁ(f) fora =0, 1, 2,«, are tabulated

in Table 1, in which the case number corresponds to that used in Marron and Wand
(1992). The entries in columa, are the values o, for each case. Since #1

is normal,ﬁ(fo,) =0 for all «, so that the ratio is always zero in the #1 row. For
example, in #6, which corresponds to a bimodal density, the val®g @) / R ( /)

is 1.7434 and that oR(fz)/,ﬂ(f) is 0.7705, and for #6, the minimum of the ratio

is attained atr, = 1.9394 and its minimum value is 0.7696.

TABLE 1
Comparison in normal mixture®

f a=0 a=1 oa=2 o=0 o

#1 0.0000 0.0000 0.0000 0.0000 —

#2 1.0448 0.3947 0.2460 0.2356 1.7968
#3 1.0239 0.9986 0.9925 0.9922 1.8207
#4 1.0010 0.9799 0.9606 0.8719 11.7075
#5 1.0436 0.8826 0.7822 0.7414 3.1606
#6 1.7434 0.9980 0.7705 0.7696 1.9394
#7 1.4821 0.9829 0.8524 0.8485 1.8541
#8 1.5398 1.0114 0.9007 0.8892 1.7651
#9 1.3088 1.0010 0.9178 0.9159 1.8706
#10 1.0512 0.9947 0.9791 0.9788 1.8787
#11 1.0003 1.0000 0.9999 0.9999 1.8597
#12 1.0236 1.0036 1.0025 1.0007 1.5589
#13 1.0005 1.0000 0.9999 0.9999 1.7840
#14 1.0030 1.0004 1.0002 1.0000 1.5897

#15 1.0127 1.0013 1.0001 0.9994 1.6190

3values of the ratiogR ( fy)/R(f) are tabulated for the 15 densities
in Marron and Wand (1992). Values of the optimal indexdefined
in (4.10) are listed in the,, column for each case.
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We can confirm that Proposition 1 holds arfg, is better than, or at least

competitive with,f for all cases in this comparison. Furthermore, it is worth noting
thata, is around 2, except for #4 and #5. This reveals that the Hjort and Glad
estimatorfyc = f2 is also good for almost all cases.

5.2. Comparison in skew-normal. Similar to the previous section, the com-

parison of £, and f is performed for the case in which belongs to a class of
skew-normal distributions discussed in Azzalini (1985). If a random vari&ble
has densityf (x) = 2¢ (x)® (Ax), where® is the distribution function of the stan-
dard normal, then we say that has skew-normal distribution with parameter
and we denote this b¥ ~ SN(1). Here SNO) corresponds to the standard normal.
We obtain from direct calculations that

(5.1) fl(x) =2¢(x)s1(x, 1), F7(x) = 2¢ (x)s2(x, M),
where

51(x, 4) = Ap (Ax) — H1(x)® (Ax),

s2(x, 1) = Ha(x)® (Ax) — (A3 + 20) H1(x)p (Ax)

and Hy, is the kth order Hermite polynomial. In addition, we adopt the normal
density as an initial approximation and the MLE for estimation of the parameter
included in the parametric model. We have #6r SN(}),

2 X
Moz/xf(x)dx=\/;7m,

2).2
of= [ noPfirdx=1-

T(1+212)°
which gives the least false parameter veétoe (110, ag) for go(x) = ¢gy(x — 10).

To find the best estimator, it is required to obtaitix) andb2(x) in (4.3) and (4.4),
respectively. Direct computations yield

1 _
ba(x) = 29(6) 52l ) — 5 Ho 22 )0 an) |

ba(x) = _4¢(x>[0_1051<x, WH(0) %Hl(x - “O)Zcm)c)]

00 o 00

Using these, we can obtaiR( f,), and we have from (4.2) and (5.1) that
R = [ 12815205

Table 2 exhibits the comparison far= 0(1)5. For eachi the ratiojz(f;,)/
R(f) is tabulated. Since = 0 implies f = go, the ratios are zero for adt. For

any A utilized in this comparison, we obseryg for « = 1, 2, a, are all superior

to f.
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TABLE 2

Comparison in skew-normal &

—h

a=0

a=1

o=2 o =0, ')
A=0 0.0000 0.0000 0.0000 0.0000 —
A=1 0.0762 0.0232 0.0134 0.0118 1.7270
r=2 0.7636 0.2669 0.1645 0.1531 1.7594
r=3 1.4625 0.5783 0.3945 0.3748 1.7624
r=4 1.7888 0.7836 0.5839 0.5583 1.7480
r=5 1.8678 0.8963 0.7133 0.6850 1.7320

3values of the ratioR(fy)/R(f) are tabulated foi = 0(1)5 in SN(A)
proposed by Azzalini (1985). Values of the optimal index defined
in (4.10) are listed in the,, column for each SKb).

