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Generalized likelihood ratio statistics have been proposed in Fan, Zhang
and Zhang Ann. Satist. 29 (2001) 153-193] as a generally applicable
method for testing nonparametric hypotheses about nonparametric functions.
The likelihood ratio statistics are constructed based on the assumption that
the distributions of stochastic errors are in a certain parametric family. We
extend their work to the case where the error distribution is completely
unspecified via newly proposed sieve empirical likelihood ratio (SELR) tests.
The approach is also applied to test conditional estimating equations on
the distributions of stochastic errors. It is shown that the proposed SELR
statistics follow asymptotically rescaleg?-distributions, with the scale
constants and the degrees of freedom being independent of the nuisance
parameters. This demonstrates that the Wilks phenomenon observed in Fan,
Zhang and ZhangAnn. Statist. 29 (2001) 153-193] continues to hold
under more relaxed models and a larger class of techniques. The asymptotic
power of the proposed test is also derived, which achieves the optimal
rate for nonparametric hypothesis testing. The proposed approach has two
advantages over the generalized likelihood ratio method: it requires one
only to specify some conditional estimating equations rather than the entire
distribution of the stochastic error, and the procedure adapts automatically
to the unknown error distribution including heteroscedasticity. A simulation
study is conducted to evaluate our proposed procedure empirically.

1. Introduction. Over the last two decades, many computationally intensive
nonparametric techniques and theories have been boldly developed to exploit
possible hidden structures and to reduce modeling biases of traditional parametric
methods. Methods such as local polynomial fitting, spline approximations and
orthogonal series expansions as well as dimensionality reduction techniques have
been studied in great depth in various statistical contexts. Yet there are no generally
applicable methods available for the inferences in nonparametric models. Various
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efforts have been made in the literature on nonparametric hypothesis testing.
See, for example, Bickel and Ritov (1992), Eubank and Hart (1992), Hardle and
Mammen (1993), Azzalini and Bowman (1993), Fan (1996), Fan and Li (1996),
Spokoiny (1996), Inglot and Ledwina (1996), Kallenberg and Ledwina (1997) and
Horowitz and Spokoiny (2001, 2002), among others. For an overview, see the
recent book by Hart (1997). Adaptive minimax rate results are obtained by various
authors, including Fan (1996), Spokoiny (1996), Horowitz and Spokoiny (2001),
Fan and Huang (2001) and Fan, Zhang and Zhang (2001). However, most of
the studies focus only on the one-dimensional nonparametric regression problem.
They are difficult to extend to multivariate semiparametric and nonparametric
models.

In an effort to derive a generally applicable testing procedure for multivariate
semiparametric and nonparametric models, Fan, Zhang and Zhang (2001) pro-
posed generalized likelihood ratio tests. The work is motivated by the fact that
the nonparametric maximum likelihood ratio test may not exist in many nonpara-
metric problems. Further, even if it exists, it is not optimal even in the simplest
nonparametric regression setting. Generalized likelihood ratio statistics, obtained
by replacing unknown functions by reasonable nonparametric estimators, rather
than the MLE as in the parametric setting, have several nice properties. In the
varying coefficient model

(1.1 Y=a1(U)X1+---+ap(U)X, +e¢,

where(U, X1, ..., X)) are independent variables afids the response variable,
Fan, Zhang and Zhang (2001) unveil the following Wilks phenomenon: The
asymptotic null distributions are independent of nuisance functions and follow a
x 2-distribution (in a generalized sense) for testing the homogeneity

(1.2) Ho:ai(-) =01,...,a,() =0,
and for testing the significance of variables, such as
(1.3) Hy:a1(-) =az(-) =0.

In other words, the generalized likelihood ratio statigtjdollows asymptotically

a rescaledy 2-distribution in the sense tha&2b,)~Y2(rx A, — by) -5 N (O, 1) for

a sequencé, — oo and a constantgy. We will use the notatiomg A, ~ szn to
denote the result. The significance of the result is that the scale congtantl the
degrees of freedom, are independent of nuisance parameters, such as the joint
density of(U, X1, ..., X,) and the paramete#s, ..., 6, in (1.2) and the functions
az(:), ...,ap(-) in (1.3). This Wilks phenomenon is the key to the success of the
classical maximum likelihood ratio tests for parametric problems. With the above
newly discovered Wilks phenomenon in nonparametric modelsPthralues can
easily be computed by using either the asymptotic distributions or simulations via
fixing nuisance parameters or functions under the null hypothesis at certain values
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of interest. Furthermore, Fan, Zhang and Zhang (2001) showed that the resulting
tests are asymptotically optimal in the sense of Ingster (1993).

The idea of the above generalized likelihood method is widely applicable in
semiparametric and nonparametric models. It is easy to use because of the Wilks
phenomenon and is powerful as it achieves the optimal rate of convergence. Yet,
one needs to specify the parametric form of the error distribution such as
in (1.1) in order to construct the generalized likelihood ratio statistic. While the
procedure based on the normal likelihood may be still applicable to the case
where the distribution of is homoscedastic, it may not be efficient. When the
error distribution is heteroscedastic with the variance(sJah = o2(U), the
construction of the generalized likelihood ratio test statistic needs the knowledge
of the variance functiom2(-). This motivates us to propose the sieve empirical
likelihood ratio (SELR) test statistic for handling the case where the exact form of
the error distribution is unknown, but some qualitative traits of the distribution are
known. A popular model is to assume

(1.4) E[G(s)|U]1=0

whereG = (G1, ..., Gi,)" is akp-dimensional function [see Owen (1990), Newey
(1993) and Zhang and Gijbels (2003)]. This is a much less restrictive assumption
than a parametric form on the distributionsofin particular, when the conditional
distribution ofe givenU is symmetric about 0, we may choose a sequendcg of
grid points, say, 8= 59 < 51 < - - - < 8%, and take

(1.5)  Gi(e) =1(e € [sk—1,sk]) — I (—¢ € [sk—1, kD), 1<k <ko,

or a smoother version of the functi@r,, wherel (-) is the indicator function. Note
that as max<x <, (sk — sk—1) — 0, ko — oo, these restrictions are essentially the
same as the symmetric assumption on the distributian of

A few questions related to the SELR test arise naturally. First of all, itis not clear
how to construct an empirical likelihood in the nonparametric setting. Second,
it is not obvious whether a particular construction of the empirical likelihood
ratio statistic will follow the Wilks type of result. Third, it is not granted that
the resulting test statistic is asymptotically optimal in the sense of Ingster (1993).
Finally, it remains unknown whether the empirical likelihood ratio statistics will
adapt to the unknown distribution efincluding heteroscedasticity. These issues
are poorly understood and need to be studied.

The technical derivations for SELR tests are very involved. To ease some
of the technical burden, we choose the varying coefficient model (1.1) for our
investigation. The model arises from various contexts and has been widely used.
For example, in many biomedical studies one frequently encounters the issue of the
extent to which the effect of exposure variables on the response variable changes
with the level of a confounding covariate (e.g., age). See, for example, Cleveland,
Grosse and Shyu (1991), Hastie and Tibshirani (1993) and Carroll, Ruppert
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and Welsh (1998). The model can also be used for predicting group behavior
in economics where different groups are allowed to have different coefficients.
In longitudinal studies, investigators often want to examine how the effects of
covariates on response variables change over time [Brumback and Rice (1998)
and Wu, Chiang and Hoover (1998)]. In nonlinear time series, the model allows
different autoregressive models for different regimes of state variables [Chen and
Tsay (1993) and Cai, Fan and Yao (2000)]. It includes the threshold autoregressive
model [Tong (1990)] as a specific example. The model has successfully been
applied by Hong and Lee (2003) to the inference and forecast of exchange rates.
Thus, our study in model (1.1) has direct implications for the above problems.

For the varying coefficient model (1.1), whether the coefficient functions are
really varying or whether certain covariates are statistically significant frequently
arises. This leads to the problem of testing for homogeneity (1.2) or the problem
of testing for significance such as the problem (1.3). As will be explained at the
end of Section 2, these problems can be reduced to that of testing against a specific
null hypothesis:

Ho:ai(-) = aio(-), ...,ap(-) =apo(-),

for some given functiona,y, ..., a,o. Our approach is to first construct the local
linear estimator of the coefficient functions, ...,a, via a local version of
the empirical likelihood, and to then substitute the estimate into a special sieve
empirical likelihood [see Zhang and Gijbels (2003) and Zhang and Liu (2003)].
This allows us to form the empirical likelihood ratio statistics. We will show that
the proposed SELR procedures follow the Wilks type of results under more relaxed
assumptions on the error distribution @f This provides a useful extension of
the results given by Fan, Zhang and Zhang (2001). Note that our procedure is
very different from that of Kitamura (1997), who considered testing problems
for finite-dimensional parameters in weakly dependent processes. He first used
the local (blocking) approximation to construct a global estimating equation, then
applied Owen’s procedure directly. For the full nonparametric regression model,
Chen, Hardle and Li (2003) developed a very different version of the empirical
likelihood ratio test, using a kernel-smoothed parametric estimator under the
null hypothesis as ancillary informati. The idea has nicely been extended to
simultaneously testing the parametric forms of the mean and variance functions
by Chen, Gao and Li (2003). Horowitz and Spokoiny (2002) developed a different
test for one special case of the model (1.4). The test shares most of nice features
listed for the SELR test and includes an automatic selection of the smoothing
parameter. It is not clear whether the Horowitz—Spokoiny test is adaptive to the
error distribution under the alternative hypothesis, as is the SELR. Furthermore,
because of the saturated alternative, the curse-of-dimensionality problem arises in
implementation and power.

Our empirical likelihood ratio method applies also to the nonparametric tests on
density functions. As an illustration without introducing new statistical setting, we



1862 J. FAN AND J. ZHANG

regard the constraints (1.4) as a null hypothesis. We will demonstrate that the Wilks
type of phenomenon continues to hold for this nonparametric testing problem.

Our studies have implications for other nonparametric models. Vyhed and
X =1, the model is the nonparametric regression model studied by many authors.
Our results can be directly applied to the problems of testing parametric models
against the nonparametric alternative. Further, our theoretical results shed some
lights on the validity of the Wilks phenomenon in other models such as additive
models and models under certain mixing conditions.

When p =1 and X = 1 and the coefficient functiom1(-) = 6, under the
constraints (1.4) and (1.5), the model becomes a one-sample symmetric location
model, which was well studied, for instance, by Hettmansperger (1984) and Bickel,
Klaassen, Ritov and Wellner (1993). In Section 2, we find that for this special case,
the first step in our procedure essentially makes the information on the stochastic
error to be efficiently used [Owen (1988) and Zhang and Liu (2003)]. Moreover,
the second step makes the likelihood ratio statistic adaptive to heteroscedasticity.
As a result, our procedure has two advantages over the parametric assumptions on
the error distribution. First, it requires only some conditional estimating equations
such as (1.4) rather than the whole distribution of the stochastic error. Second, the
asymptotic null distribution of the SELR statistic asymptotically follows a rescaled
x2-distribution. The scaling constant and the degrees of freedom are independent
of the conditional distribution of even if the stochastic error is heteroscedastic
in U. The procedure and results can be easily generalized to a more general
constrained regression model in Zhang and Gijbels (2003).

