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SEMIPARAMETRIC DENSITY ESTIMATION
BY LOCAL L2-FITTING1

BY KANTA NAITO

Shimane University

This article examines density estimation by combining a parametric ap-
proach with a nonparametric factor. The plug-in parametric estimator is seen
as a crude estimator of the true density and is adjusted by a nonparamet-
ric factor. The nonparametric factor is derived by a criterion called local
L2-fitting. A class of estimators that have multiplicative adjustment is pro-
vided, including estimators proposed by several authors as special cases, and
the asymptotic theories are developed. Theoretical comparison reveals that
the estimators in this class are better than, or at least competitive with, the
traditional kernel estimator in a broad class of densities. The asymptotically
best estimator in this class can be obtained from the elegant feature of the
bias function.

1. Introduction. Smoothing is a very important area of statistical analysis
and has a wide range of applications in mathematical sciences. The present article
is concerned especially with density estimation. LetX1, . . . ,Xn be independently
and identically distributed with densityf . The problem is in estimating the density
functionf from the data. In considering this problem, two approaches exist.

The first is called the parametric approach. In this approach, we prepare a
parametric model

{g(x, θ) : θ ∈ �},
whereθ is ap-dimensional parameter vector and� is the parameter space inRp.
In practice the family of densities is constructed from previous experience and
preanalysis of the underlying structure. Then estimation of the density function is
replaced by estimation of the unknown parameter vectorθ . Finally, we obtain a
density estimator

f̂ (x) = g(x, θ̂),

whereθ̂ is an estimator. This approach is called the plug-in parametric approach
and is justified only when the truef is exactly as in the model or at least in the
neighborhood of the model.
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The other approach is nonparametric. Several methods for nonparametric den-
sity estimation have been proposed and investigated. Izenman (1991) summarized
a number of these methods. A representative method is the traditional kernel den-
sity estimator off ,

f̃ (x) = 1

n

n∑
i=1

Kh(Xi − x),(1.1)

whereKh(z) = h−1K(h−1z), K(·) is some chosen density which is symmetric
about zero, andh is the bandwidth. The basic properties off̃ are well known and
under smoothness conditions we have

Ef̃ (x) = f (x) + h2

2
µ2,Kf ′′(x) + O(h4),

(1.2)

Var f̃ (x) = R(K)

nh
f (x) − f (x)2

n
+ O

(
h

n

)
,

whereµ�,G = ∫
z�G(z) dz andR(G) = ∫

G(z)2dz for some kernel functionG
[cf. Simonoff (1996) and Wand and Jones (1995)]. The traditional kernel
estimator is by construction completely nonparametric in the sense that it has no
preferences and works reasonably well for almost all shapes of densities. Like the
kernel estimator, all nonparametric methods can be used without the structural
assumption that the underlying structure is controlled or captured by a finite-
dimensional parameter. Thus, nonparametric approaches have attractive flexibility;
however, the parametric model is difficult to discount because a well-estimated
structure by the parametric approach is easy to understand.

This motivates us to propose an approach which includes both the parametric
approach and the nonparametric approach. We propose and investigate a class
of semiparametric density estimators which have precision comparable to, and
sometime better than, that of̃f . One class considered herein is the set of density
estimators derived fromthe local L2-fitting criterion with index α. In the proposed
approach, the parametric plug-in density estimatorg(x, θ̂ ) is utilized, but it is seen
as a crude guess off (x). This initial parametric approximation is adjusted via
multiplication by an adjustment factorξ = ξ(x). That is, the initial approximation
is adjusted via the formg(x, θ̂ )ξ . The local fitting approach is used to determine
the adjustment factor. Throughout the present article,ξ = ξ(x) is determined by
minimization of the empirical version of the function

Q(x, ξ |α) =
∫

Kh(t − x)
{f (t) − g(x, θ̂ )ξ}2

g(t, θ̂ )α
dt(1.3)

for a fixed target pointx. This method is called the localL2-fitting criterion,
whereα is a real number called the index. Observe that local fitting is obtained
using the kernel functionK . The symmetric densityK creates the fitting locally
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around the target pointx. This local approach is based on the simple intuition that
observed data which are far from the target pointx do not have information about
the adjustment. The minimizer of the empirical version of (1.3) is our objective and
is denoted bŷξ = ξ̂ (x). Using thisξ̂ , we finally obtain a density estimator̂f (x) =
g(x, θ̂ )ξ̂ (x). This approach is shown to be effective and yields a theoretically good
estimator in the sense of mean integrated squared error (MISE). A similar but
somewhat different approach was proposed by Copas (1995) in conjunction with
the likelihood method under censoring. Eguchi and Copas (1998) also discussed
a class of local likelihood methods and developed asymptotics under a large
bandwidthh. Their approach is the local estimation ofθ in the modelg(x, θ)

and the adjustment factorξ does not appear. The present approach is the local
estimation ofξ using a previously obtained plug-in parametric estimatorg(x, θ̂ ).

This multiplicative approach is closely related to studies performed by Hjort and
Glad (1995) and Hjort and Jones (1996). Hjort and Glad (1995) proposed a density
estimator based on thenaive estimator ofξ . In addition, Hjort and Jones (1996)
suggested and investigated two versions of multiplicative density estimators. One
class of density estimators considered here includes these estimators as special
cases, so this article may be seen as a generalization of these previous works.

The class of density estimators is developed in Section 2, and the estimators
proposed by Hjort and Glad (1995) and Hjort and Jones (1996) are reviewed
through examples. The behavior of the present estimators is investigated in
Section 3, which also reveals that the present result is indeed a generalization
of the results of Hjort and Glad (1995). The variance of the present estimator
is the same as that of the traditional kernel estimatorf̃ , but the structure of the
bias has a different form that depends on the initial parametric approximation.
As an important property, we confirm that iff is in the model, the estimator has
reduced bias. Approximate or asymptotic MISE (AMISE) is derived in Section 4.
Furthermore, the best estimator in the class is determined from the simple result
that the bias islinear in α. In Section 5 we compare the present estimator withf̃ for
the case in whichf belongs to a class of normal mixture densities. In particular,
a comparison is performed for 15 different test densities proposed by Marron
and Wand (1992). In addition, a similar comparison for the case in whichf is
the skew-normal distribution proposed by Azzalini (1985) is also discussed in
Section 5. In Section 6 a simple algorithm to choose the bestα is proposed. This
algorithm is a variant of that used by Hjort and Glad (1995). Furthermore, two
methods of data-based selection ofα are discussed, and theoretical results and the
practical algorithm are documented. These methods are constructed by reference
to the theory of estimating the density functional discussed by Hall and Marron
(1987) and Wand and Jones [(1995), Section 3.5]. Finite sample performance of
the proposed estimators, and comparison to thef̃ , the Hjort and Glad and the Hjort
and Jones estimators are investigated by Monte Carlo simulation in Section 7.
Supplementary remarks are presented in Section 8. It is trivial that the integral of
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the estimator is not unity, but the expansion formula ash tends to zero shows that
it is 1+ O(h4) provided that we adopt a Gaussian density as an initial parametric
model. A practical expression of the proposed estimator under the case using
a Gaussian kernel and model is presented. Proofs of the theoretical results are
presented in Section 9.

2. Local L2-fitting criterion. This section is devoted to the construction
of the present density estimator. First, we prepare a plug-in parametric density
estimatorg(x, θ̂ ), where θ̂ is an estimator of the least false valueθ0 according
to a certain distance measure betweenf andg(·, θ). The maximum likelihood
estimator is a representative candidate forθ̂ in which the distance measure is
known as the Kullback–Leibler distance

∫
f (x) log{f (x)/g(x, θ)}dx and θ0 is

defined as the minimizer of the Kullback–Leibler distance onθ . This parametric
estimator is seen as a crude guess off . Next, we aim to adjust this initial
approximation by the formg(x, θ̂)ξ , whereξ = ξ(x) is the adjustment factor.
The problem is determination ofξ . To explain this method more clearly and to
introduce the approaches proposed by Hjort and Glad (1995) and Hjort and Jones
(1996), we present three examples below. Note that the kernel functionK is a
symmetric density and the notation utilized in (1.1) and (1.2) is used throughout.

EXAMPLE 1 (Hjort and Jones estimator). To determine the adjustment
factorξ , Hjort and Jones (1996) suggested that the function ofξ is

q(x, ξ) =
∫

Kh(t − x){f (t) − g(t, θ̂ )ξ}2dt.

The optimalξ is determined by minimization of the estimate ofq(x, ξ) onξ . That
is, we seek to minimize

qn(x, ξ) = ξ2
∫

Kh(t − x)g(t, θ̂ )2 dt − 2ξ

n

n∑
i=1

Kh(Xi − x)g(Xi, θ̂),

which gives

ξ̂ = ξ̂ (x) = arg min
ξ

qn(x, ξ) = n−1 ∑n
i=1 Kh(Xi − x)g(Xi, θ̂)∫
Kh(t − x)g(t, θ̂ )2 dt

.