6. Index selection. In this section, three data-based methods used to select
the indexa are discussed. These methods are somewhat intuitive, but the density
estimators with the index obtained through these methods perform well, as shown
in the simulation report in Section 7.

6.1. Direct method. We propose a data-based selectionoofwhich is a
derivative of that of: discussed in Hjort and Glad [(1995), Section 6]. We consider
the Hermite expansion given as

(6.1) f(x)=¢(x;“)§{1+é%m(““)},

o

whereyg =1 andy; = y» = 0. We know thaty, = E[H;((X — u)/o)]. Simple
but somewhat tedious computations, along with the Gaussian initial approximation
go(x) = ¢y (x — ) andm =5, yield

1 [ /7 v2/33\ y2 /225\ y3p5/21
o2 e=guai)+ 59+ T ()
©.2) ea="57717\16) T 9 \32) T 1aal ea 6 \32

1 [ ,/3\ 72732\ y2/195\ y3y5/39
o9 o=a () 53 ) P@)
6.3) c2="5~1v\3) 9 \57) t 1aal 32 6 \32
1 T ,/3\ v2/123\ 2 [225\ a5
i) 4 (D)5 (D7)
oSym2\2 9\ 32/ 144\ 16 2
Herec;,i =1, 2, 3, are estimated in the usual manner by substituting

18 /Xi—h
J/k=—ZHk< l )
i

o

(6.4) c3=

for yx, wherek = 3,4,5, and by substituting for o. The next step is to use
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nonparametric estimators of andc, defined by

év(h) = / (ba(x; m)2dx,

éalh) = / ba(x: h)[bu(x: h) + ba(x; ) dx,

where

. 171 —X; 1 —X;\ g"(x,0
bl(.x,h)=_Z[—K//<x >__K<x )g (-x A)}’
ne= h3 h h h g(x,0)

. 2201 —X\gx6) 1 — X\ (& x, 0))\?
bz(x;h)=—Z[—2K/(x )g(x A)__K(x )(g(x A)) }
nizith hJgx,6) h h J\gx,6)
K is a kernel, which may be different from that usedin and is the bandwidth.
Using these quantities, we choasas follows. First, we obtaif;, i =1, 2, 3, from
(6.2)—(6.4), respectively, using, k = 3,4, 5, ands, under the assumption that the

underlying distribution is approximated by the Hermite expansion. Then, referring
to (4.11),R(f,,) is estimated as

= \2
R(fo) =g — 2
C1

This gives a bandwidth

5
(6.5) h= {R(K)} R(fu,) o075,

2
Mo k

from which we have an estimate of the optimal index,
| Calh)

c1(h)

6.2. Two methods based on functional estimation. Here we propose two
methods based on estimation of the functionaf @&ndg(x, ). Define

(6.6) alt

6.7) g1(x) = S0
go(x)
6.8) g2(x) = ‘Zgg; = (%) + {1 (0)}2,

wherego(x) = g(x, 6p). Using this notation, we have

c1=4 / F1002q100)2dx + 4 / F 20t dx — 8 / £ (0)q100dx,
c2=ci42 f F100 £ (0)q(x) dx — 2 / F)F 0qL()g2(0) dx

—2 [ £ @a@?dx +2 [ 10710020 dx.
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Under the sufficient smoothness condition farit follows that
[ 7 @Pae?ax

= —Ef[f//(X)QI(X)Z] —2E¢[f'(X)q1(X)g2(X)] + 2Ef[f/(X)Ql(X)3]
and

f £/ £ (1) dx

=—E¢[f"(X)q1(X)] — E¢[f"(X)g2(X)] + Ef[f”(X)Cﬂ(X)Z]-
These calculations allow us to define
Y (plr,s) = E¢[fP(X)q1(X) q2(X)*]

for integersp =0,1,2,3, r =0,1,2,3,4 ands = 0,1, 2, where P (x) =
(dP/dxP) f (x) and f @ (x) = f(x). Then we have

c1=4My(014,0) — ¥ (22,0) — 2y (1|1, 1)},
c2=c1+2{¢(02,1) =¥ 31,0 — ¢ (2(0,1) — ¥ (1|1, D},
so that the optimad, in (4.10) can be written in terms af as

S g[wmz, ) -y (31,0 - ¥(20,1) — y (1L, 1)}
a2l y014,0 - y(22,0 -2y (1L 1)
Y
=1t3p

where
N =v(02,1) —¢¥3|1,0 —v¥(20,1) — (11, 1),
D =¢(0]4,0) — ¥ (22,0) — 2y (1|1, 1).