The paper is organized as follows. In Section 2 the sieve empirical likelihood
ratio statistics are introduced for testing the goodness-of-fit of the estimating
equations and for testing some simple and composite null hypotheses. In Section 3
the asymptotic null and nonnull distributions of these statistics are derived. In
Section 4 a simulation study is conducted to evaluate the performance of the
proposed procedure empirically. The technical conditions and the proofs are
relegated to Section 5. The technical lemmas are given in the Appendix.

2. Sieveempirical likelihood. It is more convenient to work with the matrix
notation for model (1.1),

2.1) Y =A" (U)X +e,

where Y is the responsel/ € @ ¢ R' (with © bounded) andX € R? are
covariatesg¢ is the stochastic error andi(U) = (a1(u), ..., a,(u)) is the vector

of varying coefficients. Le{(Y;, X;, U;)}!_; be an i.i.d. random sample from the
model (2.1) with the restriction (1.4). According to Owen (1990), to construct
an empirical likelihood which can identify an infinite-dimensional parameter
such asA(u) in (2.1), we need to establish an infinite number of unconditional
estimating equations. Such a likelihood is often theoretically intractable. To



SIEVE EMPIRICAL LIKELIHOOD RATIO 1863

overcome this difficulty, Zhang and Gijbels (2003) proposed a general procedure
to build a sieve empirical likelihood via local approximation. For the model (2.1)
the procedure consists of two steps: First, for eéi¢ltonstruct: local empirical
likelihoods which can locally identifyA(u),u ~ U;. These local empirical
likelihoodslead to a weighted appximation of the logathm of the conditional
probability mass! Py, x)u=v; (¥;, X;). Then a log-likelihood is obtained simply

by summing up all of these approximated logarithms. In the first step, we will use
the local linear approximation of the nonparametric coefficient functios[see

Fan (1992), Fan and Zhang (1999) and Cai, Fan and Li (2000)]. In other words, in
a neighborhood around a given poiny, approximateA(-) by

A() ~ A(ug) + A (ug)(u — uo) for u ~ ug.

Thus, around the pointy, the model (2.1) and the restriction (1.4) can be written,
respectively, as

U —up

Y%ﬂA(MO)TZ(X, )—l—e for U ~ up.

(2.2)

E[G(Y—ﬂA(uo))TZ<X, U;MO)’UZM}%O foru ~ ug,

where 84 (ug) = (AT (ug), hA (ug))® and Z(X, 1) = (X7, 1X7)". This is indeed

a local linear model [Fan (1992)]. To incorporate the local linear model; let
represent the size of the local neighborhood where the approximation is valid
and K be a weight function, which is a symmetric probability density function.
Letp;,i =1,...,n, be the conditional empirical probability mass(&f, Y) given

U = ug, putting on the'th data poin{(X;, Y;),i =1, ..., n. Suppose that giveti,

¢ andX are independent. Then the conditional constraints (2.2) can be translated
into the following unconditional estimating equation:

> piGin(uo, Ba(ug)) =0,
i=1

where
Gin =Gjn(uo, B) :G<Yi —ﬂTZ(Xi, - ; MO)) ®Z(Xi, - ; MO)

with ® being the Kronecker producff = (A*,hB*)", A = (ai,...,a,)" and

B = (by,...,b,)". To see why we need an extra factotX;, (U; — uo)/ h) in the
unconditional estimating functio®,;,, we letG(¢) = ¢ temporarily. It is a well-
known fact that in the linear model the product of the residual and the covariates
is a good estimating equation for the parameigr This leads to the estimating

equation:
! Ui — Ui —
>opi(v- 2. =12) )2 (x. =) ~o
i=1 h h
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In light of this fact, for a general; we should build the estimating equation by
multiplying each component off by the covariate vectoZ (X;, (U; — uo)/h),
which admits the fornG,,,.

Thus, following Owen (1988, 1990), the local empirical log-likelihood function
of B is defined by

n
[(B,uo) = SUD{Z wi (Ui, up)logp;:pi =0,1<i <n,
(2.3) =

n n
> pi=1Y piGin(uo. B) = 0},
i=1 i=1

wherew, (U;, uo) = Kn(U; — uo)/ >_,—1 Kn(Upn — uo) With Kj,(-) = K(-/h)/h.
If we setp; = wy,(U;, ug)q;, then (2.3) becomes

n
1(B,u0) =sup} ¥ wy (Ui, uo) log{wy (Ui, u0)gi} :qi = 0,1<i <n,
i=1

n n
> wp (Ui uo)gi =1, wi (Ui, u0)giGin (o, B) = 0}.
i=1 i=1

Analogously to Owen (1990) and Qin and Lawless (1994), if 0 is contained in
the convex hull of the points i§G;;, (1o, 8) : wy (Ui, ug) > 0,1 <i <n}, then an
explicit expression can be derived by the Lagrange multiplier method as follows:

1(B.uo) =Y wp(Uj, uo) logwy (U;, uo)
i=1

— > wp (Ui, up) log(1+ o) (uo, B)Gin(uo, B)),
i=1

whereqw,, (ug, 8) satisfies

& Gin(uo, B)

2.4 Ui, =0.
@4) 2 Ui 0 e Gonio B)
Define the estimate ¢f by
(2.5) Bluo) = argmavt (6, uo).

The first p components, denoted b¥(ug), give an estimate of4(ug), and
the remaining components estimata’(uo). Similarly to LeBlanc and Crowley
(1995), an approximate empirical likelihood, called the sieve empirical likelihood
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for the nonparametric functioA can be introduced by adding the logarithm of the
conditional likelihood at each data point:

I(AIG) =Y 1(Ba. U)).

j=1

The name “sieve” originates from the following two factE[G(e)|U =
Ujlli<j<n is a sieve approximation to the constraints (1.4) dofls, U;)
is a weighted approximation of the logarithm of the conditional probability
massd Py, x)u=u,;(Yj, X ;). See Zhang and Gijbels (2003) for a more detailed
explanation. Motivated by Fan, Zhang and Zhang (2001), we define the logarithm
of the sieve empirical likelihood under the nonparametric model (2.1) with
constraints (1.4) by substitutifg)= A into [(A|G), leading to

n
1(®|G) =) I{BU;).U;}
j=1
with ® denoting the space of.
We now consider the nonparametric test concerning the density function of
As a specific application of the sieve empirical likelihood, we consider testing

(2.6) Hog 1 E[G(&)|U] =0,

where G is given in (1.4). Without the constraint (1.4), following the above
derivations, the corresponding logarithm of the sieve empirical likelihood is

IOIN) =" wy(U;, Uj) logwy (U;, Uj).
j=1li=1

Thus, we can construct a goodness-of-fit test of hypothesis (2.6) based on the
following logarithm of the SELR:

I(G) = —1(®|G) + (O|N),
2.7)

=Y > wa (Ui, Uplog(1+ &(U )" Gin(Uj, B))
j=1li=1

whereé (1) = o, (u, B).

Next, we consider the sieve likelihood ratio test for the nonparametric
coefficient functionA(-) under the restriction (1.4). In the varying coefficient
model (2.1), we ask naturally whether the coefficient is really varying or whether
certain covariates are statistically significant. This leads to the parametric null
hypothesis:

Hop: A(-) =6.
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More generally, we wish to test the composite null hypothesis, which involves
nuisance functiond »(-):

(2.8) Ho,:A1=A10 < Hy,:A1#A10

with A»(-) completely unknown. This problem includes the test of signifi-
cance (1.3) under model (1.1) as a specific example. Here we write

_ A10(uo) _ A1(uo)
Aoluo) = (Azo(uo)) and Auo) = (Az(uo))’

with A10(u) and A1(u) being p1 (< p)-dimensional. To construct the likelihood
ratio statistic forHy,, we introduce the following notation:

Baa(uo) = (A3(uo), hAZ (u0)), B2 = (A3, hB3)",
/3* ( o(uo) Az, A (MO) th)-
Let
Ba(uo) = (A3, hB3)" = argmax (B*, uo),

B2
B*(uo) = (Alo(uo), A, hATo(uo), hB3)"

and the corresponding®(ug) be implicitly defined by

Gin (o, B* (o))
1+ a*" (uo)Gjp (uo, B*(uo))
Then the SELR statistic fakg, can be written as
(2.9) [(Hou|G) = —1(©02|G) +1(B|G),
where®g, denotes the space db and

1 n
==Y wu(Ui, uo)
n-:
i=1

n
1(©02G) = > 1(B*(U)), U;).
j=1
The SELR test for the semiparametric model tA&f) has a certain parametric

form such as the linear model can be constructed analogously. As in Fan, Zhang
and Zhang (2001), the asymptotic null distributions of the SELR statistics for
composite null hypotheses can be derived from those for simple hypotheses (see
the next paragraph). This motivates us to consider

(2.10) Hos:A=Ap < Hi:A#Ap
for a given Ag. Analogously tol(Ho,|G), we can construct the following
likelihood ratio statistic:

[(Hos|G) = —1(AolG) + [(O]G)

2.11 "
@11) =YY wp Ui, Uplog(1+a, (Uj. o) Gin (U, Bo)) — I(G)

j=1i=1
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where go denotesp,,. Note that whenAg in Ho, is known, we can assume,
without loss of generality, thatg = 0. This can be accomplished through a simple
transformatiolA™ = A — Ag. With this transformation, (2.10) is equivalent to

(2.12) Hy:A*=0 <= H{:A*#0.

This specific problem has an advantage: the local linear estimator under the null
hypothesis is unbiased and hence the null distribution can be more accurately
approximated.

We opt for generaldp, since the results have implications for the composite
null hypotheses. To appreciate this, consider the composite null hypothesis testing
problem:

(2.13) Hy:Ae Ay < A ¢ Ao,

whereAq is a set of functions. Lé{+4g|G) be the sieve empirical likelihood under
the hypothesig#iy in (2.13). Then, the SELR statistic is simply

An = —1(A9|G) + [(O|G).

Let A denote the true value of the parameter functiorConsider the fabricated
testing problems with the simple null hypotheses:

(2.14) Hy:A=Ay < HiiA#A
and
(2.15) Hy:A=Ay <<= Hj:AE€ Ao

Let/(Ap|G) be the sieve empirical likelihood undéky. Then the SELR statistic
for (2.13) can be written as

A = MAQIG) — A*(AplG),

wherei(Ap|G) = —1(AplG) + [(O]G) is the SELR statistic for the problem (2.14)
and1*(Ap|lG) = —I(AplG) + [(Ao|G) is the SELR test for the problem (2.15).
Thus, the asymptotic representation)gf follows directly from those oft(Ap)
andi*(Ag), which admits the form given by (2.11).
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3. Asymptotic theory.

