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FINITE SAMPLE PROPERTIES OF MULTIPLE
IMPUTATION ESTIMATORS

By JAE KWANG Kim?
Yonsel University

Finite sample propertie of multiple imputation estimators under the
linear regression model are studied. The exact bias of the multiple imputation
variance estimator is presented. A method of reducing the bias is presented
and simulation is used to make comparisons. We also show that the suggested
method can be used for a general class of linear estimators.

1. Introduction. Multiple imputation, proposed by Rubin (1978), is a pro-
cedure for handling missing data that allows the data analyst to use standard
techniques of analysis designed for complete data, while providing a method to
estimate the uncertainty due to the missing data. Repeated imputations are drawn
from the posterior predictive distribution of the missing values under the specified
model given a suitable prior distribution.

Schenker and Welsh [(1988), hereafter SW] studied the asymptotic properties
of multiple imputation in the linear-model framework, where the scalar outcome
variableY; is assumed to follow the model

Y,' = X;ﬂ +e;,
1) N
e; "¢ N, 02,

The p-dimensionak;’s are observed on the complete sample and are assumed to
be fixed.

To describe the imputation procedure, we adopt matrix notation. Without loss
of generality, we assume that the firstunits are the respondents. Lgt =
(Y1,Y2,....Y,) andX, = (X1, X2, ..., X,) . Also, lety,_, = (Y,11, Yr12,...,Y,)
andX,,_, = (X;41, Xr42, ..., X,)". The suggested method of multiple imputation
for model (1) is as follows:

[M1] For each repetition of the imputatioh,=1, ..., M, draw

" i.i.d. N
@) o2 1y " (r = PEEIXP

whereé? = (r — p) Yy [I — X, (X.X,)"1X1y,.
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MULTIPLE IMPUTATION ESTIMATORS 767

[M2] Draw

(3) .B(k)| Yr,U(k))” N(ﬂn(x X))~ 10(73)

whereg, = (X/.X,)"1X'y,.
[M3] Foreach missingunif =r +1,...,n draw

i. |d
(4) ¢Sl | (Bl o) ~ N(0.035).
Then Y] o = =X;B) + e] s is the imputed value associated with upifor
the kth imputation.
[M4] Repeat [M1]-[M3] independently/ times.

The above procedure assumes a constant prioffologs) and an ignorable
response mechanism in the sense of Rubin (1976).

At each repetition of the imputatiork = 1,..., M, we can calculate the
imputed version of the full sample estimators

n
ﬂ[(k),n=<zxix> [leyﬂr > X :(k)}
i=1

i=r+1
and
-1
VI(k)n—(ZXz ) G[(k)n’
where
A2 _ -1 . /'R 2
Sim=m—p) 7 D (Y —~X.Bm) 24 Z Yy —XiBraon) |-
i=1 i=r+1

The proposed point estimator for the regression coefficient baséd mepeated
imputations is

M A
(5) = Z Bruy.n:
The proposed estimator for the variance of the point estimator (5) is
(6) Vitn = Warn + L+ M DBy,
where
M

(7) Wi =M1 Vigon
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and

M
8) Bra =M =173 (Brgyn — Bun) Brar.n —Bun)-
k=1
Rubin (1987) calledW,, , the within-imputation variance and calledBy, , the
between-imputation variance. We call v, , Rubin’s variance estimator.
SW studied the asymptotic properties of the point estimator (5) and its variance
estimator (6). Under regularity conditions they showed that

9) Jim EBy, —B)=0
and
(10) im n{E(Va.) —VarBy,,)} =0,

where the reference distribution in (9) and (10) is the regression model (1) with an
ignorable response mechanism.

Note that (9) and (10) require that the sample sizgo to infinity, for fixed
M, M > 1. Finite sample properties are not discussed by SW. The next section
gives finite sample properties of the multiple imputation estimators. In Section 3
a simple modified version of the SW method is proposed to minimize the finite
sample bias of the multiple imputation variance estimator. In Section 4 extensions
are made to a more general class of estimators. In Section 5 results of a simulation
study are reported. In Section 6 concluding remarks are made.