By the above reductions, data-based selection & accomplished by using an
estimator otx, defined by

N .
ao(g) =1+ E@Tg
N g[v?g<0|z, D) — ¥, (3I1,0) — ¥ (210, 1) — Y, (1]1, 1)}
2 U4 (014,0) — 1, (2/2,0) — 29, (1|1, 1)

where

Ve (plr,s) = DX G2(X) LY (X — X )
#J

1
n(n—l)l.

is a nonparametric estimator a@f(p|r,s) that has a symmetric kerndl and
bandwidthg that are possibly different fronk and#, respectively. In addition,
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41 andgo are, respectively, those of (6.7) and (6.8) usjiig, §) rather thargo(x).

The behavior ofx,(g) can be investigated by a method based on the theory of
estimating the density functional [see, e.g., Section 3.5 in Wand and Jones (1995)].
Mean squared error (MSE) is adopted to evalusteand D,, while &,(g) is
evaluated by mean squared relative error (MSRE). Somewhat tedious calculations
yield the following theorem:

THEOREM2. Asn — o0 andg — 0,

1
MSE[V,] = Mudv[z] oS / / haa(x, 2)2dx dz

(6.9)
+O0m™ +o(g*+n"%g™),
4
MSE[D,] = Ko(x, 2)2dx dz
(6.10) B Wy e
+O0n ")+o(g"+n g ),
g4 N[2] DI[2]7?
P il
MSRE{d,(¢)] = 16 [,N[O] :o[O]]
2
(6.11) / / [’\2;([); 2 "ﬁé}zq dxdz
+omn Y tog*+n g +nY,
where

Apolpy (¥, 2) = FO[{2LPD (2) 4+ 2L PV (2)}ga(x) — 2L PP (2)q1(x)?],

Kpp(x,2) = f(0)[2LP? (2)g1(x)?]
for even p> and p1 = p> + 1,and
Npl=v (P2, D) =y (p+3|1,0) — ¥ (p+20,1) —y(p+ 11,1

Dlpl=v(pl4,0 —¥(p+220 -2¢y(p+111
for even p with & [0] = & and D[0] =

The proof of Theorem 2 is presented in Section 9. From Theorem 2 the
approximate mean squared error (AMSE)-optimal bandwidthsVMpand D,
and the approximate mean squared relative error (AMSRE)-optimal bandwidth
for &,(g) are, respectively, given as

B [(E)) [ 23x. )% dx dz}l/gn—z/g
PAMSET2) g iz

[(5\ f[rax,2)2dxdz]° g
$o-AMSE=[(3)7 2 5y n

’
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and

_ [(?) JI{Droa(x, 2) — Nica(x, 2)}2dx dZT/gn—z/g
T u3 {DN[2] — N D[2]} :

Unfortunately, these bandwidths have the same defect as the plug-in method for
bandwidth selection of the kernel density estimator: all of these bandwidths depend
on unknownA [2], D[2], &N and D. Estimation of ¥ [2] and D[2] is possible;
however, their optimal bandwidths depend.8i4] andD[4]. Furthermore, it can
easily be recognized that this problem does not go away.

To overcome this problem, we utilize a simple estimate based on the Hermite
expansion of (6.1). Equation (6.1) yields a pilot estimate @ (x) as

8 (),

from which we haveN [6] = v/ (6]2, 1) — ¥ (9|1, 0) — ¥ (8]0, 1) — ¥ (7|1, 1) as an
estimate ofV [6] using the component defined by

¥ (plr, )
1P P
-SE A (s

~ 1P
@ =S (2

A

Xi— @1\ . ra s
)Hk+p( - )q1<x,-) 612(&)]

An estimateD[6] of D[6] can be obtained in the same manner.
In the following text we describe the algorithm used to obtain two estimates
of «,. The notation utilized is

oPp

L[l](Pl’ p2) = Mo (D (p) + 4MO,L(1’2)L(/’2) + 4M1,L(p1)L(172)v
L2 (py, po) = Ay 102+ 210 1) (0D
LB (py, po) = Ao, 121 (r2) + 211 (DL (r2)
for nonnegative integers; and p,, and
3215 (B) = LM (p1, p2)¥5(0[0, 2) — L (p1, p2)15(012, 1)
+ 1o 1 (r2 L (r2 ¥5(04,0),
2 (B) = Auig, (s (o Wrpr (0]4, 0)

for bandwidths8 andp’. Detailed calculations needed to derive some of equations
in the sequel are omitted, but are available from the author.

1. ComputeN'[6] andDI[6].
2. Computek%w(ﬂnl) and ké(ﬁdl) for some appropriately chosen bandwidths
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B.1 andB,1, and then compute

-[(B) A87(Br) ]1/””_2/17
gl’ll - 2 IL,L%L,/V{[6]2

ga1 = [(1—3) _K§Bar)_ ]1/17n—2/17.
2 ) u3 , DI6I?