The density estimator is obtained by

f̂HJ(x) = g(x, θ̂)ξ̂ (x) = g(x, θ̂)
n−1 ∑n

i=1 Kh(Xi − x)g(Xi, θ̂)∫
Kh(t − x)g(t, θ̂ )2 dt

.(2.1)

Although not fully discussed, thiŝfHJ is the resultant estimator suggested by Hjort
and Jones [(1996), page 1636].
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EXAMPLE 2 (Local likelihood estimator). The factorξ is determined by
minimizing the empirical form of

�(x, ξ) =
∫

Kh(t − x)

[
f (t) log

f (t)

g(t, θ̂ )ξ
− {f (t) − g(t, θ̂ )ξ}

]
dt,

which is equivalent to maximizing that of

L(x, ξ) =
∫

Kh(t − x)
{
f (t) log{g(t, θ̂ )ξ} − g(t, θ̂ )ξ

}
dt.

The term�(x, ξ) can be seen as a local version of the Kullback–Leibler distance
from f (x) to g(x, θ̂)ξ . The resultant adjustment factor is

ξ̂ = ξ̂ (x) = f̃ (x)∫
Kh(t − x)g(t, θ̂ ) dt

and the ensuing estimator is

f̂LL (x) = g(x, θ̂ )ξ̂ (x)
(2.2)

= g(x, θ̂ )
f̃ (x)∫

Kh(t − x)g(t, θ̂ ) dt
= f̃ (x)

g(x, θ̂ )∫
Kh(t − x)g(t, θ̂ ) dt

,

where f̃ is as in (1.1). Thisf̂LL was proposed by Hjort and Jones [(1996),
page 1635], who derived and discussed several estimators;f̂HJ and f̂LL are two
special estimators with respect to the multiplicative adjustment scheme.

EXAMPLE 3 (Hjort and Glad estimator). If we may assumef (x) = g(x, θ̂)ξ ,
then true adjustment isξ = f (x)/g(x, θ̂ ). Hjort and Glad (1995) proposed the
naive estimator

ξ̂ (x) = ̂(
f (x)/g(x, θ̂ )

)
= 1

n

n∑
i=1

Kh(Xi − x)

g(Xi, θ̂)
,

which gives

f̂HG(x) = g(x, θ̂ )
1

n

n∑
i=1

Kh(Xi − x)

g(Xi, θ̂)
.(2.3)

In Hjort and Glad (1995) the behavior of̂fHG was investigated and was shown to
be better than the traditional kernel estimator in the sense of MISE on a certain
class of normal mixture densities.

In the present article we are concerned with a function, namely (1.3), in
conjunction with Examples 1–3. Considering the empirical version ofQ(x, ξ |α)

gives, by omitting the irrelevant term, the objective function

Qn(x, ξ |α) = ξ2
∫

Kh(t − x)g(t, θ̂ )2−α dt − 2ξ

n

n∑
i=1

Kh(Xi − x)g(Xi, θ̂)1−α.
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Obviously,α = 0 givesqn(x, ξ), so Qn(x, ξ |α) is a generalization ofqn(x, ξ)

in Example 1 and has weight functiong(t, θ̂ )−α. The minimizer can be easily
determined as

ξ̂ = ξ̂ (x) = arg min
ξ

Qn(x, ξ |α) = n−1 ∑n
i=1 Kh(Xi − x)g(Xi, θ̂)1−α∫
Kh(t − x)g(t, θ̂ )2−α dt

,

which is the proposed adjustment factor. Since the estimator depends onα, by
adding the symbolα we have

f̂α(x) = g(x, θ̂ )ξ̂ (x) = g(x, θ̂ )
n−1 ∑n

i=1 Kh(Xi − x)g(Xi, θ̂)1−α∫
Kh(t − x)g(t, θ̂ )2−α dt

.(2.4)

From (2.1)–(2.4), the following relationships hold:

f̂0(x) = f̂HJ(x), f̂1(x) = f̂LL (x), f̂2(x) = f̂HG(x).

The caseα = 0 is trivial. The caseα = 1 is confirmed by noting the defini-
tion �(x, ξ) and the Taylor expansion of(1 + y) log(1 + y) at y = 0. This is also
noted in Hjort and Jones (1996). The equalityf̂2 = f̂HG claims that the naive
estimatorξ̂ proposed by Hjort and Glad (1995) is characterized by the minimizer
of Qn(x, ξ |2). Therefore the estimators determined in Examples 1–3 are connected
by α. We thus propose a class of density estimators usingα as the index. As de-
scribed in the following sections, the introduction ofα is essential and enables
us to progress toward the theory of optimality in density estimation by the multi-
plicative adjustment scheme. In the following sections we discuss the behavior of
estimators in this class. In addition, the best estimator in this class is determined.

3. Asymptotic theory. In this section, we investigate various statistically
important quantities aboutf̂α , such as bias and variance. From the features off̂α,
it is trivial that its behavior depends on that ofθ̂ included in the initial parametric
approximationg(x, θ̂ ). To proceed with the theoretical study, we allow a somewhat
more general setting for the choice of estimatorθ̂ . Let F be the true distribution
function, the cumulative off , and letFn be the empirical distribution function.
We consider functional estimators ofθ of the form θ̂ = T (Fn) for some smooth
functionalT having the influence function

I (x) = lim
ε→0

[
T

(
(1− ε)F + εδx

) − T (F )
]/

ε,

whereδx is the unit point mass atx, and assume that�I = Ef [I (Xi)I (Xi)
T ] is

finite. The best parametric approximationg0(x) = g(x, θ0) to f (x) that g(x, θ̂ )

aims for is determined byθ0 = T (F ). It is well known for the case of the
maximum likelihood estimator thatT (F ) is defined as the solution of the equation∫
(∂/∂θ) logg(x, θ) dF (x) = 0, and soI (x) = J−1(∂/∂θ) logg(x, θ0), where

J = −Ef [(∂2/∂θ ∂θT ) logg(Xi, θ0)]. We may refer to Serfling (1980) for such



1168 K. NAITO

a functional estimator. Under regularity conditions [see, e.g., Shao (1991)] we have

θ̂ = θ0 + 1

n

n∑
i=1

I (Xi) + d

n
+ εn,(3.1)

whereεn = Op(1/n) with meanO(1/n2). Then we have the following theorem.

THEOREM 1. Let g0(x) = g(x, θ0), with θ0 = T (F ), be the best parametric
approximation to f . Then, as n → ∞, h → 0,

Biasf̂α(x) = h2

2
µ2,K

[
(g0(x)1−αf (x))′′

g0(x)1−α
− f (x)(g0(x)2−α)′′

g0(x)2−α

]

+ O

(
h4 + h2

n
+ 1

n2

)
,

Var f̂α(x) = R(K)

nh
f (x) − f (x)2

n
+ O

(
h

n
+ 1

n2

)
.

The proof is included in Section 9. Note that the leading term of the variance
of f̂α is independent of the estimation ofθ and, with reference to (1.2), it is
the same as that of̃f . Consistency of the density estimator requires bothh → 0
andnh → ∞. The optimal size ofh is proportional ton−1/5, which is also the
same as that forf̃ . Furthermore, it is worth noting that iff is in the model

{g(x, θ) : θ ∈ �}, that is,g0(x) = f (x), then theO(h2) term of the bias vanishes.
From the above observations, the essential difference between the behavior

of f̂α and that off̃ appears in the bias. As seen in the next section, theO(h2)

term of the bias off̂α has a nice expression (4.5), which allows the best estimator
in the sense of MISE to be determined.

4. Goodness of estimators. In this section, the goodness of estimators is
evaluated in the sense of MISE. In addition,f̂α and f̃ are compared. LetR(f̄ )

denote the integral of the squaredO(h2) term of the bias of a density estimatorf̄ .
From Theorem 1 and (1.2), the AMISE of̂fα andf̃ are, respectively, given by

AMISE(f̂α) = h4

4
µ2

2,KR(f̂α) + R(K)

nh

and

AMISE(f̃ ) = h4

4
µ2

2,KR(f̃ ) + R(K)

nh
,
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where

R(f̂α) =
∫ [

(g0(x)1−αf (x))′′

g0(x)1−α
− f (x)(g0(x)2−α)′′

g0(x)2−α

]2

dx,(4.1)

R(f̃ ) =
∫

{f ′′(x)}2dx.(4.2)

So it suffices to compareR(f̂α) andR(f̃ ) in the AMISE comparison, provided
that we use the same kernel functionK . The AMISE comparison will be discussed
for special choices of the underlyingf , using the same kernel.