2. Finite sample properties. The following lemma provides the covariance
structure of the multiply-imputed data set generated by [M1]-[M4].

LEMMA 2.1. Let Y; be the observed value of the ith unit, i =1,2,...,r

(r > p+2), andlet Y73, be the imputed value associated with the jth unit for
the kth repetition of the multiple imputation generated by the steps [M1]-[M4].

Then, under model (1) with an ignorable response mechanism,
(11) Cov(Y;, Y% =X (X, X,) x;0?
and

Cov(Yiie: Yii)

(12) A+ MX(X. X)X 02 + 102, ifi=jandk=s,
=1 A+ MX(X.X,)"X02, ifi £ jandk=s,
X (XL X,)"x;02, if k #s,

where A = (r — p — 2)"1(r — p) and the expectationsin (11) and (12) are taken
over the joint distribution of model (1) and the imputation mechanism with the
indices of respondentsfixed.
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For the proof, see Appendix A.
Note that the imputed valug;j, can be decomposed into three independent
components as

(13) Vit =B, +%i (Bl — B,) + ey,

The first componemx,-ﬂ, has meanx;8 and variancex;(X;X,)—lx,-oz, the
second component has mean zero and variaup@(;X,)—lx,-oz and the third
component has mean zero and variahcé.

The following theorem gives the mean and variance of the point estirﬁ@,tgr
of the regression coefficient and the mean of the multiple imputation variance
estimatorVy, ,. Again, the expectations in the following theorem are taken over
the joint distribution of model (1) and the imputation mechanism with the indices
of respondents fixed.

THEOREM2.1. Under the assumptionsof Lemma 2.1,
(14 E@Bu.) =8
(15)  Var(By ) = (X.X,) o? + M~ [(X. X,) "t — (X, X,) o2
(16)  EWya) =X, X)) Hl+ - p) =D —r}o?
and
(17) E(By ) =X X))t = (X, X,) o?

wherer = (r—p—2)"1(r - p), W . 1Sthewithin-imputation variability defined
in (7) and By, is the between-imputation variability defined in (8). The bias of
the multiple imputation variance estimator is

E(Vpn) —Var(By ) = (X, X)) "n — p) X = D(n — r)o?

(18) + =YX X)) = (X, X)) o2

For the proof, see Appendix B.
As is observed from (15), the point estimapy; ,, for infinite M achieves the
same efficiency oﬁ,, the estimator based on the respondents. In fact,

lim B
M—>ooﬂM’n

n -1
= (ZX,‘X/> {ZX[[XEB,‘*‘()’[’ _X:ﬁr)]}
i=1

i=1

+<i:2n;xix/) { 3 xl[x B.+M~ 12 X (B — +e,(k))“

i=r+1

=.Br’
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because_;_q X (yi — x;ﬁ,) = 0 by standard regression theory, jim . M1 x
Y By — B) =0 by the law of large numbers and li.c M~1 x

Zﬁilei‘&) = 0 by the law of large numbers. By (15) the variance[?qj,n can
be written as

(19) Var(B,, ) = Var(,) + M~A[ Var(B,) — Var(8,)].

The second part in the right-hand side of (19) is the increase in variance due
to usingB,, , instead ofB,. By (17) that increase can be unbiasedly estimated

by M—1By . Thus, an alternative estimator for the total variancg af, thatis
unbiased for (15) is

(20) Var(,) + M~ 1By .

whereVar(B,) is the standard variance estimator that treats the respondents as if
they are the original sample.

In large samplesp = 1 and the bias of the multiple imputation variance
estimator for the imputed regression coefficient is negligible. The bias term (18) is
an exact bias for > p + 2.