’

3. Computeﬁﬁ‘s(ﬁnz) andk}(ﬂdz) for some appropriately chosen bandwidg)s
andg;»2, and then compute

O [ P
2 H’Z,Ldvgnl[4]2

9 /242(:8d2) 1/13 —2/13
w5 [ Deggy [4]

4, Computd%w(ﬁng) andlézz(ﬂdg) for some appropriately chosen bandwidg)s
andg;3, and then compute

. [(5) A33(Bna) ]1/9n_z/9
3=\5) 7 =73 ,
" 2 M%,ngnz[z]z

e [<§) #3(Ba3) T/gn_z/g
2 M%,Lg)gdz[z]z
5. Compute

5 1/9
gA =[ === = B }
AMSRE ™ 202 | (D s Ngya[2] — Ny D p[21)2

x | D2,,LM(3,29/4,(010,2)
— (D2, L'2(3,2) + 2N, ;D s LB(3,2)}915,(012, 1)

843

A2 12
+{Dg 12 L@@ + 4N o L@@

-~ R 1/9
+ 4Nz, 3 Desait, 1219 V50 (014, 0)

x n—2/9

for some appropriately chosen bandwigh
6. Compute two estimates af, defined as

(6.12) & = 60 (sAmsrE)
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and

1 JVT?nB

6.13 al¥l=1
(6.13) HEY

8d3

Here @/?! is based on AMSRE formula (6.11), so that a single bandwidth is
mcluded On the other hand, the two bandwidths included(i are based on
AMSE formulas (6.9) and (6.10), which correspond to the numetat@nd the
denominatoeD, respectively. The bandwidtl 1, 8,2, Bx3, Ba1, Ba2, Baz andpo

are all determined using the formula

AMSE [ay/5 (0|0, 2) + brg(0]2, 1) + ci5(0]4, 0)]

4
- %MgL{aw(2|o, 2) + by (212, 1) + ey (2|4, 0)}2

2R( )

5 | 10 a0 +bar(0%a20) + eqrto)*
for some constants, b andc. This gives the optima$ as

2R(L) E [ f (X){aq2(X)? + bq1(X)*q2(X) + cq1<X>4}2]]1/ ° s
{a¥ (2|0, 2) + by (2|12, 1) + c¥ (2|4, 0)}2

At this stage, estimates gf(0|r, s) andy (2|r, s) for some pairgr, s) are needed.

These can be provided by kernel estimatesfaind 7@ that have bandwidths

obtained by the method of Hardle, Marron and Wand (1990). The empirical

behavior off,, for « =&Y, &2 anda!®! is reported in the next section.

BAMSE = [

7. Finite sample performance. Finite sample performance of the proposed
density estimators was investigated by Monte Carlo simulation. The first 10
densities (#1-#10) of Marron and Wand (1992), which cover a large variety of
realistic density shapes, were used as target densities in this simulation study.
In each case 1000 samples of size- 500 were generated. The MISE(value
for a given bandwidttk was estimated by the average of these 1000 realizations
of (integrated squared error) ISE( To obtain a precise approximation to the
minimum MISE, a grid search of the bandwidth was implemented. This was done
after an initial screening had provided a suitablénterval that contained the
minimum. The Gaussian kernel was used throughout. The estimators compared in
this study weref and f,, fora =0, 1, 2, a,, &¥, k = 1, 2, 3 [see (6.6), (6.12) and
(6.13)]. We utilizedg (x, §) = ¢ (x — [2) for all cases, whergi, 52) is the MLE
of (1, o2). Values of 18 x min MISE are tabulated in Table 3, where the minimum
is taken overi. Also tabulated in parentheses for all cases and estimators are
10° times the standard error (SE) of the estimates of MiSEéing the bandwidth
at which min MISE is obtained.
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TABLE 3
The value of estimated min;, MISE(h) x 10P for samples of size n = 500from each of the first 10
Marron and Wand densities over 1000simulationsfor 7, fo (= fu), /1 (= fLlL). f2 (= fue).