Now we consider the function in the bracket in (4.1) to discover the best
estimator. Let us define

b1(x) = f ′′(x) − f (x)
g0

′′(x)

g0(x)
,(4.3)

b2(x) = 2
{
g0

′(x)f ′(x)

g0(x)
− f (x)

(
g0

′(x)

g0(x)

)2}
.(4.4)

Then it is easily verified that

(g0(x)1−αf (x))′′

g0(x)1−α
− f (x)(g0(x)2−α)′′

g0(x)2−α
= {b1(x) + b2(x)} − αb2(x).(4.5)

That is, theO(h2) term of the bias off̂α is linear in α. Therefore, writing

c1 =
∫

{b2(x)}2dx,(4.6)

c2 =
∫

b2(x){b1(x) + b2(x)}dx,(4.7)

c3 =
∫

{b1(x) + b2(x)}2 dx,(4.8)

we obtain

R(f̂α) = c1α
2 − 2c2α + c3.(4.9)

Using (4.9), we have the leading terms of the integrated squared bias off̂HJ, f̂LL

andf̂HG by substitutingα = 0,1 and 2, respectively. For instance,c3 = R(f̂0) is
found to be the integrated squared bias off̂HJ. The quadratic expression of (4.9)
establishes the following proposition.

PROPOSITION1. R(f̂α) is minimized over α at

αo = c2

c1
(4.10)

and its minimum value is

minR(f̂α) = c3 − (c2)
2

c1
,(4.11)

where c1–c3 are given in (4.6)–(4.8),respectively.
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The linear structure (4.5) is essential in the derivation of Proposition 1. This
is obtained by introducingα through the weightingg(t, θ̂ )−α in Q(x, ξ |α),
so that such a generalization indeed has an advantage. Theoretically, theideal
estimatorf̂αo is the best estimator in the class which surpasses estimatorsf̂HJ,
f̂LL andf̂HG in the sense of AMISE.

5. Asymptotic comparison. In this section the proposed̂fα is compared tof̃
based on the AMISE formulas described in Section 4.

5.1. Comparison in normal mixture. Here we comparêfα andf̃ for the case
in whichf belongs to the class of normal mixture densities. Let

f (x) =
k∑

i=1

pifi(x),

where

fi(x) = 1

σi

φ

(
x − µi

σi

)
≡ φσi

(x − µi),

φ is the standard normal density function and
∑k

i=1 pi = 1. The family of such
mixtures forms a very wide and flexible class of densities. Marron and Wand
(1992) studied such mixtures and singled out 15 different densities which are
often used as test densities in the study of the performance of density estimators
[Hjort and Glad (1995), Jones and Signorini (1997) and Jones, Linton and
Nielsen (1995)]. It is easy to see that

µ0 ≡
∫

xf (x) dx =
k∑

i=1

piµi,

σ 2
0 ≡

∫
(x − µ0)

2f (x) dx =
k∑

i=1

pi

{
σ 2

i + (µi − µ0)
2}.

For the present estimator̂fα, we adopt here the normal densityφσ0(x − µ0)

asg0(x) = g(x, θ0). This corresponds to the use of maximum likelihood estimates
(MLE) for estimation of θ0, since the normal density that has meanµ0 and
varianceσ 2

0 minimizes the Kullback–Leibler distance fromf (x) to g(x, θ) =
φσ (x − µ), whereθ = (µ,σ 2) andθ0 = (µ0, σ

2
0 ).

The previous section indicates that the AMISE comparison is performed by
comparingR(f̂α) andR(f̃ ). Both can be calculated through (4.1) and (4.2) using
numerical integration. However, whenf is a normal mixture andg0 is normal,
we obtain the analytic expression ofR(f̂α) by obtaining those ofc1, c2 andc3.
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Referring to (4.3) and (4.4), direct computation yields

b1(x) =
k∑

i=1

pifi(x)

{
1

σ 2
i

H2

(
x − µi

σi

)
− 1

σ 2
0

H2

(
x − µ0

σ0

)}
,

b2(x) = 2
k∑

i=1

pifi(x)

{
1

σ0σi

H1

(
x − µ0

σ0

)
H1

(
x − µi

σi

)
− 1

σ 2
0

H 2
1

(
x − µ0

σ0

)}
,

whereHk is thekth order Hermite polynomial. Sincec1, c2 andc3 are all integrals
of these functions, we find their analytic expressions using the properties of
the Hermite polynomials. The detailed calculations are found in Naito [(1998),
Sections 4 and 6]. On the other hand, the expression ofR(f̃ ) has already
been presented in Marron and Wand (1992). Thus, by using (4.1) and (4.2),
we comparef̂α and f̃ for 15 representative test densities used in Marron and
Wand (1992). The values of the ratioR(f̂α)/R(f̃ ) for α = 0,1,2,αo are tabulated
in Table 1, in which the case number corresponds to that used in Marron and Wand
(1992). The entries in columnαo are the values ofαo for each case. Since #1
is normal,R(f̂α) = 0 for all α, so that the ratio is always zero in the #1 row. For
example, in #6, which corresponds to a bimodal density, the value ofR(f̂0)/R(f̃ )

is 1.7434 and that ofR(f̂2)/R(f̃ ) is 0.7705, and for #6, the minimum of the ratio
is attained atαo = 1.9394 and its minimum value is 0.7696.

TABLE 1
Comparison in normal mixture a

f α = 0 α = 1 α = 2 α = αo αo

#1 0.0000 0.0000 0.0000 0.0000 —
#2 1.0448 0.3947 0.2460 0.2356 1.7968
#3 1.0239 0.9986 0.9925 0.9922 1.8207
#4 1.0010 0.9799 0.9606 0.8719 11.7075
#5 1.0436 0.8826 0.7822 0.7414 3.1606
#6 1.7434 0.9980 0.7705 0.7696 1.9394
#7 1.4821 0.9829 0.8524 0.8485 1.8541
#8 1.5398 1.0114 0.9007 0.8892 1.7651
#9 1.3088 1.0010 0.9178 0.9159 1.8706

#10 1.0512 0.9947 0.9791 0.9788 1.8787
#11 1.0003 1.0000 0.9999 0.9999 1.8597
#12 1.0236 1.0036 1.0025 1.0007 1.5589
#13 1.0005 1.0000 0.9999 0.9999 1.7840
#14 1.0030 1.0004 1.0002 1.0000 1.5897
#15 1.0127 1.0013 1.0001 0.9994 1.6190

aValues of the ratioR(f̂α)/R(f̃ ) are tabulated for the 15 densities
in Marron and Wand (1992). Values of the optimal indexαo defined
in (4.10) are listed in theαo column for each case.
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We can confirm that Proposition 1 holds and̂fαo is better than, or at least
competitive with,f̃ for all cases in this comparison. Furthermore, it is worth noting
that αo is around 2, except for #4 and #5. This reveals that the Hjort and Glad
estimatorf̂HG = f̂2 is also good for almost all cases.

5.2. Comparison in skew-normal. Similar to the previous section, the com-
parison off̂α and f̃ is performed for the case in whichf belongs to a class of
skew-normal distributions discussed in Azzalini (1985). If a random variableX

has densityf (x) = 2φ(x)�(λx), where� is the distribution function of the stan-
dard normal, then we say thatX has skew-normal distribution with parameterλ

and we denote this byX ∼ SN(λ). Here SN(0) corresponds to the standard normal.
We obtain from direct calculations that

f ′(x) = 2φ(x)s1(x, λ), f ′′(x) = 2φ(x)s2(x, λ),(5.1)

where

s1(x, λ) = λφ(λx) − H1(x)�(λx),

s2(x, λ) = H2(x)�(λx) − (λ3 + 2λ)H1(x)φ(λx)

andHk is the kth order Hermite polynomial. In addition, we adopt the normal
density as an initial approximation and the MLE for estimation of the parameter
included in the parametric model. We have forX ∼ SN(λ),

µ0 ≡
∫

xf (x) dx =
√

2

π

λ√
1+ λ2

,

σ 2
0 ≡

∫
(x − µ0)

2f (x) dx = 1− 2λ2

π(1+ λ2)
,

which gives the least false parameter vectorθ0 = (µ0, σ
2
0 ) for g0(x) = φσ0(x − µ0).

To find the best estimator, it is required to obtainb1(x) andb2(x) in (4.3) and (4.4),
respectively. Direct computations yield

b1(x) = 2φ(x)

[
s2(x, λ) − 1

σ 2
0

H2

(
x − µ0

σ0

)
�(λx)

]
,

b2(x) = −4φ(x)

[
1

σ0
s1(x, λ)H1

(
x − µ0

σ0

)
+ 1

σ 2
0

H1

(
x − µ0

σ0

)2

�(λx)

]
.

Using these, we can obtainR(f̂α), and we have from (4.2) and (5.1) that

R(f̃ ) =
∫ {

2φ(x)s2(x, λ)
}2

dx.