The total variance OﬁM,n can be decomposed into three parts:

Var(By, ) = Var(B,) + VarB, — B,,) + Var(B , — B,).

The first part, the second part and the third part can be called the sampling variance,
the variance due to missingness and the variance due to imputation, respectively.
Rubin’s multiple imputation use#,, , to estimate the sampling varian@y , to
estimate the variance due to missingness MT&BM,,, to estimate the variance

due toM repeated imputations. The first term on the right-hand side of (18) is the
bias of Wy, , as an estimator of the sampling variance and the second term on the
right-hand side of (18) is the bias &, , as an estimator of the variance due to
missingness. The imputation variance is unbiasedly estimatadthB,, ,.

3. A modification. We consider ways of reducing the bias of the multiple
imputation variance estimator. Recall that multiple imputation is characterized by
the method of generating the imputed values and by the variance formula. The
variance formula directly uses the complete sample variance estimator so that it
can be implemented easily using existing software.

One estimator of variance is the alternative variance estimator in (20), which
involves direct estimation of parameters from the respondents. A similar idea was
used by Wang and Robins (1998). Then Rubin’s variance estinﬁ’a;grin (6) is
no longer required.
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If we want to use Rubin’s variance formula, one approach is to modify the
imputation method to minimize the bias term in (18). To find a best imputation
procedure, instead of fixing a constant prior for dggwe use a class of prior
distributions indexed by hyperparameters to express a class of imputation methods.
As a conjugate prior distribution fer?, we choose a scaled inverse chi-square with
degrees of freedomy and scale parameteb2 as the hyperparameters; that is, the
prior distribution ofo2 is the distribution ofiga/ x2 . In the modified imputation
method we determine the values of the hyperparametges)do 2, to remove the
bias of the multiple imputation variance estimator.

Using the hyperparameters, the posterior distributiorrfois written

i.i.d. N
(21) GZES |y, = [vood + (r — p)&?]/ x(sz_ o)
so that
(22) E(o{3)=(o+r—p—2)"(voo§ + (r — p)o?).

Note that SW usedy = 0. Using the arguments of the proofs of Lemma 2.1 and
Theorem 2.1, the bias of the multiple imputation variance estimator based on the
posterior distribution in (21) is

Bias( Vi) = (X, X)X (n — p) " (ko — D (n — r)a? + r1(n — r)o¢)

(23)
+{(X. X)) = (X, X)) " HH{ (o — Do® + 1106},

whererg= (vo+r — p —2)~1(r — p) andii = (vo +r — p — 2)"1vg. The bias
is zero whernvg = 2 andag = 0, which is equivalent to generating the posterior
values ofo? from the inverse chi-square distribution with degrees of freedom
v=r—p+2 instead o =r — p in (2). Thus, the choiceof =r — p+2in (2)
makes Rubin’s variance estimator unbiased for a finite sample.

We can also derive the optimal prior using the recent work of Meng and
Zaslavsky (2002) on single observation unbiased priors (SOUP). Meng and
Zaslavsky [(2002), Section 6] showed that

(24) m(0?) oc (0?72

is the unique SOUP among all continuously relatively scale invariant priors for
the scale family distribution. Note that the prior density of the scaled inverse chi-
square distribution can be written as

(25) 7(0?) o (02~ /2D ex —vp0d/ (202)].

Thus, the unique SOUP fer? in (24) corresponds to the scaled inverse chi-square
distribution with vg = 2 and o—g = 0, which makes the posterior mean in (22)
unbiased fow 2.
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4. Extensions. In this section we investigate the properties of the modified
method when it is applied to estimators other than the regression coefficients. Let
the complete sample point estimator be a linear estimator of the form

(26) én = ZO(,‘ Y,'
i=1

for some known coefficients;. Also, let the complete sample estimator for the
variance o), be a quadratic function of the sample values of the form

n n
(27) Va=2_2 QiYi¥
i=1j=1
for some known coefficient®; ;.