.k =1,2,3. Thestandard error x10P is given in parentheses

for each case
fa
f f a=0 a=1 a=2 oa=a oc=&,[,1] a=&£2] oc=&,[,3]
#1 172 67 62 63 — — — —
3) 2 1) 1) — — — —
#2 254 243 196 190 182 227 288 218
4) 4) 4 4 4 4) 9) (6)
#3 1,413 1,406 1,395 1,394 1,394 1,394 1,394 1,395
(15) (15) (15) (15) (15) (15) (15) (15)
#4 1372 1,296 1290 1,286 2,734 1,288 1440 1,523
(16) (17) 17) (17) (621) (17) (195) (213)
#5 1,735 1,763 1,677 1641 1,710 1,648 1,641 289,637
(32) (32) (31) (30) (28) (30) (30) (5,181)
#6 244 272 243 234 234 258 234 235
4) 4) 4 4 4 4) 4 4)
#7 340 372 340 333 332 336 332 332
5) 5) 5) 5) ®) 5) ®) 5)
#8 323 361 328 324 321 341 321 324
4) (5) (5) (5) (5) (5) (5) (5)
#9 296 327 302 297 296 309 296 296
4) 4) 4 4 4 4) 4 4)
#10 1,126 1,139 1,125 1,124 1,123 1,135 1,124 1,124
(10) (10) (10) (10) (10) (10) (10) (10)

Note: The asteriskx) designates the minimum of median ISE and the dagtjedenotes robust SE
using median absolute deviation.

First we see #1. This case is thats in the parametric model so that thg/2)
term of the bias off, vanishes, as mentioned in Section 3. Therefaeis not
defined and the estimation ef does not have meaning. Thus, for « = a,, &¥,
k =1,2,3, were not simulated for #1 for this reason. For #1 allfgf are
significantly better tharf, and f; is the best.

The tabulated values fof, with « = &2 anda = @[3 in #4 are the median of
ISE () for a givenh rather than MISH(), and the values in parentheses are robust
SEs calculated by substituting median absolute deviations. This is because the
values of MISER) of these became huge and showed unstable behavior in #4. The
instability in #4 can actually be observed, since even the value of robust median
ISE(h) is somewhat large relative to MISE) values of other estimators, and then
the value of robust SE in parentheses is also large. We can further observe from #5
that f,, with « = &3 behaves unstably.

In all cases except #4, #5 and #9, the ideal estimﬁ@ris the best, which
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justifies the theory presented in Section 4. In #4 and@{rgﬁs not so good because

the valuex, is large relative to the other cases as seen in Table 1. It seems that a
larger sample is needed for #4 and #5 to confirm the theory presented in Section 4.
In addition, good performance 9@0 reveals that the estimation @f is indeed an
important problem. Estimatorg, for « = alkl k =1,2,3, behave well and their
differences are small in almost all cases. ket &¥!, k = 2, 3, however,f, were
somewhat unstable relative &il] in the sense of the SE, but the bias of these
estimators was smaller than that &gy,

Some notable insights from Table 3 are as follows. For almost all csesy-
passesf, for & = 0, 1. Although the degree of improvement is marginal, use of
the estimator ofy, yields better performance, which is recognized in #3, #5, #7,
#8, #9 and #10. For practical situations, the choiceg'éfanda®! are recom-
mended for densities that are somewhat smooth}ﬁbts suited for densities that
are rather kurtotic.

8. Supplements. In this section a number of supplementary results are
presented.

8.1. Theintegral. Direct calculation yields

h2 1.2 {g(Xi, é)a—l}// {g(Xi, é)Z—a}//
2 K2k Z Moa—1 A\2—
=1 g(Xj,Q)a g(Xhe) o

/fa(x)dx:1+ ]+0<h4)

;i
ash — 0. In particular, when we adopt the Gaussian dengity, 6) = ¢5 (x —

Q) = ¢s(x — X) as an initial parametric start, wheXeands? are, respectively, the
sample mean and the sample variance, we have

/ﬁAde=1+%;ux(%%}§)}i¥(X“_X)2—1}+0m%

n: N
i=

=1+ 0h%

ash — 0.

8.2. Computational remark. The practical expression fqﬁx depends on the
choices of the kerneK and the initial parametric modegd(x,0). Thus, the
general features required for practical calculation are not pursued here. However,
derivation of the expression for the case in which the Gaussian kernel and model
are adopted appears to be useful. Now define that

lm)szia—xmaﬁrﬂm
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for K(t) = ¢(r) andg(z,9) = ¢ (t — j1). Direct calculations give
(v 2r)*setl exp[ alx — )2 i|

V62 —ah? 2(62—ah?)

provided that? — k2 > 0. Using this notation, we have, for the case of Gaussian
kernel and model,

(@)a—35a—2

J(a) =

fax) =

nhi(a —2)
n AN2 2 ~\2
(x—w*  (Xi—x) (Xi — )
B T I T =

for 62 — (« — 2)h? > 0.