Table 2 exhibits the comparison forλ = 0(1)5. For eachλ the ratioR(f̂α)/

R(f̃ ) is tabulated. Sinceλ = 0 impliesf = g0, the ratios are zero for allα. For
anyλ utilized in this comparison, we observêfα for α = 1,2, αo are all superior
to f̃ .



SEMIPARAMETRIC DENSITY ESTIMATION 1173

TABLE 2
Comparison in skew-normal a

f α = 0 α = 1 α = 2 α = αo αo

λ = 0 0.0000 0.0000 0.0000 0.0000 —
λ = 1 0.0762 0.0232 0.0134 0.0118 1.7270
λ = 2 0.7636 0.2669 0.1645 0.1531 1.7594
λ = 3 1.4625 0.5783 0.3945 0.3748 1.7624
λ = 4 1.7888 0.7836 0.5839 0.5583 1.7480
λ = 5 1.8678 0.8963 0.7133 0.6850 1.7320

aValues of the ratioR(f̂α)/R(f̃ ) are tabulated forλ = 0(1)5 in SN(λ)

proposed by Azzalini (1985). Values of the optimal indexαo defined
in (4.10) are listed in theαo column for each SN(λ).

6. Index selection. In this section, three data-based methods used to select
the indexα are discussed. These methods are somewhat intuitive, but the density
estimators with the index obtained through these methods perform well, as shown
in the simulation report in Section 7.

6.1. Direct method. We propose a data-based selection ofα which is a
derivative of that ofh discussed in Hjort and Glad [(1995), Section 6]. We consider
the Hermite expansion given as

f (x) = φ

(
x − µ

σ

)
1

σ

{
1+

m∑
k=3

γk

k! Hk

(
x − µ

σ

)}
,(6.1)

whereγ0 = 1 andγ1 = γ2 = 0. We know thatγk = E[Hk((X − µ)/σ )]. Simple
but somewhat tedious computations, along with the Gaussian initial approximation
g0(x) = φσ (x − µ) andm = 5, yield

c1 = 1

σ 5
√

π

[
γ 2

3

(
7

16

)
+ γ 2

4

9

(
33

32

)
+ γ 2

5

144

(
225

64

)
− γ3γ5

6

(
21

32

)]
,(6.2)

c2 = 1

σ 5
√

π

[
γ 2

3

(
3

4

)
+ γ 2

4

9

(
32

57

)
+ γ 2

5

144

(
195

32

)
− γ3γ5

6

(
39

32

)]
,(6.3)

c3 = 1

σ 5
√

π

[
γ 2

3

(
3

2

)
+ γ 2

4

9

(
123

32

)
+ γ 2

5

144

(
225

16

)
− γ3γ5

2

]
.(6.4)

Hereci , i = 1,2,3, are estimated in the usual manner by substituting

γ̂k = 1

n

n∑
i=1

Hk

(
Xi − µ̂

σ̂

)
for γk , wherek = 3,4,5, and by substitutinĝσ for σ . The next step is to use
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nonparametric estimators ofc1 andc2 defined by

ĉ1(h) =
∫

{b̂2(x;h)}2dx,

ĉ2(h) =
∫

b̂2(x;h)
{
b̂1(x;h) + b̂2(x;h)

}
dx,

where

b̂1(x;h) = 1

n

n∑
i=1

[
1

h3
K ′′

(
x − Xi

h

)
− 1

h
K

(
x − Xi

h

)
g′′(x, θ̂ )

g(x, θ̂ )

]
,

b̂2(x;h) = 2

n

n∑
i=1

[
1

h2K ′
(

x − Xi

h

)
g′(x, θ̂ )

g(x, θ̂ )
− 1

h
K

(
x − Xi

h

)(
g′(x, θ̂)

g(x, θ̂ )

)2]
,

K is a kernel, which may be different from that used inf̂α, andh is the bandwidth.
Using these quantities, we chooseα as follows. First, we obtain̄ci , i = 1,2,3, from
(6.2)–(6.4), respectively, usinĝγk , k = 3,4,5, andσ̂ , under the assumption that the
underlying distribution is approximated by the Hermite expansion. Then, referring
to (4.11),R(f̂αo) is estimated as

R̄(f̂αo) = c̄3 − (c̄2)
2

c̄1
.

This gives a bandwidth

h̄ =
{
R(K)

µ2
2,K

}1/5

R̄
(
f̂αo

)−1/5
n−1/5,(6.5)

from which we have an estimate of the optimal index,

α̂[1]
o = ĉ2(h̄)

ĉ1(h̄)
.(6.6)

6.2. Two methods based on functional estimation. Here we propose two
methods based on estimation of the functional off andg(x, θ̂). Define

q1(x) = g′
0(x)

g0(x)
,(6.7)

q2(x) = g′′
0(x)

g0(x)
= q ′

1(x) + {q1(x)}2,(6.8)

whereg0(x) = g(x, θ0). Using this notation, we have

c1 = 4
∫

f ′(x)2q1(x)2 dx + 4
∫

f (x)2q1(x)4 dx − 8
∫

f (x)f ′(x)q1(x)3 dx,

c2 = c1 + 2
∫

f ′(x)f ′′(x)q1(x) dx − 2
∫

f (x)f ′(x)q1(x)q2(x) dx

− 2
∫

f (x)f ′′(x)q1(x)2 dx + 2
∫

f (x)2q1(x)2q2(x) dx.
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Under the sufficient smoothness condition forf , it follows that∫
f ′(x)2q1(x)2 dx

= −Ef [f ′′(X)q1(X)2] − 2Ef [f ′(X)q1(X)q2(X)] + 2Ef [f ′(X)q1(X)3]
and ∫

f ′(x)f ′′(x)q1(x) dx

= −Ef [f ′′′(X)q1(X)] − Ef [f ′′(X)q2(X)] + Ef [f ′′(X)q1(X)2].
These calculations allow us to define

ψ(p|r, s) ≡ Ef

[
f (p)(X)q1(X)rq2(X)s

]
for integersp = 0,1,2,3, r = 0,1,2,3,4 and s = 0,1,2, wheref (p)(x) =
(dp/dxp)f (x) andf (0)(x) = f (x). Then we have

c1 = 4
{
ψ(0|4,0) − ψ(2|2,0) − 2ψ(1|1,1)

}
,

c2 = c1 + 2
{
ψ(0|2,1) − ψ(3|1,0) − ψ(2|0,1) − ψ(1|1,1)

}
,

so that the optimalαo in (4.10) can be written in terms ofψ as

αo = c2

c1
= 1+ 1

2

[
ψ(0|2,1) − ψ(3|1,0) − ψ(2|0,1) − ψ(1|1,1)

ψ(0|4,0) − ψ(2|2,0) − 2ψ(1|1,1)

]

≡ 1+ 1

2

N

D
,

where

N = ψ(0|2,1) − ψ(3|1,0) − ψ(2|0,1) − ψ(1|1,1),

D = ψ(0|4,0) − ψ(2|2,0) − 2ψ(1|1,1).

By the above reductions, data-based selection ofα is accomplished by using an
estimator ofαo defined by

α̂o(g) = 1+ 1

2

N̂g

D̂g

= 1+ 1

2

[
ψ̂g(0|2,1) − ψ̂g(3|1,0) − ψ̂g(2|0,1) − ψ̂g(1|1,1)

ψ̂g(0|4,0) − ψ̂g(2|2,0) − 2ψ̂g(1|1,1)

]
,

where

ψ̂g(p|r, s) = 1

n(n − 1)

∑
i �=j

q̂1(Xi)
r q̂2(Xi)

sL(p)
g (Xi − Xj)

is a nonparametric estimator ofψ(p|r, s) that has a symmetric kernelL and
bandwidthg that are possibly different fromK andh, respectively. In addition,
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q̂1 andq̂2 are, respectively, those of (6.7) and (6.8) usingg(x, θ̂ ) rather thang0(x).
The behavior of̂αo(g) can be investigated by a method based on the theory of

estimating the density functional [see, e.g., Section 3.5 in Wand and Jones (1995)].
Mean squared error (MSE) is adopted to evaluatêNg and D̂g , while α̂o(g) is
evaluated by mean squared relative error (MSRE). Somewhat tedious calculations
yield the following theorem:

THEOREM 2. As n → ∞ and g → 0,

MSE[N̂g] = g4

4
µ2

2,LN [2]2 + 1

2n2g5

∫ ∫
λ2|3(x, z)2dx dz

(6.9)
+ O(n−1) + o(g4 + n−2g−5),

MSE[D̂g] = g4

4
µ2

2,LD[2]2 + 1

2n2g5

∫ ∫
κ2(x, z)2dx dz

(6.10)
+ O(n−1) + o(g4 + n−2g−5),

MSRE
[
α̂o(g)

] = g4

16
µ2

2,L

[
N [2]
N [0] − D[2]

D[0]
]2

+ 1

8n2g5

∫ ∫ [
λ2|3(x, z)

N [0] − κ2(x, z)

D[0]
]2

dx dz(6.11)

+ O(n−1) + o(g4 + n−2g−5 + n−1),

where

λp2|p1(x, z) = f (x)
[{

2L(p2)(z) + zL(p1)(z)
}
q2(x) − zL(p1)(z)q1(x)2],

κp2(x, z) = f (x)
[
2L(p2)(z)q1(x)2]

for even p2 and p1 = p2 + 1, and

N [p] = ψ(p|2,1) − ψ(p + 3|1,0) − ψ(p + 2|0,1) − ψ(p + 1|1,1)

D[p] = ψ(p|4,0) − ψ(p + 2|2,0) − 2ψ(p + 1|1,1)

for even p with N [0] = N and D[0] = D .