3.1. Asymptotic expansions. In order to obtain the properties of the SELR
statistics in (2.7) and (2.11), we first develop some uniform asymptotic repre-
sentations for the local sieve empirical likelihood estimatcand the Lagrange
multiplier & in (2.4) and (2.5). These results are the generalizations of Zhang and
Liu (2003). They also indicate the performance of the sieve empirical likelihood
estimator. Using these results we will establish the asymptotic representations for
[(G) andl(Hos|G) in (2.7) and (2.11). For simplicity of presentation, we assume
G is differentiable. Letf (up) be the density o/ at the pointug. Set

IG(¢)
D(uo):—E[ ‘U:uo],
oe

V(uo) = E[G(e)G™ (&)|U = uol,
T (up) = E[XX"|U = uol f (uo),

1 O 2
S = , =/thdt,
(0 MZ) “2 (t)

ni (uo) = —{D(uo)*V (o) 2D (ug)} 1D (u0)V ~1(u0)G (e1),
Cuo) = V" ugp) — V"1 uo) (D (o) V" (10) D(u0)) " D(uo) D (uo) V" (uo),
& = Yl' - AT(UZ')XZ'.

THEOREM 1. Suppose that conditions (KO), (U0), (Al1)-(A10) and
(B1)—(B5) in Section 5.1 hold and that the underlying A(u) have twice contin-
uous derivatives and satisfy condition (B6). If there exist some positive constants
bo, b1 and n < 1/2 such that by < hn' < by, then uniformly for ug € 2,

. 1 M o) X;
B(uo) = B(uo) + n ;Kh(Ui — o) (Mz_lF_l(uo)Xi(Ui - MO)/h)

X i (o) (L + 0, (hY/?)) + 0,(h?),

A

a(ug) = : > Kn(Ui — uo){Cuo)G (&)}
n
i=1

% ( I Yug) X;

1/2 2
15 T (o) X; (U; — uo)/h) (L+0p(h79)) + Op(h°).

As a consequence of Theorem 1, we have the following asymptotic uniform
expansion:

~ 120
Aluo) = Alwo) = - 3 Kn(Ui = uo)T (o) Xini (wo) (1-+ 0, (1)) + 0, ().
i=1
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The asymptotic normality of the local sieve empirical likelihood estimator follows
easily from the above asymptotic expansion.

In Theorem 1, the requirement thét is differentiable can be relaxed by
imposing some entropy conditions @hand by assumindg[G (e — ¢)|U = ug]
is twice continuously differentiable in In this caseD(ug) should be replaced
by —{0E[G (¢ — 1)|U = uol/d1}|;=0. Similarly to Zhang and Liu (2003), we can
show that the asymptotic efficiency df(uo) is increasing inD (ug)"V (ug) 1 x
D(ug). In particular, in the setting of the symmetric location model mentloned
in Section 1, we can find a sequence @f functions, say{G®}, such that
the correspondingi (ug) is asymptotically adaptive to the unknown conditional
density ofe givenU = ug. In practice, to save computational effort, we prefer to
choose & with a smallkg and a relatively larged (o) V (o) "1 D (uo).

It should be noted that under the conditions of Theorem 1gfoear its true
value, a(ug, B) is uniquely determined by the estimating equations. Thus, the
number of unknown parameters ip #or eachug. It is well known that to make
the local linear model regular, the interyab — &, ug + /] should include at least
2p + 1 data points olJ. This condition asymptotically holds under the condition
of Theorem 1 because as— oo,

n
P{Zl(uo_hSUi§M0+h)22P+l}
i=1

:p{

n
> U (uo—h < Ui <ug+h)
i=1

—EI(uo—h <U <uo+h)]

+nEl(ug—h<U <ug+h)

ZZp-i—l}

> P{nEI(uog—h<U =<uog+h)>2p+1+4}
—nE(I(wo—h <U <ug+h) — EI(ug—h < U <ug+h))*/5?
-1

where§ = n1+20/2) and 1 (-) is the indicator function. We can further show
that this condition actually holds uniformly iy by an approach using empirical
processes.

We now give the asymptotic representations for the SELR statigiies and
[(Hos|G). The results indicate that they admit a generalized quadratic form. To
facilitate the expressions, the folling notation is introduced. Let

Gikn(U) = Ky (U; — U)Ky (Uy — U)C(U)
x (14 (U; — U)(Ur — Uz "= )XYy x W),



1870 J. FAN AND J. ZHANG

3.1 K*(s) :/K(t)K(s+t)(l+t(s+t)u51)dt,
D@ikn = Elgixn (U)|(U;, Uk, Xi, Xi)]
(3.2) = K} (U — U)CUNXIT X U)Xk (L4 0, (1)),

1
n(n—l)

n

Z G* () Pikn G (er).

Similarly, we define
qikn(U) = Kn(U; — U)Kp(Ug — D)V 1) XTTHU)
x Xi{1+ (Ui — U)(Ux — Uy "h =2y 1),
Qikh = Elqikn (U)|(U;, U, Xi, Xi)]1,

T = pros _1);;(? (€i)(Qikh — Pikn) G (k).

Then we have the following result.

THEOREM 2. Suppose the conditions of Theorem 1 hold. Then under Hog,

(ko — 1)p|2 -
03 21(G) = 7/“:)(1“ Vi

+ (L4 0, (WY2)nT, + 0,(h=Y?);

and under Ho,, if Agislinear or nh%2 — 0, then

_ Pl oo 2, -1
- 2(Ho|G) =7 /K(l‘)(l-i-t )i

+ (14 0, (WY?)TF +0,(h7Y?),
where |2] isthe length of the support 2 of the density f.

Note that if there are no componentsAn then underHyg the factorkg — 1
in (3.3) should béyg, since it costy degrees of freedom to estimate them when
there arep components iM.

3.2. Asymptotic null distribution. With the asymptotic representations, we
are now ready to derive the asymptotic distributions of the test statigtiesd
[(Hops|G). As in the parametric case for the stochastic eergsee Fan, Zhang
and Zhang (2001)], under the null hypotheses the SELR statistics in (2.7), (2.9)
and (2.11) are asymptotically?-distributed and their degrees of freedom are
independent of the nuisance parameters such @ and the distribution of.
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THEOREM 3. Under Hpg and the conditions of Theorem 1, for kg > 1, we
haverglc ~ x2 with
__2K*(0 , _ (ko= 1DplQlck
[ K*(s)2ds’ 8 h ’
where K*(s) is defined in (3.1), cx = K*(0)%/ [ K*(s)?ds. For ko = 1, we have
I’Kl(; = Op(l).

rk

REMARK 1. If K(¢) has supporf—1, 1], and if K (¢) and|¢| K (¢) are concave
ont € [—1,1], then by the same argument used in the Sherman inequality [see
Farrell (1985), page 343], we have

|K*(s)| 5/K(t)K(s—l—t)dt—l—pLEl/|t|K(t)|s+t|K(s+t)dt

< K*(0).

Thus whenK*(s) > 0,s € [—1, 1], rx > 2. In particular, wherK is the uniform
kernel function,rx = 2.8176 andcx = 1.0566 when K is the Epanechnikov
kernel functionyg = 2.5154 andcx = 1.2936

The next theorem presents the asymptotic null distributia &g |G).

THEOREM4. Supposethat the conditionsof Theorem1 hold. Then under Ho,
ril(Hos|G) ~ x2 if Agislinear or nh®? — 0; and under Hoy, if nh%? — 0, then

rxl(Ho,|G) < sz*z where by = p|Q|ck/h and b}, = p1|Qcg /h With cg and rg
defined in Theorem 3 and p1 being the dimensionality of A1pin (2.8).

Whennh92 = 0(1), it is easily proved as in Fan, Zhang and Zhang (2001)
that underHp, the Wilks phenomenon continues to hold in the generalized sense
that the mean and variance of the SELR statistic are independent of the nuisance
parameters to the first order. As pointed out in Section 2, whgin Ho, is known
(or more generally in a parametric form), we can make a simple transformation (or
use some bias reduction technique) to kill the bias. Theorems 3 and 4 indicate
that the SELR statistics continue to apply to the case where the distribution
of the stochastic erroe is completely unknown and, furthermore, there are
many nuisance parameters in null hypotheses (see Section 3.4). In particular, the
stochastic errors are allowed to be heteroscedastic and unknown. This is a useful
generalization of the results in Fan, Zhang and Zhang (2001) where the distribution
of ¢ is essentially known. In particular, if the variance is heteroscedastic with
var(e|U) = 02(U), they have to rely on the knowledge @f(-) to construct the
likelihood ratio statistics. This drawback is repaired by the empirical likelihood
ratio method, while their Wilks phenomenon is inherited.

3.3. Asymptotic power. To demonstrate the effectiveness of the sieve empiri-
cal likelihood method, we consider, for simplicity, the test statistic for the prob-
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lem (2.12) under the contiguous alternati/g(-) — 0, with A”(-) being bounded;
that is, we allow the coefficient functions to be close to the null hypothesis, but
still in the class of funtons with bounded and continuous second derivatives.
This is a much weaker restriction than the contiguous alternatives of the form
A, (u) = a, Bo(u) for a sequence,, — 0 and a givenBg, considered by many
authors [e.g., Eubank and Hart (1992), Eubank and LaRiccia (1992), Hart (1997)
and Inglot and Ledwina (1996)]. The latter implicitly assumes #jgi:) — 0 and
A)'(u) — 0, which are too restrictive for nonparametric applications.

We begin with the following notation. Let

1 n
Wi, == KiUi = UnG eV U

ik
(3.5) 3G (gx)
X X[ T U0 XeAUD X ==,
oG (g oG (g
(3.6) g, = 266 _ E[ (e1) U,},
ae ae
1 n
W3, =~ 3 Kii(Ui — UDE[VHUD ERAU)'
(3.7) i#k
X Xi X{T 7N U0 Xk X AUp),
1S, _ 3G (ex)
ws, == Y Ki(Ui— U)ETV 1(Uk)E[ agk ‘Uk}
(3.8) ik

x AWUNX; XIT U)X XEAU).
Then, following the same arguments used in Fan, Zhang and Zhang (2001), we
can derive the asymptotic powlHy,|G) via the next theorem.

THEOREMD5. Assumethat Ag = 0 and that the underlying coefficient A = A,
has twice continuous derivatives and satisfies nhEA(U)'XXTA(U) = 0(1),
max, |A(u)|| — Oand max, || A" (u)|| = O(1) asn — oo. Assumethat G istwice
continuously differentiable. Then under the conditions of Theorem 1,

2(Hos|G)

_plg|

g K*(0) +nE{DU)"V~XU)DWU)AWU) XXTAU)}(1+ o(1))

4
_ %E{D(U)tC(U)D(U)A”(U)rXXTA//(U)}

X //tz(s—l—t)zK(t)K(s + 1)1+ py (s + 1)) drds (1+ 0(D))

+ (14 0, WYDNTF +2W5, + W3, 4+ 2W5,) 4+ 0,(hY?),
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where D, V, C and K* are defined in Section 3.1.