For the ?M,n to be asymptotically unbiased for the varianceém‘,,,, we
need the “congeniality” assumption as defined in Meng (1994). The congeniality
assumption in our context implies

(28) Var(Beo.n) = Var(6,) + Var@oo.n — 0,).

For the case of), = Bn discussed in Section 2, congeniality holds because
foo.n = B, and

var(B, — B,) = (X.X,)1o? — (X X,) o2
= Var(B,) — Var(B,).

We restrict our attention to the case of congenial multiple imputation estimation
because otherwise the variance estimator will be biased even asymptotically.

The following theorem expresses the bias of Rubin’s variance estimator applied
to the general class of estimat@¥sin (26) andV, in (27) under the SW method.

THEOREM 4.1. Let the assumptions of Lemma 2.1 hold. Assume that the
complete sample variance estimator V,, in (27)is unbiased for the variance of the
complete sample point estimator 6, in (26) under model (1). Let the congeniality
assumption (28) hold. Then the multiple imputation point estimator éM,n is
unbiased with variance

Var(QMn)_[Zoz —l—ZZ Z a;ajhij + Z Z oo 11}0

i=1j=r+1 i=r+1j=r+1
(29)

n n n
+M_1)\.{ Z Z a;ajhij+ Z Otiz}(fz

i=r+1j=r+1 i=r+1
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The bias of XA/M,,, as an estimator of Var(éM,,,) is

E(Vi.n) — Var@u )

r n n n
={22 Z Qijhij+(l+)\) Z Z Qijhij
i=1j=r+1 i=r+1 j=r+1

(30)

n
+ -1 > ij}az
j=r+1

+()»—1){ Z Oljz-i- Z Z Otiotjhij}ffz,

j=r+1 j=r+1lj=r+1

wherer = (r — p —2)71(r — p) and h;; =X (X.X,) 71X,

For the proof, see Appendix C.

The first term on the right-hand side of (30) is the bia3¥qaj , as an estimator
of Var(9,) and the second term is the bias(@f+ M—l)BM,n as an estimator of
Var@ys n — 0n).

Note that the bias term in (30) can be written

n n
(31) Bias(Vi ) =2 > Qijhjjo®+ (. —DHUo?,
i=1j=r+1

where

n n n
U=1 Y > Qij+eeph;+ Y (Qj+ad
i=r+1j=r+1 j=r+1

= trace{ (p—r + “n—r“;l_r)[Xn—r (X;Xr)_lx;_r + In—r]}

with @,_, the lower-right (n — r) x (n — r) partition of Q = [;;] and
oy—r = (&ry1,...,0,) . By the nonnegative definiteness of,_,, o,_,ct,_,,
X,,_,(X;X,)—lle_, andI,_,, the U term is nonnegative. Thus, if we use the
modified method suggested in Section 3 so that we hawel, the variance

term (29) decreases and the bias will be reduced to

n n
(32) Bias(VM,n) = ZZ Z Qijhl‘jo'z,
i=1j=r+1

which is always smaller than the original bias in (31) because (r — p —
2 1r—-p)>1.
A sufficient condition for the bias term in (32) to be zero is

(33) Q=c[l, — X,(X, X,)"x!]
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for some constant > 0. To show this, les;; be the(i, j)th element ofl,. Then

n n
> Qjhi; =Y c[8ij — X (X, X)X (XX 7]
i=1 i=1

n
=X (X X)X — cx’j(x;xn)—l[inx;} (X! X,)"x; =0
i=1
and the bias term in (32) equals zero, which alternatively justifies our assertion of
zero bias in Section 3.