The proof of Theorem 2 is presented in Section 9. From Theorem 2 the
approximate mean squared error (AMSE)-optimal bandwidths forN̂g and D̂g,
and the approximate mean squared relative error (AMSRE)-optimal bandwidth
for α̂o(g) are, respectively, given as

gN -AMSE =
[(

5

2

)∫∫
λ2|3(x, z)2dx dz

µ2
2,LN [2]

]1/9

n−2/9,

gD-AMSE =
[(

5

2

)∫∫
κ2(x, z)2 dx dz

µ2
2,LD[2]

]1/9

n−2/9



SEMIPARAMETRIC DENSITY ESTIMATION 1177

and

gAMSRE =
[(

5

2

)∫∫ {Dλ2|3(x, z) − N κ2(x, z)}2dx dz

µ2
2,L{DN [2] − N D[2]}2

]1/9

n−2/9.

Unfortunately, these bandwidths have the same defect as the plug-in method for
bandwidth selection of the kernel density estimator: all of these bandwidths depend
on unknownN [2], D[2], N andD . Estimation ofN [2] andD[2] is possible;
however, their optimal bandwidths depend onN [4] andD[4]. Furthermore, it can
easily be recognized that this problem does not go away.

To overcome this problem, we utilize a simple estimate based on the Hermite
expansion of (6.1). Equation (6.1) yields a pilot estimate off (p)(x) as

f̃ (p)(x) = (−1)p

σ̂ p+1 φ

(
x − µ̂

σ̂

) m∑
k=1

γ̂k

k! Hk+p

(
x − µ̂

σ̂

)
,

from which we havẽN [6] = ψ̃(6|2,1) − ψ̃(9|1,0) − ψ̃(8|0,1) − ψ̃(7|1,1) as an
estimate ofN [6] using the component defined by

ψ̃(p|r, s)

= (−1)p

σ̂ p

m∑
k=0

γ̂k

k!
[

1

n

n∑
i=1

1

σ̂
φ

(
Xi − µ̂

σ̂

)
Hk+p

(
Xi − µ̂

σ̂

)
q̂1(Xi)

r q̂2(Xi)
s

]
.

An estimateD̃[6] of D[6] can be obtained in the same manner.
In the following text we describe the algorithm used to obtain two estimates

of αo. The notation utilized is

L[1](p1,p2) = µ2,L(p1)L(p1) + 4µ0,L(p2)L(p2) + 4µ1,L(p1)L(p2) ,

L[2](p1,p2) = 4µ1,L(p1)L(p2) + 2µ2,L(p1)L(p1) ,

L[3](p1,p2) = 4µ0,L(p2)L(p2) + 2µ1,L(p1)L(p2)

for nonnegative integersp1 andp2, and

λ̂2
p2|p1

(β) = L[1](p1,p2)ψ̂β(0|0,2) − L[2](p1,p2)ψ̂β(0|2,1)

+ µ2,L(p2)L(p2)ψ̂β(0|4,0),

κ̂2
p2

(β ′) = 4µ0,L(p2)L(p2)ψ̂β ′(0|4,0)

for bandwidthsβ andβ ′. Detailed calculations needed to derive some of equations
in the sequel are omitted, but are available from the author.

1. ComputeÑ [6] andD̃[6].
2. Computeλ̂2

6|7(βn1) and κ̂2
6(βd1) for some appropriately chosen bandwidths
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βn1 andβd1, and then compute

gn1 =
[(

13

2

) λ̂2
6|7(βn1)

µ2
2,LÑ [6]2

]1/17

n−2/17,

gd1 =
[(

13

2

)
κ̂2

6(βd1)

µ2
2,LD̃[6]2

]1/17

n−2/17.

3. Computêλ2
4|5(βn2) andκ̂2

4(βd2) for some appropriately chosen bandwidthsβn2

andβd2, and then compute

gn2 =
[(

9

2

) λ̂2
4|5(βn2)

µ2
2,LN̂gn1[4]2

]1/13

n−2/13,

gd2 =
[(

9

2

)
κ̂2

4(βd2)

µ2
2,LD̂gd1[4]2

]1/13

n−2/13.

4. Computêλ2
2|3(βn3) andκ̂2

2(βd3) for some appropriately chosen bandwidthsβn3

andβd3, and then compute

gn3 =
[(

5

2

) λ̂2
2|3(βn3)

µ2
2,LN̂gn2[2]2

]1/9

n−2/9,

gd3 =
[(

5

2

)
κ̂2

2(βd3)

µ2
2,LD̂gd2[2]2

]1/9

n−2/9.

5. Compute

g∗
AMSRE =

[
5

2µ2
2,L{D̂gd3N̂gn2[2] − N̂gn3D̂gd2[2]}2

]1/9

×
[
D̂2

gd3
L[1](3,2)ψ̂β0(0|0,2)

− {
D̂2

gd3
L[2](3,2) + 2N̂gn3D̂gd3L

[3](3,2)
}
ψ̂β0(0|2,1)

+ {
D̂2

gd3
µ2,L(2)L(2) + 4N̂ 2

gn3
µ0,L(2)L(2)

+ 4N̂gn3D̂gd3µ1,L(2)L(3)

}
ψ̂β0(0|4,0)

]1/9

× n−2/9

for some appropriately chosen bandwidthβ0.
6. Compute two estimates ofαo defined as

α̂[2]
o = α̂o

(
g∗

AMSRE
)

(6.12)



SEMIPARAMETRIC DENSITY ESTIMATION 1179

and

α̂[3]
o = 1+ 1

2

N̂gn3

D̂gd3

.(6.13)

Here α̂[2]
o is based on AMSRE formula (6.11), so that a single bandwidth is

included. On the other hand, the two bandwidths included inα̂[3]
o are based on

AMSE formulas (6.9) and (6.10), which correspond to the numeratorN and the
denominatorD , respectively. The bandwidthsβn1, βn2, βn3, βd1, βd2, βd3 andβ0
are all determined using the formula

AMSE
[
aψ̂β(0|0,2) + bψ̂β(0|2,1) + cψ̂β(0|4,0)

]
= β4

4
µ2

2,L

{
aψ(2|0,2) + bψ(2|2,1) + cψ(2|4,0)

}2

+ 2R(L)

n2β

∫
f (x)2{aq2(x)2 + bq1(x)2q2(x) + cq1(x)4}2

dx

for some constantsa, b andc. This gives the optimalβ as

βAMSE =
[

2R(L)Ef [f (X){aq2(X)2 + bq1(X)2q2(X) + cq1(X)4}2]
{aψ(2|0,2) + bψ(2|2,1) + cψ(2|4,0)}2

]1/5

n−2/5.

At this stage, estimates ofψ(0|r, s) andψ(2|r, s) for some pairs(r, s) are needed.
These can be provided by kernel estimates off andf (2) that have bandwidths
obtained by the method of Härdle, Marron and Wand (1990). The empirical
behavior off̂α for α = α̂[1]

o , α̂[2]
o andα̂[3]

o is reported in the next section.