Using the above result, similar to that in Fan, Zhang and Zhang (2001), it can
easily be shown that undéip; the SELR can detect the alternative with rate
n~%°whenh = c,n=?%° for some constant,. This rate is optimal in the ordinary
nonparametric regression setting. Note that the above result continues to hold for
the composite null hypothesis testing problem (2.13) whgris a set of linear
functions.

3.4. Remarks on practical implementations. There are a couple of issues
arising from practical implementations of the procedure, including computing
P-values, choice of bandwidths, choice of the suppor/o&nd bias reduction.

We now briefly discuss them.

P-values depend on the null distributions of test statistics. The convergence
of the null distributions of the SELR statistics is expected to be slow. Thus, we
do not suggest using the asymptotic null distributions. Instead, we use simulation
methods (a form of bootstrap). Thanks to Theorems 3 and 4, we can simulate
the null distributions by fixing nuisance parameters or functions under the null
hypothesis at certain values of interest. This will give better approximations to the
null distributions. We have conducted an intensive simulation study in Section 4.
The results show that for a sample size of 200 or more, the approach gives very
reasonable approximations of the null distribution.

The SELR test depends on the choice of bandwidth can be regarded as a
family of test statistics indexed by the bandwidthA thorough discussion of this
subject is beyond the scope of this study. Inspired by the adaptive Neyman test
in Fan (1996), which has been demonstrated to be adaptive minimax by Fan and
Huang (2001), one can possibly use the following criterion to choose a bandwidth:
For some constants, » > 0, a bandwidthi € [n=¢, n~"] is selected to give a
maximum value of

rol (Hos|G) — dn(h)
N 2dy, (h) ’

whererg is the normalizing constant anfj (k) is the degrees of freedom (see
Theorem 4). This results in a multi-scale test:

rol (Hog|G) — dy (h) _ max rol (Hos|G) — dy(h)
v2d,(h) heln=a,n="] v 2d, (h)
Such an idea was proposed in Fan, Zhang and Zhang [(2001), page 175] and in
Horowitz and Spokoiny (2002) for the median regression problem and was shown
to possess the adaptive optimal rate of convergence [Horowitz and Spokoiny
(2002)]. It has also been studied and implemented by Zhang (2003). In many

empirical applications, the bandwidths used for nonparametric function estimation
have also been frequently employed for nonparametric hypothesis testing. The
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difference between the optimal bandwidhiz~1/°) for function estimation and
0 (n—?/°) for hypothesis testing is hardly noticeable for practical sample sizes.

When U has an unbounded support, we can not estimate the coefficient
functionsA(-) at the tails with reasonably good accuracy. In other words, we do
not have enough data to test on the form of the coefficient functions at the tails.
Due to this limitation, a reduced problem needs to be considered: test on the form
of the coefficient functionsi(-) on a given interval. Our procedures continue to
apply and 2| becomes the length of the given interval.

When Ag in (2.10) is of parametric formA(-,6#) and is nonlinear, the local
linear estimate will be biased even under the null hypothesis. The bias is killed
by requiringnh®?2 — 0 in the second part of Theorem 4. This is an unrealistic
assumption, as pointed out by a referee. However, as discussed in Section 2, we
should employ a bias reduction technique before applying the SELR test.Hect
a rootn consistent estimator under the parametric model. The error of parametric
fit is usually negligible in nonparametric applications. By regardirig ) asAg
in (2.10), we can deduce the problem to (2.12). For problem (2.12), the local
linear fit does not have any bias under thdl hypothesis. Hece, the condition
nh~%2 — 0 is not required to kill bias. The bias reduction is also helpful in
reducing approximation errors of the null distribution.

In summary, for practical implementations, the following steps are recom-
mended:

1. Apply the bias correction method as in the last paragraph.

2. Choose an interval where functions are to be tested. This is tise set

3. Choose an appropriate bandwidth, using the methods suggested above to
construct a SELR.

4. Apply the bootstrap method above to obtain a null distribution of the test
statistic.

4. Simulation. In this section the performance of the SELR test is evaluated
for a simplified conditional regression model by simulation. In this study, several
bandwidths (i.e.k = con=2/?, with ¢cg = 1 and 15 for the sample size = 100;
with ¢cg = 0.5, 1, 1.5 and 2 forn = 200 and 400; withcg = 0.55,1, 1.5 and 2 for
n = 800; and withcg = 0.2, 0.35, 0.55 and 2 forn = 1600) are used to represent
widely varying degrees of smoothness. Due to space limitation, only part of the
results is presented. The triweight functioh— tz)i is selected as the kernel
function in the proposed test.

For simplicity of exposition and computation, we take the simple model,

Y=a1(U) + e,

whereE[¢|U]=0]i.e.,G = ¢ in (1.4)] andU is uniformly distributed ovef0, 1],
though the results hold for more general varying-coefficient models. Consider the
problem of nonparametric testing of significance:

Ho:ai(-) =0.
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The SELR test oy can be expressed as

n

1(©0s|G) =) wy (Ui, Up)log(1+a(U;,0)" G (U;, 0)),
i=1j=1

wherea (U, 0) satisfies

Gin(Uj,0)

n
U;,U; B
th( i J)1+alg(Uj,0)Gih(Uj’o)

i=1

with

T
Gin(Uj,0)=Y; x (1, Ui Uf) .
Note that Theorems 3 and 4 imply that the null distribution/@qs|G) is
asymptotically independent of the underlying distributionsofSo without loss
of generality, we assume that givdh the stochastic error follows a normal
distribution.

To examine the effect of the possible heteroscedasticityari the above null
distributions, the conditional variance ofis taken to have the forrfl + c¢1U?),
where the constant represents the noise level. By generating 100 independent
samples of(Y, U) with sample sizen, we calculate the null distributions for
several quite different values @f;, which represent widely varying degrees of
heteroscedasticity af. This results in 100 i.i.d. simulated valuesio®q|G) for
each combination of andcs. The corresponding sample means and variances of
1(Bgs|G) summarize the distributions of the test statistics under the null hypothesis
and are reported in Table 1. They do not strongly depend on the choice of the
constantc1. As an illustration, the resulting 24 empirical distributions from the
cases: = 400 andn = 800 are depicted in Figure 1. Clearly they are very close
whenc is varying from 0 to 10 for each case ofz, 1). As expected, they should
depend on the bandwidth. This suggests that the asymptotic null distribution
of 1(®q|G) is not very sensitive to the heteroscedasticity of the stochastic
error. To check whether the scaled SELR statistics follow asymptotically the
x 2-distribution, we equate the mean and variance of the scaled SBA(R,|G),
to the corresponding mean and variance of a chi-squared random variabtgd say
with degrees of freedondy. This results invg = 2i. /02 anddg = 22/ 2 with
ando? the simulated mean and variancel®q,|G). We calculated further the
empirical distribution of the scaled SELR and compared it Witmfg)edistribution
for each combination ofx, i). Since the empirical distributions do not depend
sensitively on the conditional variance function, only one of them was used for
comparison. As an example, Figure 2 depicts the two distributions for the case that

(n,h) = (800,1.5x 8007%° and c¢;=1.
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TABLE 1
Summary of simulation results. 1 and o are the simulated mean and
standard deviation of the SELR statistic based on 100 repetitions.
n isthe sample size and 4 is the bandwidth

n h " o n o n o

Conditional variances

1 1+ 4u? 1+ 1042
100 0.35938 1.868 1.221 2.161 1.788 1.954 1.252
100 0.53907 1.754 1.480 1.767 1.642 1.646 1.219
Conditional variances

1 1+ 10u? 1+ 10042
200 0.15404 4371 2.495 4393 2468 3973 2.334
200 0.30808 2.463 1.527 2.263 1.421 2.215 1.413
200 0.46212 1.655 1.124 1.698 1.130 1.329 0.840
200 0.61616 1376 1.081 1519 1.242 1.395 0.976
400 0.13205 5.019 2.019 4.487 1.977 4.459 1.968
400 0.26410 3.081 1.720 2.681 1.361 2.965 1.433
400 0.39615 2.007 1.271 1.961 1.246 2.192 1.307
400 0.52820 1.867 1.492 1622 1126 1.743 1.501
Conditional variances

1 1+ u? 1+ 10Pu2
800 0.12452 5.080 1.774 4950 1.611 4.807 1.557
800 0.22640 3.092 1.354 3.191 1.457 3.093 1.455
800 0.33959 2.220 1.171 2.103 1.165 2.038 1.080
800 0.45279 1.785 1.078 1.627 1.069 1.699 1.069

They are indeed very close. This demonstrates empirically the accuracy of the
approximation of the null distribution of the proposed SELR statistic by using
the x2-distribution. We also conducted a similar simulation study for testing
homogeneity:

Hop:ay(-) =96.

It again shows that the Wilks phenomenon continues to hold for some composite
null hypothesis testing problem. The details are not reported here.

To conclude this section, the power functions of the proposed teEyaire
estimated and compared to the commonly uBetype test statistic,

Fos = (RSSO- RSS)/RSS1

[see, e.g., Fan, Zhang and Zhang (2004pe155 for the definition], based on 100
simulations for the sample sizes= 200, 800 under two sequences of alternatives
indexed byr. One is

4.1 Hi:a1(u) =r(u —0.5), r=0.1,0.2,...,
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FiGc. 1. Comparisons of the empirical null distributions of the SELR statistics based on 100
simulations for different conditional variance functions. The solid curve, dotted curve, and dashed
curve correspond to the conditional variances: 1, 14 1012 and 1 4 10?42, respectively, when
n = 400;and to the conditional variances: 1, 1+ «2 and 1+ 10°u2, respectively, when n = 800.

and the other is
(4.2) Hi:ai(u) =r(2sirf2ru) —1), r=01,02,....

Here we take & c1u? as the conditional variance of the stochastic error given
U = u with ¢ = 0,1, 10,10%. Note that the powers of the SELR arfdtype

test statistics have the same optimal raté/°. Thus, in this study for simplicity

we select the bandwidth by comparing several empirically specified bandwidths.
We find that the combinations & = n=%/° andn = 200 andh = 1.5 x n=%/°

andn = 800 give relatively reasonable power functions for the two alternative
sequences (4.1) and (4.2). For critical values given in Table 2, the sizes of the SELR
and F-test are reported. It is evident that the sizes of the SELR test are adaptive
automatically to the conditional variance function, while those offthigpe of test
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Empirical and Hypothesized chisquare CDFs
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solid line is the empirical d.f.

FIG. 2. The solid stairstep curve is the empirical null distribution of the scaled sieve empirical
likelihood ratio statistic for n = 800, = 1.5 x 8002/9, ¢1 = 1 based on 100 repetitions, and the
dashed curve is the chi-squared distribution with 6.51 degrees of freedom.

are not. This is consistent with our theoretical results and reflects one advantage of
the SELR test.