8.3. Choosing the bandwidth. From Section 4 we see that the bandwidth
that minimizes the AMISE forf,, is
R(K) 1/5 A B
e = {52 R Yo
M2 k

for a fixeda, and the resultant minimum value of the AMISE is
2/5 _
Sua k REKZYPR(fo) o5,

Proposition 1 reveals that we can further reduce this by ugiagw, in (4.10).
Thus, the best choice for the bandwidtls

1/5 .
ho = h(ao) = { R(ZK) } ‘R(fao)_l/sn_l/s'

M2 k

Here, we propose a method to chodshich is a variant of that discussed in
Hjort and Glad (1995). Recall the analogy presented in Section 6.1, and calnsider
in (6.5) andaY in (6.6). Further, we consider a bias-adjusted versioRf,)
given as

R (e, h) = %{ﬁ(a, h) — Rflfs ) }
where

R, h) = é1(h)a? — 2¢2(h)a + E3(h)
and

¢3(h) = /{Bl(x; h) + ba(x: b)) dx.
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Here i in (6.5) is seen as an initial bandwidth. Then we calculate the final
bandwidth as

. (RK)\Y® o
h:{ (2 )} K@Y, 7)o,
M2 k

The theoretical performance of thisis not pursued here. However, we have an
empirical suggestion based on application to some artificial data:itisahot as
stable as:.

9. Proofs. In this section the proofs of theoretical results are presented. First,
we prepare the following lemma which can be proved by Taylor expansion.
LEMMA 1. Let go(x) =g(x,6p) and

nIY L Kn(X: —x)go(Xi)t®
J Kn(t — x)go(1)?~* dt

(9.1) Jo @) = go(x)

Thenasn — oo, h — 0,

_ h2 Y Vi 2—a\/
Blasf‘:(x):?MZ*K[(gO(;Z(x)liix» B f(x;fii(;)—a ) ]+0(h4),
R(K 2 h
Var £ (x) = %f(x) - f(:f) + 0<;>.

PROOF OFPROPOSITIONL. The resultis straightforwardly obtained from the
guadratic expression &R (fy) in (4.9). O

PROOF OFTHEOREM 1. Define

up(x) = % log g (x, 6o),
52
Uo(x) = FY YT logg(x, o).
Using Taylor expansions, we can expafidas
fa @) = )+ @ = 00)" By (x) + 30 — 00)" Co(x) (0 — 60) + 0, (0™ ),

where f; is given as in (9.1),

_ 127
By (x) = ;ZBi(x),
i=1

_ 12
Ch(x)= ; Zci (x),
i=1
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Bi(x) = Kjp(X; — x)go(xol—“go—(x)
no(x)
2-a)
x [(1—a>uo(xi> - S +uo(X)],
Cix) = Kn(Xi — x)go(xt— 50
no(x)
x [— ad _n‘zz)(j — ) uo(X)T +2(1 — o )uo(Xi)"
+ (1 — o) {Uo(X;) + (1 — a)uo(X;)uo(X)")
2(2 —
= (no (xf‘ oGm0 + [Uo(x) + uo)uo()” )
22 — 1
;O(x)oé) {(2 — emmm - Eno(X)nz(X)”,

where
no(x) = / Kn(t — )02 dt,

n(x) = f Kn(t — 0)uo(t)go(> dt,

n2(x) :_/Kh(t — ) {Uo(t) + (2 — a)uo(t)uo(r) T } go(t)>~* dt.

Through (3.1) and the average representations above, we have
. - h? 1
ELG ~ 60 By = 0%+ 5 ).

N T h? 1
EI( — 60) Cn<x)(9—eo)]=0<7+ﬁ),

using the fact thaf; = 7 (X;) has mean zero. Since the bias termfgfin (9.1)

was already given in Lemma 1, the bias expressiof,dé confirmed.

Next we consider variance. The variance gf was obtained in Lemma 1.
By using the average representation (3.1), we have, after somewhat lengthy
calculations, that

4
Var{(6 — 60)" B,(x)] = O(h— + iz)
n n
R - . n4
Var((6 — 60)" C,(x)(6 — 60)] = 0(—2),
n

* A T p hz 1
COMf*(x), (6 — 60)7 By(x)] = 0(7 + P)



SEMIPARAMETRIC DENSITY ESTIMATION 1185

from which the necessary variance expression is derived.

PROOF OFTHEOREM 2. Direct calculation yields that

MSRHa,(8)]

D? EH@(ﬁg —N) = N (D, — @)}Z]

4N2 D24+ D(D, — D)
B ;[MSE[JV;] MSELD,] _,E{(Dg — D)(N, — N)}]
4 N2 D2 ND

+ Ol’l,g’

where O, , is a negligible higher-order term. Hence it suffices to show (6.9)
and (6.10), and to evaluate the cross tefif{D, — D) (N, — M)} for check-

ing (6.11). However, only the proof of (6.9) is presented here since the other equa-
tions can be obtained in the same manner. We therefore focug;ofhen it
follows that