7. Finite sample performance. Finite sample performance of the proposed
density estimators was investigated by Monte Carlo simulation. The first 10
densities (#1– #10) of Marron and Wand (1992), which cover a large variety of
realistic density shapes, were used as target densities in this simulation study.
In each case 1000 samples of sizen = 500 were generated. The MISE(h) value
for a given bandwidthh was estimated by the average of these 1000 realizations
of (integrated squared error) ISE(h). To obtain a precise approximation to the
minimum MISE, a grid search of the bandwidth was implemented. This was done
after an initial screening had provided a suitableh interval that contained the
minimum. The Gaussian kernel was used throughout. The estimators compared in
this study weref̃ andf̂α for α = 0,1,2, αo, α̂

[k]
o , k = 1,2,3 [see (6.6), (6.12) and

(6.13)]. We utilizedg(x, θ̂ ) = φσ̂ (x − µ̂) for all cases, where(µ̂, σ̂ 2) is the MLE
of (µ,σ 2). Values of 105×minMISE are tabulated in Table 3, where the minimum
is taken overh. Also tabulated in parentheses for all cases and estimators are
105 times the standard error (SE) of the estimates of MISE(h) using the bandwidth
at which minMISE is obtained.
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TABLE 3
The value of estimated minh MISE(h) ×105 for samples of size n = 500 from each of the first 10
Marron and Wand densities over 1000simulations for f̃ , f̂0 (= f̂HJ), f̂1 (= f̂LL ), f̂2 (= f̂HG),

f̂αo and f̂α with α = α̂
[k]
o , k = 1,2,3. The standard error ×105 is given in parentheses

for each case

f̂α

f f̃ α = 0 α = 1 α = 2 α = αo α = α̂
[1]
o α = α̂

[2]
o α = α̂

[3]
o

#1 172 67 62 63 — — — —
(3) (2) (1) (1) — — — —

#2 254 243 196 190 182 227 288 218
(4) (4) (4) (4) (4) (4) (9) (6)

#3 1,413 1,406 1,395 1,394 1,394 1,394 1,394 1,395
(15) (15) (15) (15) (15) (15) (15) (15)

#4 1,372 1,296 1,290 1,286 2,734 1,288 1,440∗ 1,523∗
(16) (17) (17) (17) (621) (17) (195)† (213)†

#5 1,735 1,763 1,677 1,641 1,710 1,648 1,641 289,637
(32) (32) (31) (30) (28) (30) (30) (5,181)

#6 244 272 243 234 234 258 234 235
(4) (4) (4) (4) (4) (4) (4) (4)

#7 340 372 340 333 332 336 332 332
(5) (5) (5) (5) (5) (5) (5) (5)

#8 323 361 328 324 321 341 321 324
(4) (5) (5) (5) (5) (5) (5) (5)

#9 296 327 302 297 296 309 296 296
(4) (4) (4) (4) (4) (4) (4) (4)

#10 1,126 1,139 1,125 1,124 1,123 1,135 1,124 1,124
(10) (10) (10) (10) (10) (10) (10) (10)

Note: The asterisk(∗) designates the minimum of median ISE and the dagger(†) denotes robust SE
using median absolute deviation.

First we see #1. This case is thatf is in the parametric model so that theO(h2)

term of the bias off̂α vanishes, as mentioned in Section 3. Therefore,αo is not
defined and the estimation ofαo does not have meaning. Thus,f̂α for α = αo, α̂

[k]
o ,

k = 1,2,3, were not simulated for #1 for this reason. For #1 all off̂α are
significantly better thanf̃ , andf̂1 is the best.

The tabulated values for̂fα with α = α̂[2]
o andα = α̂[3]

o in #4 are the median of
ISE(h) for a givenh rather than MISE(h), and the values in parentheses are robust
SEs calculated by substituting median absolute deviations. This is because the
values of MISE(h) of these became huge and showed unstable behavior in #4. The
instability in #4 can actually be observed, since even the value of robust median
ISE(h) is somewhat large relative to MISE(h) values of other estimators, and then
the value of robust SE in parentheses is also large. We can further observe from #5
that f̂α with α = α̂[3]

o behaves unstably.
In all cases except #4, #5 and #9, the ideal estimatorf̂αo is the best, which
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justifies the theory presented in Section 4. In #4 and #5f̂αo is not so good because
the valueαo is large relative to the other cases as seen in Table 1. It seems that a
larger sample is needed for #4 and #5 to confirm the theory presented in Section 4.
In addition, good performance of̂fαo reveals that the estimation ofαo is indeed an
important problem. Estimatorŝfα for α = α̂[k]

o , k = 1,2,3, behave well and their
differences are small in almost all cases. Forα = α̂[k]

o , k = 2,3, however,f̂α were
somewhat unstable relative tôα[1]

o in the sense of the SE, but the bias of these
estimators was smaller than that forα̂[1]

o .
Some notable insights from Table 3 are as follows. For almost all cases,f̂2 sur-

passesf̂α for α = 0,1. Although the degree of improvement is marginal, use of
the estimator ofαo yields better performance, which is recognized in #3, #5, #7,
#8, #9 and #10. For practical situations, the choices ofα̂[2]

o and α̂[3]
o are recom-

mended for densities that are somewhat smooth, butα̂[1]
o is suited for densities that

are rather kurtotic.

8. Supplements. In this section a number of supplementary results are
presented.

8.1. The integral. Direct calculation yields∫
f̂α(x) dx = 1+ h2

2
µ2,K

1

n

n∑
i=1

[ {g(Xi, θ̂)α−1}′′
g(Xi, θ̂)α−1

− {g(Xi, θ̂)2−α}′′
g(Xi, θ̂ )2−α

]
+ O(h4)

ash → 0. In particular, when we adopt the Gaussian densityg(x, θ̂ ) = φσ̂ (x −
µ̂) = φs(x − X̄) as an initial parametric start, wherēX ands2 are, respectively, the
sample mean and the sample variance, we have∫

f̂α(x) dx = 1+ h2

2
µ2,K

(
2α − 3

s2

)
1

n

n∑
i=1

{(
Xi − X̄

s

)2

− 1
}

+ O(h4)

= 1+ O(h4)

ash → 0.

8.2. Computational remark. The practical expression for̂fα depends on the
choices of the kernelK and the initial parametric modelg(x, θ). Thus, the
general features required for practical calculation are not pursued here. However,
derivation of the expression for the case in which the Gaussian kernel and model
are adopted appears to be useful. Now define that

I(α) =
∫

Kh(t − x)g(t, θ̂ )−α dt



1182 K. NAITO

for K(t) = φ(t) andg(t, θ̂ ) = φσ̂ (t − µ̂). Direct calculations give

I(α) = (
√

2π )ασ̂ α+1
√

σ̂ 2 − αh2
exp

[
α(x − µ̂)2

2(σ̂ 2 − αh2)

]
,

provided that̂σ 2 −αh2 > 0. Using this notation, we have, for the case of Gaussian
kernel and model,

f̂α(x) = (
√

2π )α−3σ̂ α−2

nhI(α − 2)

×
n∑

i=1

exp
{
−(x − µ̂)2

2σ̂ 2 − (Xi − x)2

2h2 − (1− α)
(Xi − µ̂)2

2σ̂ 2

}

for σ̂ 2 − (α − 2)h2 > 0.

8.3. Choosing the bandwidth. From Section 4 we see that the bandwidthh

that minimizes the AMISE forf̂α is

h(α) =
{

R(K)

µ2
2,K

}1/5

R(f̂α)−1/5n−1/5

for a fixedα, and the resultant minimum value of the AMISE is

5
4

{
µ2,KR(K)2}2/5

R(f̂α)1/5n−4/5.

Proposition 1 reveals that we can further reduce this by usingα = αo in (4.10).
Thus, the best choice for the bandwidthh is

ho = h(αo) =
{

R(K)

µ2
2,K

}1/5

R
(
f̂αo

)−1/5
n−1/5.

Here, we propose a method to chooseh which is a variant of that discussed in
Hjort and Glad (1995). Recall the analogy presented in Section 6.1, and considerh̄

in (6.5) andα̂[1]
o in (6.6). Further, we consider a bias-adjusted version ofR(f̂α)

given as

R†(α,h) = n

n − 1

{
R̂(α,h) − R(K ′′)

nh5

}
,

where

R̂(α,h) = ĉ1(h)α2 − 2ĉ2(h)α + ĉ3(h)

and
ĉ3(h) =

∫ {
b̂1(x;h) + b̂2(x;h)

}2
dx.
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Here h̄ in (6.5) is seen as an initial bandwidth. Then we calculate the final
bandwidth as

ĥ =
{

R(K)

µ2
2,K

}1/5

R†(α̂[1]
o , h̄

)−1/5
n−1/5.

The theoretical performance of thiŝh is not pursued here. However, we have an
empirical suggestion based on application to some artificial data thatĥ is not as
stable as̄h.

9. Proofs. In this section the proofs of theoretical results are presented. First,
we prepare the following lemma which can be proved by Taylor expansion.

LEMMA 1. Let g0(x) = g(x, θ0) and

f ∗
α (x) = g0(x)

n−1 ∑n
i=1 Kh(Xi − x)g0(Xi)

1−α∫
Kh(t − x)g0(t)2−α dt

.(9.1)

Then as n → ∞, h → 0,

Biasf ∗
α (x) = h2

2
µ2,K

[
(g0(x)1−αf (x))′′

g0(x)1−α
− f (x)(g0(x)2−α)′′

g0(x)2−α

]
+ O(h4),

Varf ∗
α (x) = R(K)

nh
f (x) − f (x)2

n
+ O

(
h

n

)
.

PROOF OFPROPOSITION1. The result is straightforwardly obtained from the
quadratic expression ofR(f̂α) in (4.9). �

PROOF OFTHEOREM 1. Define

u0(x) = ∂

∂θ
logg(x, θ0),

U0(x) = ∂2

∂θ ∂θT
logg(x, θ0).