TABLE 2
Empirical sizes of SELR and F-type tests. The probabilities are computed based on 100
simulations; & = n—2/9 for n = 200and / = 1.52—2/9 for n = 800

Conditional variances Conditional variances
1 14u? 141042 1+ 10042 1 14+u? 14104 1+ 10042

n cr Sizesof SELR test cr Sizesof F-typetest
200 5.20 0.05 0.05 0.07 0.07 0.0705 0.05 0.05 0.09 0.09
200 4.47 0.08 0.09 0.09 0.09 0.0579 0.09 0.11 0.13 0.15
200 3.16 0.22 0.25 0.25 0.24 0.0375 0.25 0.28 0.34 0.35
800 5.11 0.02 0.02 0.02 0.01 0.0134 0.02 0.05 0.09 0.09
800 4.59 0.04 0.03 0.03 0.02 0.0132 0.03 0.05 0.09 0.09
800 3.65 0.09 0.09 0.09 0.08 0.0109 0.09 0.10 0.12 0.17

800 2.81 0.20 0.21 0.21 0.19 0.00776 0.20 0.22 0.27 0.29
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Fic. 3. Comparisons of the power functions of the SELR (solid curves) and F-type tests
(dashed curves) of Hy:aq(u) = 0 for n = 200 and the bandwidth 7 = 200-2/9, evaluated at the
alternatives (4.1)for different conditional variance functions.

Figures 3-5 present power functions at the significance levels shown in Table 2.
We have conducted simulations on much more different settings and these are not
reported to save space. As expected, the power deteriorates as the level of noise
increases for both the SELR arftitype tests. Figures 3 and 5 indicate that the
SELR test may significantly out-perform tletype test in terms of power under
the alternative

Hi:a1(u) =r(u —0.5)

when there is heteroscedasticity. Similarly, Figure 4 implies that when the level
of heteroscedasticity is low, th&-type test can have better power than the
SELR test, and can perform much worse than the SELR test when the level of
noise (heteroscedasticity) is high. This phenomenon can be explained by using
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FiG. 4. Comparisons of the power functions of the SELR (solid curves) and F-type tests
(dashed curves) of Hy:aq(u) =0 for n = 200 and the bandwidth » = 200-2/9, evaluated at the
alternatives (4.2)for different conditional variance functions.

Theorem 5. For the simple modEl=a1(U) + ¢, Theorem 5 gives

21(Hoy|G) = L K*(0) + nE{ay (U)o 2(U))
(4.3) h

+0(1) + (1+ 0, (WY2)TF 4 2W5, ).
Note that if the functionr (U) is known, we can make the transformation
Y =Y/o(U)+¢/oU)

and obtain the same asymptotic expansion as in (4.3) for the SELR based on the
above transformed model. This means that (4.3) is adaptive?V) in the sense

that we can tesHy;, :a1(-) = 0 asymptotically equally well whether or not we
know the conditional variance ef In contrast, theF-type test does not have this

property.
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Var=1 Var=1+un2
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FIG. 5. Comparisons of the power functions of the SELR (solid curves) and F-type tests (dashed
curves) of Hg:aq(u) = 0 for n = 800 and the bandwidth # = 1.5 x 8002/9, evaluated at the
alternatives (4.1)for different conditional variance functions.

5. Technical conditionsand proofs.
5.1. Technical conditions. Define
1 n
Ap(uo, B) = p > Kn(Ui —u0)Gin(uo. B),

i=1
Zy(uo, B) = max ||G;x(uo, B,
1<j<n

1 n
Valuo, f) =~ Y Kn(Ui — u0)Gin(uo, B)GJ, (o, B),
i=1
Gin(uo, )G (o, B)
1+ a*Gip(uo, B)

1 n
Va(uo, o, p) =~ > Kn(Ui — uo)
i=1
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_1& Kn(Ui—ug)  3Gin(uo, B)
Bn(M07 o, ﬁ) - n ; 1+OtTGih(M0, ,8) 8/31'
12 Kp(Ui —ug)  9G;x(uo, B)

Culuo, . p) =~ 2 (L+a"Gin(uo. f))?  9pT

’

ath(”Ov ﬂ)a

18, Kp(Ui—ug) 3%Gy(uo, B)

Dy (uo, a, p) = ;l; 1+a™Gip(uo, B) 3B OBT

1¢ Ky (Ui — uo) dGin (uo, B) dGin(uo, B)*
EnltoaB) =) o 0 oo A2 0" P 98 =
Here and hereafter the norm of a matiX = (w;;) is defined by||W| =
/ 71 wlzj Letrg denote an arbitrary positive constant. IBgfbe a compact subset
of R? such thatf is an inner point ofg. Define
Fo={K((- —u0)/h)I{Gp(uo, B)"¢ > 8} :uo € 2, |8 — Poll <ro,
Iyl =1,0<6 <1},

’

wherel{-} is the indicator function,
F1={K((- —u0)/h)Gp(uo, B):uo € 2, |8 — Poll <ro},
Fa2={K((- —u0)/ h)Gp(uo, B)G},(uo, B)1:uo € 2, | — Poll < ro},

3Gy (uo,
}‘3={K((._u0)/h)$

Let P, denote the empirical distribution ¢tU;, X;, Y;)}, andN (8, L1(Py), F,),
j=0,1,2, 3, the covering numbers [see, e.g., Pollard (1984), page 25 for the
definition]. We impose the following technical conditions:

(KO) K has supporf—1, 1] and maxK () < co.

(UO) The density olJ is Lipschitz continuous and bounded away from zero.
(Al) E[G(e)|U]=0 ande is independent ok givenU.

(A2) There exist a constagt> 4 and a functior¥ (¥, X) satisfying

‘slur; IG(Y —B*Z(X,0))|IIZ(X, )|l < F(Y, X),
=<
lB—PBoll<do

IuoEQ,ﬂE@o}.

SUPE[F (Y, X)¢|U = u] < oo.

(A3) For 1<k <ko,

sup  E[G2(Y — BT Z(X, D)IIZ(X, DII2|U = uo + th] = O(1).
18— Foll<ro
upe2,|t|<1
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(A4) There existco(P,) and some positive constantg and wg such that
Eco(P,) — coand
N(8, L1(Py), Fo) < co(Py)(h8)™"°.

There existc1(P,) and some positive constantg and w1 such that
Ec1(P,) — c¢1 and

N (8, L1(Py), F1) < c1(Pp)(h8) ™",
(A5) Uniformly for ug € 2, ||t]| <1, || — Boll = 0 andh — O,

elo(v-572(x.5512))|u = o+ n) = 00 + 018 - .

(AB6) There exist2(P,) and a positive constant such thatEco(P,,) — ¢2 and
N(8, L1(Py), F2) < c2(Py)(h8)™"2.

(A7) SUR g poli<ro.uoce i<t EIGR(Y = BTZ(X. DI Z(X. DIIY|U = uo+th] =
0(1).
(A8) Uniformly for || — Boll — 0 andh — O,

clofr-ro(x U)o (x5
= V(o) + 0(h® + O(|IB — Bol).

(A9) V(ug) andI'(ug) defined in Section 3.1 are Lipschitz continuous e 2.
Their minimum eigenvalues are uniformly positiveug e 2.
(A10) For anyp > 0, there exists a constantp) > 0 such that wher is small

enough,
inf  [|[EKr(U —u0)Gp(uo, B)Il > c(p).
B€Og
1B—Boll=p
For a positive sequenceg,1 — 0 and a small enough constaps, as
n— oo,

inf IEK,(U — u0)Gp (o, B)|| = pu1+ O(h?).
pn1=<lB—Boll=<p2

(B1) There exist a constant> 2 and a functiornF(Y, X) such that
SUPE[F, (Y, X)|U = u] < oo,
u

Su
uo, B

(B2) For a constant,

(U —uol = h) < Fa(Y, X).

p“ G (uo, B) ”
IpT

N (8, L1(Py), F3) < c(h8)™"3.
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(B3) Uniformly for ug € Q and||8 — Bol| < rn = o(h¥/?),
3G, (uo, B)
BT

(B4) SURs_poll<rouoest. =<1 ELIIGH (uo, B)/3BTIPIU = uo + th] < 00
(B5) There exists a functiofs(y, x) such that

SUPE[F2(Y, X)|Y = u] < oo,
u

E{I@(U — uo) }=D<uo)®(S®r(uo))+o<h1/2).

902G (uo,
sup ‘ MHMU —uol <h) < F5(Y, X).
upe2 aﬂ 8/3.[
18 —foll<ro

(B6) There exists a functiolis such that SupE|[Fe(e, XX 2IU = u] < oo,
and that foU — ug| < h and
X (U — ug)?

h2
e*:g—{—?A”(quFs(U—uo)) 2

+ (8- porz(x. 22

we have

< Fs(e, X)
0e

uniformly for |s| < 1, |8 — Boll < roandug € Q.

H aG (™)

We would like to make some comments on the conditions above. Suppressing
dependence oX, we denoteZ (1) = Z(X, t). Suppose for some) > 0 there exist
integrable functions’; (Y, X), j =1, 2, 3, such that

sup  K'(D|G(Y =B ZWO)|IZ®)| < F1(Y, X),
[1B—Boll<ro,t

AG(Y — ﬁf

sup K(t)H

Z(1) /
IZONZ O+ 1ZON) < Fa(Y, X),
|B—Poll=<ro.t

sup  K)|G(Y =B ZW)|IIZ' 0] < F3(Y, X).
I1B8—Boll<ro.t
Then for some positive constant

("

sc{F1<Y,X>+F2<Y,X>+F3<Y,X>}{' b vz '+||ﬂ1—ﬂz||}

_hu:L)Gh(ul, B1) — K(%)Gh(uz, B2) ”

Thus the second part of condition (A4) holdsAfF;(Y, X) < oo, j=1,2,3.
Similar remarks can be made about conditions (A6) and (B2).
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As pointed out in Section 2EK; (U — ug)Gy(ug, Ba) = 0,ug € 2, can
be viewed as certain local estimating equations associated with the equations
E[GY — A(U)'X)|U = uo]l =0,up € 2, asA(u) is expanded around eaal.
In this sense, the first part of (A10) implies that whgn (coefficients of
the approximation ofA) is away from the true valugy (coefficients of the
approximation ofAg), |E K, (U — ug)Gy(uo, B)| is away from 0 This is a little
stronger than the requirement thafG(Y — AT (U)X)|U] =0 if and only if A
is equal to the true value. The second part of (A10) is a local condition which
says locally| E Ky, (U — ug)Gy, (uo, B)| is bounded below by the norm of the linear
function of 8 near the true valugy. For instance, assume the first componenof
isY— A" (U)X andassume thd[X X* |U = u] is positive definite uniformly in.
Then we have

IEKR(U — u0)Gp(uo, Ba)ll

. U —ug U—uo
= ”EK},(U - M0)|:Y _ﬂAZ<X’ h >:| ® Z<X’ h )”

= 0(h®) + (Bo— Ba)"
X /K(t)E[Z(X, NZY(X,)|U =ug + th] f (ug+ th)dt
> cl|fo— Ball + O (h?),
providedh is small enough.