MSE[N,]
— MSE[Y/, (012, 1)] + MSE[4/, (3|1, 0)]
+ MSE[Y(2/0, 1)] + MSE[, (11, 1)]
(9.2) — 2E[14(012, 114 (311, 0)] — 2E[4(0]2, 1)1, (2/0, 1)]
— 2E[14(012, D)jig (111, )] + 2E[ /15 (311, 0) /14 (2/0, )]
+2E[14(3/1, 001 (111, )] + 2E[/14(210, 1)1 (11, D],

wherejig (plr, s) = 1/7g(p|r, s) — ¥ (plr, s). Therefore, the proof is further reduced

to evaluation of MSIE}g(pV, s)] and E[fte(p1lr1, s1)fle (p2|ra, s2)] for nonneg-
ative integer tripletgp|r, s), (p1lr1, s1) and(p2|rz, s2). To accomplish the proof,
the following four lemmas are needed. The proofs of all four lemmas are omitted.
Details are available from the author.

Let us define

93)  Yi(plrns) = Y q1(Xi) q2(X) LP (X — X ).

nn—=1 5
Performance oi}g(p|r, s) is dominated by the performance ¢f;(p|r,s). The
following lemma is concerned witlt; (p|r, s).
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LEMMA 2. Let ¢, (plr,s) beasgivenin (9.3).Then, asn — oo, g — 0,
MSELY; (plr, )]
= Biady; (plr. s)I* + Varly; (plr, )]
4 R(L(p))

8
ZMZ LY (p+22r, 5)? +m1ﬁ(0|2” 2s)

1
+ ;[ f FEOLwE@) fP )+ (w- £} P @) dx — AE[WE (plr, s)]Z]

+ont4n? _2” b,

for p evenand
MSELy; (plr, )]

4

= %M% L (p+2lr,5)?

M2 (L(P)2
" n2g2r—1

/ Ff{w?- F1P0) —wE){w- 1P @)} dx

- E[/ FEfw@ [P ) — fw- )P @) dx - 4E; (plr, s)]Z]
+o(n~t+n2g72r T
for p odd, where
w(x) = q1(x)"q2(x)".
The notation
wr s (x) = q1(x)" q2(x)°, ¢p(x) = Lé”)(x)

is used in the next lemma.

LEMMA 3. Asn — 00, g — 0,wehave
E[Y; (palry, sD¥g (p2lra, s2)]

= E[wrl,sl(Xl)¢p1(Xl - XZ)]E[wrz,Sz(Xl)¢p2(Xl - XZ)]
M p(r0 (P2
nng1+P2

x /f[{wf1+’2,S1+S2 ) f}(l) + (_1)p2wr2,sz{wr1,S1 ' f}(l)](x) dx

1
+ ;I:/ f{wrl,nf(pl) + (_1)pl{wr1,S1 ) f}(pl)}
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X AWry 0 f P2 4+ (=D)P2{wy, 5, - £} PP }(x) dx
4wy, 0y (X Dby (X1 — X2 E[ W55 (XD)bpy(X1 — Xz)]}
+o(n 4 n2gTr1mr2)
for p1 + p2 odd, and

E[Y, (palry, sD¥g (p2lra, 52)]
= E[Wry.5; (X1)Ppy (X1 — X2)|E[Wry.5,(X1) P py (X1 — X2)]

+WW(0Ir1+r2, S;|_+sz)/L(Pl)(Z)L(pz)(Z)dZ

+ %I:/f{wrl’bvlf(Pl) + (_1)p1{wr“l . f}(Pl)}
X AWry 50 f P2 4+ (=D)P2{wyy s, - £} PP} (x) dx
— 4E [0 XDy (X3 = Xo) [ (X1 (X2 — X)) |
+o(n 4 n2gmrimreTly
for p1 + p2 even, with both p; and p2 being even, and

E[Y, (palr1, sD¥g (p2lra, 52)]
= E[wrl,sl(Xl)¢p1(Xl - XZ)]E[wrz,sz(Xl)¢p2(Xl - XZ)]

/’LZ,L(PDL(PZ) 2 2
2n2gritra—1 / Flwrrasyse 1@ - Wry,5p{ Wry, 51 ° f}( )](x) dx

o R LR A L
% {wrz,szf(pZ) + (_1)pz{wr2,s2 . f}(pZ)}(x)dx
= 4E (01,0 (X060 (X2 = Xo)E w1 (X0 (X2 — Xo)]|
+o(n~ L4 n2g PPl
for both p; and p2 being odd.

Hereafter, we adopt the notation

1
Ap = LP(X; — X)Hv(Xy),
= =D S X




1188 K. NAITO

1
= P (x. —x,; _
B n(n—1) ;Lg (Xi X‘/)W(X,),

0 {g’(x,e)}’{g”(x,e)}s
v(x) = —
90 L g(x,0)) 1 g(x,0)
02 {g/(x,e)}’{g”(x,m}s
360007 | g(x,0) ) | g(x,0)

6=06p

Wx) =

6=06p

The behavior oi/}g(p|r, s) is summarized in the next lemma.