Using Taylor expansions, we can expandf̂α as

f̂α(x) = f ∗
α (x) + (θ̂ − θ0)

T B̄n(x) + 1
2(θ̂ − θ0)

T C̄n(x)(θ̂ − θ0) + op(n−1),

wheref ∗
α is given as in (9.1),

B̄n(x) = 1

n

n∑
i=1

Bi(x),

C̄n(x) = 1

n

n∑
i=1

Ci(x),
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Bi(x) = Kh(Xi − x)g0(Xi)
1−α g0(x)

η0(x)

×
[
(1− α)u0(Xi) − (2− α)

η0(x)
η1(x) + u0(x)

]
,

Ci(x) = Kh(Xi − x)g0(Xi)
1−α g0(x)

η0(x)

×
[
−2(1− α)(2− α)

η0(x)
η1(x)u0(Xi)

T + 2(1− α)u0(x)u0(Xi)
T

+ (1− α)
{
U0(Xi) + (1− α)u0(Xi)u0(Xi)

T
}

− 2(2− α)

η0(x)
u0(x)η1(x)T + {

U0(x) + u0(x)u0(x)T
}

+ 2(2− α)

η0(x)2

{
(2− α)η1(x)η1(x)T − 1

2
η0(x)η2(x)

}]
,

where
η0(x) =

∫
Kh(t − x)g0(t)

2−α dt,

η1(x) =
∫

Kh(t − x)u0(t)g0(t)
2−α dt,

η2(x) =
∫

Kh(t − x)
{
U0(t) + (2− α)u0(t)u0(t)

T
}
g0(t)

2−α dt.

Through (3.1) and the average representations above, we have

E[(θ̂ − θ0)
T B̄n(x)] = O

(
h2

n
+ 1

n2

)
,

E[(θ̂ − θ0)
T C̄n(x)(θ̂ − θ0)] = O

(
h2

n
+ 1

n2

)
,

using the fact thatIi = I (Xi) has mean zero. Since the bias term off ∗
α in (9.1)

was already given in Lemma 1, the bias expression off̂α is confirmed.
Next we consider variance. The variance off ∗

α was obtained in Lemma 1.
By using the average representation (3.1), we have, after somewhat lengthy
calculations, that

Var[(θ̂ − θ0)
T B̄n(x)] = O

(
h4

n
+ 1

n2

)
,

Var[(θ̂ − θ0)
T C̄n(x)(θ̂ − θ0)] = O

(
h4

n2

)
,

Cov[f ∗
α (x), (θ̂ − θ0)

T B̄n(x)] = O

(
h2

n
+ 1

n2

)
,
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from which the necessary variance expression is derived.�

PROOF OFTHEOREM 2. Direct calculation yields that

MSRE[α̂o(g)]

= E

[{
α̂o(g)

αo

− 1
}2]

= D2

4N 2E

[{
D(N̂g − N ) − N (D̂g − D)

D2 + D(D̂g − D)

}2]

= 1

4

[
MSE[N̂g]

N 2
+ MSE[D̂g]

D2
− 2

E{(D̂g − D)(N̂g − N )}
N D

]
+ On,g,

where On,g is a negligible higher-order term. Hence it suffices to show (6.9)
and (6.10), and to evaluate the cross termE{(D̂g − D)(N̂g − N )} for check-
ing (6.11). However, only the proof of (6.9) is presented here since the other equa-
tions can be obtained in the same manner. We therefore focus onN̂g . Then it
follows that

MSE[N̂g]
= MSE[ψ̂g(0|2,1)] + MSE[ψ̂g(3|1,0)]

+ MSE[ψ̂g(2|0,1)] + MSE[ψ̂g(1|1,1)]
− 2E[µ̂g(0|2,1)µ̂g(3|1,0)] − 2E[µ̂g(0|2,1)µ̂g(2|0,1)](9.2)

− 2E[µ̂g(0|2,1)µ̂g(1|1,1)] + 2E[µ̂g(3|1,0)µ̂g(2|0,1)]
+ 2E[µ̂g(3|1,0)µ̂g(1|1,1)] + 2E[µ̂g(2|0,1)µ̂g(1|1,1)],

whereµ̂g(p|r, s) = ψ̂g(p|r, s)−ψ(p|r, s). Therefore, the proof is further reduced
to evaluation of MSE[ψ̂g(p|r, s)] andE[µ̂g(p1|r1, s1)µ̂g(p2|r2, s2)] for nonneg-
ative integer triplets(p|r, s), (p1|r1, s1) and(p2|r2, s2). To accomplish the proof,
the following four lemmas are needed. The proofs of all four lemmas are omitted.
Details are available from the author.

Let us define

ψ∗
g (p|r, s) = 1

n(n − 1)

∑
i �=j

q1(Xi)
rq2(Xi)

sL(p)
g (Xi − Xj).(9.3)

Performance ofψ̂g(p|r, s) is dominated by the performance ofψ∗
g (p|r, s). The

following lemma is concerned withψ∗
g (p|r, s).
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LEMMA 2. Let ψ∗
g (p|r, s) be as given in (9.3).Then, as n → ∞, g → 0,

MSE[ψ∗
g (p|r, s)]

= Bias[ψ∗
g (p|r, s)]2 + Var[ψ∗

g (p|r, s)]

= g4

4
µ2

2,Lψ(p + 2|2r, s)2 + 2R(L(p))

n2g2p+1
ψ(0|2r,2s)

+ 1

n

[∫
f (x)

{
w(x)f (p)(x) + {w · f }(p)(x)

}2
dx − 4E[ψ∗

g (p|r, s)]2
]

+ o(n−1 + n−2g−2p−1),

for p even and

MSE[ψ∗
g (p|r, s)]

= g4

4
µ2

2,Lψ(p + 2|r, s)2

× µ2,{L(p)}2

2n2g2p−1

∫
f (x)

{{w2 · f }(2)(x) − w(x){w · f }(2)(x)
}
dx

+ 1

n

[∫
f (x)

{
w(x)f (p)(x) − {w · f }(p)(x)

}2
dx − 4E[ψ∗

g (p|r, s)]2
]

+ o(n−1 + n−2g−2p+1)

for p odd, where

w(x) = q1(x)rq2(x)s .

The notation

wr,s(x) = q1(x)rq2(x)s, φp(x) = L(p)
g (x)

is used in the next lemma.

LEMMA 3. As n → ∞, g → 0, we have

E[ψ∗
g (p1|r1, s1)ψ

∗
g (p2|r2, s2)]

= E
[
wr1,s1(X1)φp1(X1 − X2)

]
E

[
wr2,s2(X1)φp2(X1 − X2)

]
+ µ1,L(p1)L(p2)

n2gp1+p2

×
∫

f
[{

wr1+r2,s1+s2 · f }(1) + (−1)p2wr2,s2

{
wr1,s1 · f }(1)]

(x) dx

+ 1

n

[∫
f

{
wr1,s1f

(p1) + (−1)p1
{
wr1,s1 · f }(p1)

}
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× {
wr2,s2f

(p2) + (−1)p2
{
wr2,s2 · f }(p2)

}
(x) dx

− 4E
[
wr1,s1(X1)φp1(X1 − X2)

]
E

[
wr2,s2(X1)φp2(X1 − X2)

]]
+ o(n−1 + n−2g−p1−p2)

for p1 + p2 odd, and

E[ψ∗
g (p1|r1, s1)ψ

∗
g (p2|r2, s2)]

= E
[
wr1,s1(X1)φp1(X1 − X2)

]
E

[
wr2,s2(X1)φp2(X1 − X2)

]
+ 2

n2gp1+p2+1
ψ(0|r1 + r2, s1 + s2)

∫
L(p1)(z)L(p2)(z) dz

+ 1

n

[∫
f

{
wr1,s1f

(p1) + (−1)p1
{
wr1,s1 · f }(p1)

}
× {

wr2,s2f
(p2) + (−1)p2

{
wr2,s2 · f }(p2)

}
(x) dx

− 4E
[
wr1,s1(X1)φp1(X1 − X2)

]
E

[
wr2,s2(X1)φp2(X1 − X2)

]]
+ o(n−1 + n−2g−p1−p2−1)

for p1 + p2 even, with both p1 and p2 being even, and

E[ψ∗
g (p1|r1, s1)ψ

∗
g (p2|r2, s2)]

= E
[
wr1,s1(X1)φp1(X1 − X2)

]
E

[
wr2,s2(X1)φp2(X1 − X2)

]
+ µ2,L(p1)L(p2)

2n2gp1+p2−1

∫
f

[{wr1+r2,s1,s2 · f }(2) − wr2,s2

{
wr1,s1 · f }(2)]

(x) dx

+ 1

n

[∫
f

{
wr1,s1f

(p1) + (−1)p1
{
wr1,s1 · f }(p1)

}
× {

wr2,s2f
(p2) + (−1)p2

{
wr2,s2 · f }(p2)

}
(x) dx

− 4E
[
wr1,s1(X1)φp1(X1 − X2)

]
E

[
wr2,s2(X1)φp2(X1 − X2)

]]
+ o(n−1 + n−2g−p1−p2−1)

for both p1 and p2 being odd.