5.2. Proofs. Note that Lemmas 1-8 are used in this section and their proofs
can be found in the Appendix.

PROOF OFTHEOREM 1. First of all, using Lemma 3, we obtain
Buo) — po=o0,(h"?> An™15), &(uo) = 0p(h™* An~1%).

Furthermore, by the definition &f (= &(ug)) andg (= B(uo)), we have

10 Gin(uo, B
0= 23 Ky(U; — ug)— 0P
niz1 14+ a*Gjp(uo, B)
10 &% 9G;;, (uo, B)/3pBT
O:_ZKh(Ui_uO) Alh Oﬂ/Aﬂ '
n4 1+a7Gjp(ug, B)

Then invoking the Taylor expansion we have
0= A, (uo, Bo) — Vau(uo, an1, fn1)&
+{Bu (10, @n1, Bu1) — Ca (U0, @n1, Bu1)}(B — Bo),
0= {Bu(uo, tn2, Bn2) — Cu(uo, a2, Pn2)}é
+{Dy (U0, 2, Bn2) — En (10, an2, Br2)}(B — o),
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wherea,,;, j =1, 2, are betwee& and 0 andB,,;, j =1, 2, are betweerﬁ? andpo.
By using Lemmas 4-8, the above equations become

—An(uo. Bo) = — (14 0,(h*?)V (u0) ® (S ® I'(u0))&
+{0,(hY?) + D(uo) ® (S ® T (1)} (B — Po).
0= {o,(h"?) + D(uo) ® (S ® T (u0))}& + 0, (W) (B — Bo).
It follows that
(B — o) = —[(Dw0)" V(o) D(uo)) "D (uo)V " (uo)
® (St ® o) ™) + 0, (h?)] A (uo. Bo).
&= [V o) — VL uo) (D" (uo)V " (uo) D(uo))
x D(ug) D" (uo) V(o) + 0, (h*?)] Ay (uo, Bo).

Observe that fot/* = ug + s(U; — ug), 0< s <1, and for

1
ef =Yi = ATUNX; + S A" (U Xi(U; — uo)?

T U,'—Mo
(8~ fo) Z(X,-, - )

we have

12 U;

% l_uo
An<uo,ﬁ>=;ZKh<Ui—uo)G(ei>®z(xi, - )
i=1

1

" U,' —UuoQ
==Y Kn(Ui —up)G(&) ® Z<Xi, )
ni h

h2
+ 5 0p() + 0, (118 = ol

where the last equality follows from the condition (B6) (bris linear). Now the
proof can be completed by some simple calculations.

PROOF OF THEOREM 2. Note that under the conditions of Theorem 1 we
haveh — 0 andnh®?2 — co. Recall that giverl/, ¢ and X are independent by
condition (A1). By the Taylor expansion and Lemma 4 there are matliges ;)
such that ag — oo, uniformly in U;,

Vn*(UJ) = V(UJ) ® (S (029) F(UJ))(]_+ Op(hl/z)),

1 N
QU =V, (WUNT= Y Kn(U; = UpGin(Uj, B).
i=1
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The last two equalities lead to

" KU - U A
1G) =Y 4wy ZZ" 1h§(h(U _)U) in(Uj, B)

j=1

— = Za(U )V (U, s*a(Uj), B)aU))

j =1

" 1
61 =Y Vi)
=1

m=1 Kn(Upu —Uj)
1 . .
— EVn(Uj,S O((Uj,ﬂ))}a(Uj)

n
= (Wt opn*) > NIV W @ (5 @ T ot

j=
where 0< s* <1, andV, (u, «, B) is defined in Section 5.1. Note that we draw
out the factor 1+ o (hl/z) from the inside of the summation in (5.1) because
the o,,(hl/z) is unlform with respect td],, 1<j=<n,andaU))*[V(Uj) ®
SerW)aWU)/aU)*a(U;), 1< j <n, are bounded away from 0 amd
[see condition (A9)]. It follows from the definition of (1) in Section 3.1 that
Cw)Vw)C) = C(u). Thus, combining (5.1) and Theorem 1, we obtain

1
1(G)= (+op<h1/2>)2 ZKh(U U)(CWU;)G(e))"

j= l i=1
. ( r-ux; )
py (Ui —UHT=YUH X/ h

——[VU) @ (S®T(U)))]

f(U )
o L KU~ Up(CWUGien)
k=1
® (u;l(Uk - Uj)l"_l(U‘,-)Xk/h) tin

_(1+0 (hl/z))
2ZZZKh(U UNKn(U—Up) fHU))
i=1k=1;=1
x G (e)C(Uj)G (&)
(1+ _1WUi = U;j) (U — Uj))

h2
x XITYU)Xi + &,
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where ¢, = 0 when Ag is linear, and otherwise, = Op(nh“). The last term
in (5.2) can be decomposed as follows:

(5.3)  (1+0,(hY?)L(G) = Ty11+ Thi21+ Tizz2+ Tnoa + Tn2z + &n

where

Thi1= ZZZKh(U Up2f~Hw)

i=1j=1

x {G"(e)C(U;)G (&) — EIG™(6)CU;)G (e (Ui, UpT}

_171\2
<1+ ‘1(’}1#))(}1“—1(@))(,-,
1
Thi21= ZZZKh(U UNPE[G™ (e)C(Uj)G()|(U;, U]

i=1j=1
<1+ 1 hZU) )

x (XFT7YUHX; — EIXFT YU )X (UL Up f R ),

Thi22= ZZZKh(U UH2EIG™ () C(U))G ()| (U, U]

i=1j=1
2
<1+ —1(‘]}1721”)
x ELXIT Y U)Xi (U, UDIF L W)),

1
L= — > > Kw(Ui = UpKp(Ux — Uj)G™ (e)C(U;)G (k)
i#k j¢{i,k}

X <1+ U; - Uj)(le — Uj)pcgl
2= r 2| ¥ (7

Ui — Ui\ .. -1 -1
+K(T)G ENCU)G ()X T (U Xk f (Uk)}~

)Xf rY U)X,

- U; _ _
)Gt(gi)C(Uj)G(é‘k)X,'tF Yonxe 7w
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Observe that agh3/2 — 0o, h — 0,

_ K02 VTN 200
Tn122—Wi:ltr(C(Uz)V(Uz))Pf W)
1
+ = 2 Kn(Ui = Up?u(CWU)V (U))
i#]j
(5.4) U —U; 2 _
y (1+,u2_17( = 2 )tr(F_l(U‘,-)F(Ui))(f(Ui)f(Uj)) '

_K(O)z{ [tr(C(U)V(U))
o onh? f2)
=0,(h" %)+,

where

] + Op(n_l/z)} + W,

1
V=5 ; Kn(U; — U tr(CU,)VU)))
i#]

1 2
oy (Ui — Uj)
x <1+T

)tr(F‘l(Uj)F(Ui))(f(U,-)f(Uj))_l
_ fo—Dpif _2)1”9' / K21+ pg 12y dt + 0,(h~ 1),

This is because
EV, =(1+ o<h>)§ / K (0?14 p3 ') dt E{tr(CU)V () £~ HU)}

_ plko—1)
B h

(1+0m)i2l [ KA+ uz P,

Var(w,) < 0(n *h=?) =o(h™Y).

By a similar argument, we have the following equalities:

_ KO v
Tazi= "7 ,.Zl”(C(U’)V(U’))
x (XFT YU X — EIXF T U)X\ U) £ 71 W)
1 U; — U;)?
G5 43 Y KU~ UpP(CWV W) (14 1, 1(}172’))

i#]
x (XIT Y U)X — EIXFT XU )X |WU, UpT f W)

_ K(0)?

2 0,(n"Y?) +0,(h1/?),
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(5.6) T22=0,(h""?),
(5.7) Tho1=o0,(h %) + ”n—_zz > G (&) Pitn G ().
ik
where ®;;;, is defined in (3.2) and the last equality follows from Hoeffding’s

decomposition for the variance df-statistics. Now (5.3)—(5.7) imply (3.3).
Equation (3.4) can be proved by a similar argument by showing that

I(Ao|G) = (1 + 0, (h*?))

1 2 ~
X a2 2 A Up POV WU @ (SO TW))] "An(U;. fo).
j=

The proof is complete.

PrRoOF OF THEOREM 3. Invoking the asymptotic representations in Theo-
rem 2, we need only to prove the asymptotic normality;afTo this end, we first
calculate the variance df,,

(2+0()

Var(T,) = ————— E{G" (1) ®12,G (¢2)}
nn—1)
_ CH o) 015G (62) G (62) BT Gen) G (e1)]]
nn—1) 1 123 1 1
21+ O(h
G8)  _ % tr{E[K} (Uz — U1)2C(U1)G(£2)G* (£2)C(U1) G (£2)

x G(e2)" XIT " HUD X2 X3 T YUy X11)

21+ O(h ko—1

_ (1+0()) plko )|Q|/K*(t)2dt.
nin—1 h

Let D; = (&,X;,U;), 1L <i <n, and I1; be the o-algebra generated by

Dy, ..., Dy, 1<k <n.Setd,(D;, Dy) =G (&)Pix,G(ex), 1,1 =0and

Nk = E[Ty | ] — E[T, T —1].

Then

k—1
®,(Dj, Dy), 2<k<n,
n(n—l)Z: w(Dj, Dy) n

j=1
and{n,r, I1;} is a sequence of martingale differences. By Theorem 4 of Shiryayev
[(1996), page 543], it suffices to show

NMnk =

n
(5.9) Var X(7,) 3" E[nZMi—11— 1  in probability
k=2
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and
n
(5.10) Var%(T,) > Enpy — 0.
k=1

In the following, D = (¢, X, U) denotes a general random variable independent of
D; andD;. To prove (5.9) and (5.10), we need the following equalities far;:

E[®4(D;, D))?|Di]
:%/K*(t)zthi’F_l(Ui)XiG’(si)C(Ul-)G(si)(l+ O(h)),
E[®y(D;, D)®y(Dj, D)|(D;i, Dj)]
= G (&))" E[Ky (U = UDKp(U = U)CUHV U)CWU;)
< (DN U)X XTI HUN X X5)[(Di, D)]G &),
E®Z(D;, D)®2(D;, D)
1
h2(1+ O (h)) //K ()?K*(s)%dt ds
x E[(XTT XU/ X;)%(GT()CU)G ()],
E®HD;, Dy)

=01+ O(h))h—l3/1(*(t)4dt.