LEMMA 4. Asn — oo, g — 0,we have

MSE[Jr, (plr, 5)]
4

g
= Zu%mp +2|r, 5)?

2,{L(P)}

+2 2020 1/f(x) w2 1@ + D PwE){w - 1P x)}dx

o [t Pw + or - 0w s
— AE[Y; (plr )P + E[A]" T/ E[A,]
+2{E[w(X1)$(X1— X2)(I1 + 12>]}TE[AHJ}
+0(n—l+n—2g—2p+l)
for p odd and

MSE[, (plr, 5)]
4

2
- %M%LW(p +2r,5)2+ WR(LU’))WOQ;», 25)
1 ) ) ()12
+;[ff(X){w(X)f Px) + D w - P (0} dx
— AE[Y}(plr. $))* + E[A,]" B, E[A,]
+2{E[w(X1>¢>(X1—Xz)(11+12)]}TE[An]}
+o(n™t+n2g27h

for p even.
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LEMMA 5. Asn — o0, g — 0,we have

Eljig(p1lr1, s itg(p2lra2, s2)]
84 2
= zuz,uﬂ(m + 2|r1, sD)¥ (p2 + 2|2, 52)

Ky p(ro ()
nzgpl+l72

x /f[{wrl-*‘rz,sﬁ-sz ) f}(l) + (_1)p2wr2,S2{wr1,S1 : f}(l)](x) dx
1
+ ;|:_/ f[wrl,h : f(pl) + (_1)pl{wr1,S1 : f}(pl)]
% [wrzsz . f(Pz) + (_1)p2{wr2’S2 . f}(pZ)](x) dx
— AE[wyy 51 (X))@, (X1 — X2) | E[Wry, 5, (X1, (X1 — X2)]

+ E[wyy.5 (X1)$p, (X1 — X2)(I1 + 12)]" E[A4(p2lr2, s2)]
+ E[wry.5p(X1)$p, (X1 — X2)(I1 + 12)]" E[A,(p1]r1, s1)]

+ E[A(p1lr1, s0)T S1E[An(p2lra, Sz)]}

+on 1+ n—2g—p1—pz)
for p1 + p2 odd and

Eljig(p1lr1, s)itg(p2lra, s2)]

g4

= 13 LV (P12 sDY (P2 + 2rz. 52)

21

0.L(PD [(P2)

—_—— O}" ra, s S
nzgp1+p2+1 W( | 1+7r2,51+ 2)

+ %[/ f[wrl,n . f(Pl) + (_1)pl{wr1,s1 . f}(Pl)]
% [wrz’sz . f(Pz) + (_1)p2{wr2,s2 . f}(pZ)](x)dx
— AE[wry 51 (XD py (X1 — X2)|E[Wry, (X1 (X1 — X2)]
+ E[wry 5 (X1)¢p, (X1 — X2)(I1 + 12)]" E[A(p2lr2, 52)]
+ E[Wry,55(X1)¢p, (X1 — X2)(I1 + 12)]" E[A(palry, s1)]
+ E[An(p1lr1. sD]" S1E[Ay(p2lra, Sz)]}

+ 0(71_1 + n_zg_Pl_PZ—l)
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for p1 even and p» even, and

Elftg(p1lry, s ftg(p2lra, s2)]
4

8

= ZM%,L‘//(PI + 2|r1, s) ¥ (p2 + 2|r2, 52)
Mo 1 (p 1 (P2)
2n2gpitp2-1

/f[{wr1+r2,S1+S2 : f}(Z) - wrzysz{erSl : f}(Z)](x) dx

1
+ ;|:/ f[erSl : f(pl) + (_1)pl{wr1,51 ) f}(pl)]

X [Wrys - FP2 4 (=DP2{wy,., - £172](x) dx
— AE Wy 5y (XD G py (X1 — X2)|E [y, 55 (X 1)y (X1 — X2)]
+ E[Wry 51 (X0 $p (X1 — X2) (11 + 1)) E[A, (p2lr2, 52)]
+ E[Wry 5y (X1 $p (X1 — X2) (11 + 1)) E[A, (p1lra, s1)]

+ E[An(pilry, 01T 1 E[An(palra, Sz)]}

+ o(n_1 + n_zg_pl_p2+1)

for p1 odd and p» odd.

PROOF OF THEOREM 2 (continued). By applying Lemmas 4 and 5 to (9.2)
and rearranging, the MSE expressionAgf is obtained. This completes the proof.
O
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