Hereafter, we adopt the notation

An = 1

n(n − 1)

∑
i �=j

L(p)
g (Xi − Xj)v(Xi),
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Bn = 1

n(n − 1)

∑
i �=j

L(p)
g (Xi − Xj)W(Xi),

v(x) = ∂

∂θ

{
g′(x, θ)

g(x, θ)

}r{g′′(x, θ)

g(x, θ)

}s ∣∣∣∣
θ=θ0

,

W(x) = ∂2

∂θ ∂θT

{
g′(x, θ)

g(x, θ)

}r{g′′(x, θ)

g(x, θ)

}s ∣∣∣∣
θ=θ0

.

The behavior ofψ̂g(p|r, s) is summarized in the next lemma.

LEMMA 4. As n → ∞, g → 0, we have

MSE[ψ̂g(p|r, s)]

= g4

4
µ2

2,Lψ(p + 2|r, s)2

+ µ2,{L(p)}2

2n2g2p−1

∫
f (x)

{{w2 · f }(2)(x) + (−1)pw(x){w · f }(2)(x)
}
dx

+ 1

n

[∫
f (x)

{
w(x)f (p)(x) + (−1)p{w · f }(p)(x)

}2
dx

− 4E[ψ∗
g (p|r, s)]2 + E[An]T �IE[An]

+ 2
{
E[w(X1)φ(X1 − X2)(I1 + I2)]}T

E[An]
]

+ o(n−1 + n−2g−2p+1)

for p odd and

MSE[ψ̂g(p|r, s)]

= g4

4
µ2

2,Lψ(p + 2|r, s)2 + 2

n2g2p+1R
(
L(p)

)
ψ(0|2r,2s)

+ 1

n

[∫
f (x)

{
w(x)f (p)(x) + (−1)p{w · f }(p)(x)

}2
dx

− 4E[ψ∗
g (p|r, s)]2 + E[An]T �IE[An]

+ 2
{
E[w(X1)φ(X1 − X2)(I1 + I2)]}T

E[An]
]

+ o(n−1 + n−2g−2p−1)

for p even.
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LEMMA 5. As n → ∞, g → 0, we have

E[µ̂g(p1|r1, s1)µ̂g(p2|r2, s2)]

= g4

4
µ2

2,Lψ(p1 + 2|r1, s1)ψ(p2 + 2|r2, s2)

+ µ1,L(p1)L(p2)

n2gp1+p2

×
∫

f
[{

wr1+r2,s1+s2 · f }(1) + (−1)p2wr2,s2

{
wr1,s1 · f }(1)]

(x) dx

+ 1

n

[∫
f

[
wr1,s1 · f (p1) + (−1)p1

{
wr1,s1 · f }(p1)

]
× [

wr2,s2 · f (p2) + (−1)p2
{
wr2,s2 · f }(p2)

]
(x) dx

− 4E
[
wr1,s1(X1)φp1(X1 − X2)

]
E

[
wr2,s2(X1)φp2(X1 − X2)

]
+ E

[
wr1,s1(X1)φp1(X1 − X2)(I1 + I2)

]T
E[An(p2|r2, s2)]

+ E
[
wr2,s2(X1)φp2(X1 − X2)(I1 + I2)

]T
E[An(p1|r1, s1)]

+ E[An(p1|r1, s1)]T �IE[An(p2|r2, s2)]
]

+ o(n−1 + n−2g−p1−p2)

for p1 + p2 odd and

E[µ̂g(p1|r1, s1)µ̂g(p2|r2, s2)]

= g4

4
µ2

2,Lψ(p1 + 2|r1, s1)ψ(p2 + 2|r2, s2)

+ 2µ0,L(p1)L(p2)

n2gp1+p2+1 ψ(0|r1 + r2, s1 + s2)

+ 1

n

[∫
f

[
wr1,s1 · f (p1) + (−1)p1

{
wr1,s1 · f }(p1)

]
× [

wr2,s2 · f (p2) + (−1)p2
{
wr2,s2 · f }(p2)

]
(x) dx

− 4E
[
wr1,s1(X1)φp1(X1 − X2)

]
E

[
wr2,s2(X1)φp2(X1 − X2)

]
+ E

[
wr1,s1(X1)φp1(X1 − X2)(I1 + I2)

]T
E[An(p2|r2, s2)]

+ E
[
wr2,s2(X1)φp2(X1 − X2)(I1 + I2)

]T
E[An(p1|r1, s1)]

+ E[An(p1|r1, s1)]T �IE[An(p2|r2, s2)]
]

+ o(n−1 + n−2g−p1−p2−1)
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for p1 even and p2 even, and

E[µ̂g(p1|r1, s1)µ̂g(p2|r2, s2)]

= g4

4
µ2

2,Lψ(p1 + 2|r1, s1)ψ(p2 + 2|r2, s2)

+ µ2,L(p1)L(p2)

2n2gp1+p2−1

∫
f

[{
wr1+r2,s1+s2 · f }(2) − wr2,s2

{
wr1,s1 · f }(2)]

(x) dx

+ 1

n

[∫
f

[
wr1,s1 · f (p1) + (−1)p1

{
wr1,s1 · f }(p1)

]
× [

wr2,s2 · f (p2) + (−1)p2
{
wr2,s2 · f }(p2)

]
(x) dx

− 4E
[
wr1,s1(X1)φp1(X1 − X2)

]
E

[
wr2,s2(X1)φp2(X1 − X2)

]
+ E

[
wr1,s1(X1)φp1(X1 − X2)(I1 + I2)

]T
E[An(p2|r2, s2)]

+ E
[
wr2,s2(X1)φp2(X1 − X2)(I1 + I2)

]T
E[An(p1|r1, s1)]

+ E[An(p1|r1, s1)]T �IE[An(p2|r2, s2)]
]

+ o(n−1 + n−2g−p1−p2+1)

for p1 odd and p2 odd.

PROOF OFTHEOREM 2 (continued). By applying Lemmas 4 and 5 to (9.2)
and rearranging, the MSE expression of̂Ng is obtained. This completes the proof.

�

Acknowledgments. I thank an Associate Editor and a referee for useful
comments and suggestions which yielded substantial improvements in the article.

REFERENCES

AZZALINI , A. (1985). A class of distributions which includes the normal ones.Scand. J. Statist. 12
171–178.

COPAS, J. B. (1995). Local likelihood based on kernel censoring.J. Roy. Statist. Soc. Ser. B 57
221–235.

EGUCHI, S. and COPAS, J. B. (1998). A class of local likelihood methods and near-parametric
asymptotics.J. R. Stat. Soc. Ser. B Stat. Methodol. 60 709–724.

HALL , P. and MARRON, J. S. (1987). Estimation of integrated squared density derivatives.Statist.
Probab. Lett. 6 109–115.

HÄRDLE, W., MARRON, J. S. and WAND, M. P. (1990). Bandwidth choice for density derivatives.
J. Roy. Statist. Soc. Ser. B 52 223–232.

HJORT, N. L. and GLAD , I. K. (1995). Nonparametric density estimation with a parametric start.
Ann. Statist. 23 882–904.

HJORT, N. L. and JONES, M. C. (1996). Locally parametric nonparametric density estimation.Ann.
Statist. 24 1619–1647.



SEMIPARAMETRIC DENSITY ESTIMATION 1191

IZENMAN, A. J. (1991). Recent developments in nonparametric density estimation.J. Amer. Statist.
Assoc. 86 205–224.

JONES, M. C., LINTON, O. and NIELSEN, J. P. (1995). A simple bias reduction method for density
estimation.Biometrika 82 327–338.

JONES, M. C. and SIGNORINI, D. F. (1997). A comparison of higher-order bias kernel density
estimators.J. Amer. Statist. Assoc. 92 1063–1073.

MARRON, J. S. and WAND, M. P. (1992). Exact mean integrated squared error.Ann. Statist. 20
712–736.

NAITO, K. (1998). Density estimation by localL2-fitting. Technical Report 98-7, Statistical
Research Group, Hiroshima Univ.

SERFLING, R. J. (1980).Approximation Theorems of Mathematical Statistics. Wiley, New York.
SHAO, J. (1991). Second-order differentiability and jackknife.Statist. Sinica 1 185–202.
SIMONOFF, J. S. (1996).Smoothing Methods in Statistics. Springer, New York.
WAND, M. P. and JONES, M. C. (1995).Kernel Smoothing. Chapman and Hall, London.

DEPARTMENT OFMATHEMATICS

FACULTY OF SCIENCE AND ENGINEERING

SHIMANE UNIVERSITY

1060 NISHI-KAWATSU

MATSUE, 690-8504
JAPAN

E-MAIL : naito@math.shimane-u.ac.jp