These are obvious by the assumption thahd X are independent givelii. Now
with the above equalities, we can derive

n
3 ElnZ Tyl
k=2

k=1

Z prTe 1)2{ZE[<I>h(D,,Dk) D]
k-1
+ Y E[®n(D;, Dr)®4(D;, Dp)|(D;, Dj)]
i#]j

Y1+ 0
Zz )ZZ L2 [ e

(5.11) x XIT Y UHX:GT (e)C(U)G(e;)
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n—1
Z 2(n 20— 152 2 — DEL@(Di, DY@u(D;. DD, D))
i<j
(L+ 04 [ K*(1)*dt
n2(n — 1)2h

x Y (n=DX[THUNX;G™ (e)CWUNG (&) + Ty

2 [ K*(1)%dt

nn—1)

x E{E[XIT U)X\ UNEIG (;)C(U)G (e U1} + Yo
= (1 + 0(1)) Var(T,) + Y,

=(1+0(1))

where
_ 8
" n2(n —1)2
n—1

x Y (n—G(&)°

i<j
E[K;(U—-U)K; (U - Up)CWUHVU)C(Uy)
x tr(C~ YU X X T~YUN X XD) Uy, U, X4, X0)]G(er).

Note that
E[Tn]z — L
n*(n — 14
n—1
x Y (n —k)?
i<k

E{G(e)) E[K}(U — Up)K;(U — U )CUNV(U)C (Uy)
tr(C YU X X7
x T=XUN X XD) WUy, X4, U, X1)]G (&0}

(ko
=02 [tk &k

_0< 1)Var(T)

which implies Y, = o, (Var(7,)), and whereK*(¢) « K*(¢) is the convolution
of K*(r) with itself. Substituting the above equality into (5.11), we get (5.9).
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Analogously, (5.10) follows from the following calculations:

S0t S () ol )

k=2 k=2i#j

n —11>2{O(") * 0<%>}

= O(Var(T;,)?)

The proof is complete. [

PROOF OFTHEOREM 4. The first part is similar to the proof of Theorem 3.
The details are omitted. To shothe second part, we recall that(ug) =
E[XX"|U = ug] f (uo) and write

D
X
X = ( I&)) :
X
whereX Y'is pj-dimensionall'11, T12, T21, T22 @r€ p1 x p1, p1 X p2, p2 X p1

and p> x p» matrices ant> = p — p1. Following the same steps in the proof of
Theorem 3, we first extend Theorem 1 as follows:

_ ( 'y T2

and Ty12=T11— TplGAT
oy Fzz) 11,2 11 121'55 121

A oa(ue)X,? )
+ = K,(U; —
Ba(uo) = B2(uo) Zl 2 ”0)<u51F2‘21<uo>X§2)<Ui—uo)/h

x i (o) (L + 0, (hY/?)) + 0,(h?),

a*(uo) = ZKhw — uo)

i=1

~ I'uo)X;
x 1 (V3 uo)G(e)) ® <M51r—1(u0)X,-(U,- - uo)/h)
— v ip'v1iD)y D VG (e)

0

Cod o) x?

0
Mz_lrz_zl(uo)X,'(z)(Ui —uo)/h
X (1+Op(h1/2)) + OP(hz)‘

Then by using the decomposition formula in Fan, Zhang and Zhang (2001) we
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have
XITT (U~ 1xy
= (X7" — X2 (U T21(U) T U X P — T12(Un T 55 (U X))
+ Xl-(z)TFzz(Uk)_lX;EZ).

The remaining part is very similar to the proof of Theorem 3. The details are
omitted. [J

PROOF OFTHEOREM 5. The argument is similar to that in Fan, Zhang and
Zhang (2001) but more tedious. For simplicity, we derive it heuristically. Write

I(Hos|G) = (1 + 0,(h*/?))

1 n n n
x 5522 2 KnWi = UpKn(Ux = Uy)
i=1k=1j=1

X G (i + A(U)™Xi) (e + A(Ur)" X)

(5.12) AUR)

Ui —U; U — U,
NARRUEL

x XIT Y UN Xk — 16
= (140, (W) (Wao + Wyt + Wz + Waz) — lg

with

1 n n n
Wao=5— SN KU — U)Ky (U — Uj)
i=1k=1j=1

5 <1+M_1U,- ~U; Uk—U‘,-> 1
2 h h fU;)

x G(g)" V_l(Uj)G(Ek)XitF_l(Uj)Xk’

1 n n n
Wir=5— YN KU — U)Ky (U — Uj)
i=1k=1j=1

X<1+M_1U,-—UjUk—U‘,-> 1
2 h h fU))
IG(e))
oe

x G(e)"VYU)) XIT Y U)Xk XF AU,
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1 n n n
i=1k=1j=1

Ui—U;U,—-U; 1
% <1+//L£1 Jj Yk ])
P )7
G (e1)"
X — 7

” V3 UNGEDXTTHUH Xk XEAUL),

1 n n n
Wiz =5 S KnUi —UjKp(Uy — Uj)

i—1k=1j=1
U—-U:U—U;\ 1
« <1+M51 i Jj Yk 4/)
h n ) fWU))

0G(ENT

X " ;)
oG (e

x JA(UZ-)TXZ-X}F—l(Uj)ka,fA(Uk),

where ¢ is betweens; ande; + A(U;)*X; and gf is betweens, and & +
A(Up)™ X;. Under some regularity conditions,

1 & -
Wit =5 >N G(E,')T{Z Kp(Ui = Uj)Kp(Ux — Uj)
i=1k=1 j=1

U —-U;U,—-U,;
x(l-i—ligl lh ! kh ‘/)

v—Lw;
Ty W

G (&f)
0e

x X}F—l(U,)XkX,fA(Uk)}

W*
= 2+ op(h ™),

Wio = W1,
whereW; is defined in (3.5). Similarly, we write

W,z = Wy31+ 2Wy32+ Wy33
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where, wherFA(U)' XXTA(U) = 0( 7))

W31 = zzzZ"tZKhw Uj)Kn(Ux —Uj)

i=1k=1 j=1
U-UjU—U;\ 1 4
14 15 ) v=iw))
( Ha = h ) fU) !

X ErAUNTX; XIT XU )Xk XT AU

= Z Z BT K} (U; — UV Uy)

i=1k=1
X B AWUN X XIT N U DXk XFAWU) + 0,(h )

1 w5 _
=0 ) + 2 +oph ),

Waz2 = zzzZ"fZKhw Uj)Kn(Ux —Uj))

i=1k=1 j=1
_1U; — UUk U 1 _
1 1 ) v,
<+ I 7w, W

[8G(ek
9

}A(U) X XIT Y U)X XFA(Uy)

W*
=+ op(h ™12,

u G (ef)

Waaz = on 222 [

=1k=1

n
,} " Ki(Us — UpKy(Us — Up)
=1
Ui-U; U U,
(H x > )

h
8G(8 ) ]
U,
*TwWw; [ |

x AUUNTX; XIT XU Xk XE AU

-1

1
= Op(m)

. EE{E[aG(S) ]U] V_l(U)E[aG(S) ‘U]A(U)’XX’A(U)}
2 e e

x (14 0(D)),
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with E; defined in (3.6). Recall thaW;, and W3 are in (3.7) and (3.8),
respectively. Observe that #A(U)' XX A(U) = 0(%) we have

1 n n _
Wasi=—Y_ > EIK(U; — UV HU)
2n i=1k=1

x B AWUN X XIT YU N Xk XFA(UR) 4 0, (h~Y2)
1 W3, -1/2
Waz2 = W3,/2+ 0, (h~Y/?),
1
Wy3z= Op (m)
G T G
n EE{E[ () ]U] v—l(U)E[ (&) ‘U]A(U)’XX’A(U)}
2 ae e
x (14 0(D)).

Similarly we have

I(G) = (14 0,(h~Y?)

1 n n n
% [ﬁ SN KnUi —Up)Ky(Ui — Uj)

i=lk=1j=1
(5.13)

U —-U; U —U;
X<1+/J«21 n / h ]>

x fWj G (&)C(U;)G(ek) + 2851+ S,,g}

where

1 n n n
Si1=5 Y3 Kn(Ui —U)Kp(Uyx — Uj)
i=1k=1j=1

X<1+M_1U,-—UjUk—U‘,-> 1
2 h h fU;)
dG(e})

X G’(si)C(Uj) 9e

A"UN Uk — U)X,

= 0, (n(nh)~1h?)
= 0,(h)
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and

ZZZZKh(U UpKin(Ux —Uj)

i=1k=1;=1
<1+ Ui —Uj Uk—U> 1
h ) FU)
me(U) G( )A”(U VX XYW

e
x Xi XpA"(Uj)(U; — Uj) 2(Ur—Uj)?
4
= %E{D (U)CU)DW)A"(U) XX A"(U)}

X //tz(s +0?KOK (s + 1) (1+ puy (s + 1)) drds(140,(D)),
where U7 is betweenU and U;. Now the desired result follows from (5.12)
and (5. 13) This proves the theorerr[]
APPENDIX

LEMMA 1. Under conditions (K0O), (U0O), (A2)—(A4), if there exist some
positive constants bg, b1 and n < 1/2 such that bg < hn" < by, then there exists a
sequence of positive constants d, — 0 such that

An(uo, B) = E{Kh(U - uo)G<Y _ 5fz<x, v = ”0)) 2 Z<X, u _ uo)}

+0,(n" Y5 ARY?)a,.

Furthermore, if condition (A5) holds and n > 1/(2¢), then uniformly in
I8 = Boll < rn=o0(n"Y%)d,,

An(uo, B) = 0,(n"Y5)d,.

PROOF For any positive constait,,, we can write

. U —ug U —ug
A, (ug, B) :EKh(U—uo)G<Y—ﬂ Z(X, ; )) ®Z<X, ; )

+ Apa(uo, B) + Ay2(uo, B),

where

1 n
An1(uo, ) = — Y Kn(Ui —u0)Gin(uo, BYI(F(Yi, Xi) < My)
i=1

— EKp(U — u)Gp(uo, BI(F(Y, X) < M,)
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and

1 n

An2(uo, B) = . Z Kp(Ui — u0)Gip(uo, BYI(F(Y;, X;) > My)
i=1

— EKp(U — u0)Gp(uo, B (F(Y, X) > M,).
Note that
(A1) ElAn2(o. B)ll < 2EK4(U — ug)Gp(uo, B)I (F(Y. X) > My) < cM; 5.
Consider the following empirical processes:

n
va(9) =n"Y2> (e(Yi, Xi,uo, B) — Eg(Y, X, uo, B)),

i=1
geF,={M1g:g € F1),

where %1 is defined as in Section 5.1. It follows directly from assumption (A4)
that

N (8, L1(Py), Fn) < c1(Py)(hSM,,) ™"
Obviously, by condition (A3), fog = K ((- — ug)/ h)G(uo, B) € F,

E|lg(Y, X, uo, B)|I?

<chM;?  sup  Eyu=utmn|G2(Y — B Z(X,D)|IZ(X,0)|?}
uo,t, | B—Poll<ro

<OMhM;?) =v.

Now let M,, = n*, 8, = (hY/? An=Y/%)(logn)~1 andM = §,nY/2hMoM 1. Using
Lemma 2 in Zhang and Gijbels (2003), we have

P{sup|| An1(uo, B)I18; 1 > Mo}

- P{ sup|lva (@)1l > M}
8€Fn

A2 (™ 2(Mh M) )" expl—csM?/v) + cov~ " exp—nv)
= O((h%8,) ") exp{—c382nh®MEM 2/ h M, %)
+c20(hM;?3) " exp(—canh M ?).
The last terms in (A.1) and (A.2) at&s,,) ando(1), respectively, if
bo<hn" <bi,  nh®/logn — oo,  n'"%&h/logn — oo,

nhM;2/logn — oo,  M;$*15-1 0.
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The above requirements are fulfilled provided that,stos O,
1 2
bo < hn < by, 0<n<min{—,1——},
2 3
1 1-
max{ 7 s } <so < _77
26-1) &¢E -1 2
These conditions are equivalent to

bo<hn"<b 0 min{ll 21 11 2 } 1
o=hn’ =0y, <n< -1—-——-1—-,1— ——
2 § § §E-1D) 2

since¢ > 4.
Letd, = (logn)~! and f be the density ot/. Now we can complete the proof
if we note that forl| 8 — Boll < o(n~Y%)d, andy > 1/(2¢), we have

. U —ug U —up
E{Kh(U—uo)EKh(U—uo)G<Y—,3 Z(X, h )) ®Z<X, ; )}

- / K(t){E[G(Y - ﬁfZ(X, v ; “°)>\U = uo+th“
® E[Z(X,)|U =ug+th] f(uo+th)dt

= 0(h®) + OB — Bol)

=0 ) +o(n Y4,

:0(n_l/5dn)

by using condition (A5). O
LEMMA 2. Under conditions (K0), (U0), (A2), (A6) and (A7), asn — oo,
bo<hn <b1,0<n<1/2, wehave
Vu(uo, B) = EKp(U — u0)Gy (uo, B)GE (uo, B) + 0, (hY/?)
= V(u0) ® (S ® T (o)) + 0, (hY?) + 0|18 — Bol).

PROOF The proof is similar to that of Lemma 1 and is thus omitted]

LEMMA 3. Under conditions(K0), (U0), (A1l)-(Al0)and (B1),if bg < hn" <
b1, 1/(28) < n < 1/2, then there exists a sequence of positive constants d, — 0
such that asn — oo,

Buo) = Bo(uo) + 0,(n" Y5 AWY?)d,,

o (uo, 3(uo)) = op(n_l/‘§ ARy,



SIEVE EMPIRICAL LIKELIHOOD RATIO 1901

PrROOF First of all, by Lemma 1, there exists a sequence of positive constants
d, — 0 such that

(A.3) An(uo, Bo) = 0,(n Y5 ARY?)d,.
Note that condition (A2) implies
(A.4) Zn(uo, B) = 0,(n*%)

uniformly inug € Q and||8 — Boll < ro. Set the function

18 GuoB)
gn(a’ IB)_;;Kh(UI u0)1+OlTGih(M07 ﬂ)

Then following the argument of Owen (1990) and using conditions (KO0), (U0),
(Al), (A4), (A5), (A8), (A9) and (B1), we can show that for large «;, (g, B)
exists and satisfies the equation

(A.5) 8n (Ofn (1o, B), ﬁ) =0

when || — Boll < ro andrg is small. To see this, we first note that for constant
8 > 0 small enough, we have

inf fK(t)E[I{lp’(G(e) ® Z(X, 1)) > 8)|U = uo]dt > 5,

l¥i=1
uge2
which yields
it [ KOEUW Gy o, ) > 8/2IU = uo+1h]
A.6 up€e2
(A.6) 18—PBoll=ro

X f(uo+th)dt>45/2

ash — 0 andrg is small enough. This is the main consequence of conditions (A1)
and (A9). Define

n
Hy (B, ¥) = %th(Ui, uo) 1{Gin(uo, B)" > 8}.
i=1
Then under conditions (Al)-(A4), (A8JA10), using (A.6) and the strong
convergence of empirical processes [Pollard (1984) and van der Vaart and Wellner
(1996)], we can show that there exists- O such that for smaltg and largen,
infyy =1 H,(B, ¥) > & almost surely. This shows that 0 is contained in the convex
hull of the points in{G;;, (ug, B) : w, (U;, ug) > 0, 1 <i <n}. Now (A.5) follows
directly from the Lagrange multiplier method as in Owen (1990).
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Let
an(uo, fo) =pv  With p = [l (uo, Bo) |l and|jv]| = 1.
We have
0= gn(an(uo, Bo). Bo) |
= lign (v, Po)l
> [[v" gn(pv, Bo)ll

1 n
= o7 3K = o) G o) -
i=1

pGin(uo, Bo)Gin(uo, Bo)*v }
1+ pv** G (uo, Bo)

v G (uo, Bo)Gin(uo, Po)*v
1+ pv**Gjj (uo, Bo)

1 n
> ;,OZKh(Ui —up) — [v" Ay (uo, Bo)l
i=1
vV, (uo, Bo)v
>p — | An(uo, Bo)l,
1+ pZy(uo, Bo) "

wherev* = tv with 0 < ¢ < 1. Thus, combining (A.4) with (A.3), Lemma 2 and
condition (A9), we have

| An (o, Bo)
vt Vi (o, Bo)v — [[An (1o, Bo) | Zn (1o, Bo)

= 0, (1 An(uo, o))

=0,(n" Y5 ARY?)d,,

p<

that is,
(A7) @ (1o, o) = 0,(n Y5 ARY2)d,.
Setp, = (W2 An=Y%)d,, and letu(uo, B) satisfy
u(uo, BINE{Kn(U — u0)Gp(uo, B)H = E{Kn(U — uo)Gp(uo, B)}-
Define

1 n
In(uo, B) = —~ > Kin(Ui — u0) log(1+ an (o, B) Gin (uo. B)).
i=1

1 n
Ty(uo, ) = ~ > K (Ui — uo) log(1+ ¢nu(uo. B)*Gin(uo, B)),
i=1

1 n
Tua(uo, p) = ~ > K (Ui — uo) log(1+ ¢,u(uo, B)* Gin(uo, B))
i=1

x I (|G|l < n'/%).
We have

(A.8) 0> 1, (uo, Bo) = —a (o, B) An(tto, B) = 0, ($2),
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and uniformly forug andg,

Tu1(uo. B) = ¢n— ZKhw—uo)u(uo,ﬂ) Gin(uo, BI(IGinll < n'/)
i=1

—~ —¢n|0<1>|—21<h<u —ug)F(Y;, X;)?
i=1

= u{u(uo, B)" E[Kn (U — u0)Gn(uo, )1} + 0,(@7) + 0, (D).

Note that for fixedug and g8, the function —%ZLl Kin(U; — up)log(1l +
a'G;y (ug, B)) attains the minimum at, (ug, 8). This implies [, (ug, 8) <
—T,(ug, B). Consequently, for any > 0, by (A.8) we have

P(IlBuo) — Boll > p)

sup I, (ug, B) > 1, (ug, Bo) for someuo)
I1B8—Boll=p

18—Pol=p

A

P sup (=T (uo, B)) > —|0,,(¢,f)| for someuo)

18- /30||>p

=(
P( sup I,(uo, B) > —10,(¢; )|forsomeuo)
(
o

sup (—Tu1(uo, B)) = —|0p(¢>f)| for someuo)
18— /30||>p

+ P(supznwo, B) > nl/f)
uo, B

< P{”ﬁ igf” IEKn(U —u0)Gpr(uo, Bl <10, ()l forsomeuo} +o(1)
—pollzp

— 0,

where the last limit follows from condition (A10). Therefore using fgn — O
andp> in condition (A10), as: — oo, we have

P(IIB(u0) — Boll > pa1 for someuq)

= P(p2 = lB(u0) — Poll > pa1 for someug) + o(1)

gp( inf ||E1<h<U—uo)Gh(uo,ﬁ)||s|0p(¢n>|forsomeuo)
p2=|B—Boll=pn1

+o(1)
< P(pu1 4+ O(h%) <10, (¢n)]) +0(D),
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which leads to
B(uo) — Bo= 0y (¢n) =0,(n & ARYP)d,,.
Invoking the argument of Owen (1990) and Lemma 1 again, we have
o (uo, Bo)) = 0, (n~ Y5 ARM?)
uniformly in ug. This completes the proof.[]
LEMMA 4. Suppose for some positive constants bg and by, bg < hn' < by,

0 <5 < 1/2. Then under conditions (K0), (U0), (A2), (A6), (A7) and (A9), as
n — oo, we have

Vu(ug, o, B) = V (u0) ® (S ® (o)) (1+ 0, (hY/?))

uniformly for ug € Q, |||l + |18 — Boll < o(n=Y& A hY/2).

PrROOF Note that under condition (A2) we have

sup  Z,(uo, B) = 0,(n**),
uge2

lB—Boll<ro
which together with Lemma 2 yields

_ @to,W1ig o R
Vi (uo, o, B) = Vi (o, B) + Op(lleel) At 0, i:ZlKhaJl uo)F(Yi, Xi)

= Vi (uo, ¥2) + O, (lx]))
=V (u0) ® (S ® T'(ug)) + 0,(h*?) + 0, ().

The proof is complete.

LEMMA 5. Suppose there exist positive constants bg, b1 and n such that
bo < hn" < b1, 0 < n < 1/2. Then under conditions (K0), (U0), (A2), (B1)—(B4),
asn — oo,

By (uo, @, B) = D(uo) ® (S ® T (u0)) (1 + 0, (h/?))
uniformly for ug € Q, ||l + |8 — Boll < o(n~ Y& A R1/2).

The proof is similar to that of Lemma 1 and thus is omitted.

LEMMA 6. Under conditions (K0), (U0), (A2), (B1),ash — 0, nh — oo,
Cn(uo, a, B) = Op(llel)

uniformly for ug € 2, |la|l + |8 — Boll < o(n~Y& A hY/2).
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PrROOF Note that by condition (A2) anhy1|| < o(n~Y% A h1/2), we have

maxzupllafGih(uo, Bl =op(D).
1 ,uQ

Thus

1 n
1Cn (o, o, )l = Op (il Y Kn(Ui — uo) Fa(Yi, X)) F(Yi, Xi) = Op([ll])
i=1

by conditions (A2) and (B1). The proof is completé.]

LEMMA 7. Under conditions (K0), (UO)and (B5),ash — 0 and nh — oo,

Dy (ug, o, B) = Op ([l
uniformly for ug € Q, |la|l + I8 — Boll < o(n=Y& A /).

LEMMA 8. Under conditions (K0), (UO)and (B5),ash — 0, nh — oo,

E,(uo, o, B) = O, (lle||?)
uniformly for ug € 2, ||| + I8 — Boll < o(n= Y& A RY/2).

The proofs of Lemmas 7 and 8 are similar to the proof of Lemma 6 and thus are
omitted.
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