5. Simulation study. To see the effect of changing=r — p into v =
r — p + 2, we performed a limited simulation. The simulation study can be
described as a 2 3 x 2 factorial design withl, = 50,000 samples within each
cell, where each sample is generated from

(34) Y; =2+ 4x; + ¢,

wherex; =5+ 10(n + 1)~ i ande; are independently and identically distributed
from the standard normal distribution. Thus, the population mea@Xot') is
(10, 42). The factors are as follows:

1. factor A, method of multiple imputation—SW methad£ r — 2), new method
(v=r);

2. factor B, response rate/n)—0.8, 0.6, 0.4;

3. factor C, sample siz@)—20, 200.

We used a uniform response mechanism &hg 5 repeated imputations.

Table 1 presents the mean, the variance and the percentage relative efficiency
of the point estimators under the two imputation schemes. The percentage relative
efficiency (PRE) is

PRE= [ Var, (dsw)] " Var, (Gnew) x 100

where the subscripL denotes the distribution generated by the Monte Carlo
simulation. Both imputation methods are unbiased for the two parameters and
the Monte Carlo results are consistent with that property. The new procedure is
slightly more efficient than the SW procedure and the efficiency is greater for
lower response rates.

Table 2 presents the relative bias andtatistics for the variance estimators.
The relative bias ofV as an estimator of the variance 6éfis calculated as
[Var, (6)]"YEL (V) — Var,(9)], and thez-statistic for testingdo : E(V) = Var(d)
is

LY2[ELV) - Var,(0)]
{ELIV — EL(V) +Var,(0) — (0 — EL(6))212)1/2

(35) z-dtatistic=
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TABLE 1
Mean, variance and the percentage relative efficiency (PRE) of the multiple imputation
point estimators under the two different imputation schemes (50,000 samples)

Mean Variance PRE

Parameter n r/n SW New SW New (%)
Mean 20 0.8 4D 420 0.066533 0066056 9P
0.6 420 420 0.095951 0094192 98

0.4 420 420 0.150521 0142537 47

200 0.8 420 420 0.006594 0006583 998

0.6 420 420 0.009069 0009057 999

0.4 420 420 0.014143 0014090 9%

Slope 20 0.8 D 4.0 0.008873 0008785 990
0.6 40 4.0 0.013148 0012956 98

0.4 40 4.0 0.018190 0017443 959

200 0.8 40 4.0 0.000780 0000779 9%

0.6 40 4.0 0.001084 0001084 100

0.4 40 4.0 0.001681 0001674 9%

A heuristic argument for the justification of thestatistic is made in Appendix D.

Under the SW imputation, the relative bias is larger for smaller samples and
for smaller response rates. The new imputation produces much smaller relative
bias for the variance estimator. For large sample sizes both imputation methods
produce negligible relative biases of the variance estimators.

TABLE 2
Relative bias (RB) and the z-statistic of Rubin’s variance estimators under
the two different imputation schemes (50,000 sampl es)

RB z-statistic

Parameter n r/n SW New SW New
Mean 20 0.8 D624 00008 933 012
0.6 01520 -—0.0045 2127 —-0.66
0.4 03221 00074 3723 097
200 0.8 —-0.0086 —0.0124 —-136 -194
0.6 00040 —0.0045 061 -0.69
0.4 00155 -0.0037 229 -0.55
Slope 20 0.8 m706 00095 1039 141
0.6 01560 —0.0064 2121 -0.90
0.4 03418 00046 3781 059
200 0.8 00129 00107 203 167
0.6 Q00175 00031 269 048

0.4 00240 00047 360 Q070
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TABLE 3
Mean length and the coverage of 95% confidence intervals under the
two different imputation schemes (50,000 sampl es)

Mean length Coverage (%)

Parameter n r/n Sw New SwW New
Mean 20 0.8 1.1397 1.0996 95.4 95.0
0.6 15305 1.4032 95.9 94.7

0.4 22635 1.9213 96.4 94.7
200 0.8 0.3232 0.3223 95.0 94.9

0.6 0.3949 0.3928 94.8 94.7

0.4 05235 0.5170 94.8 94.6
Slope 20 0.8 0.4169 0.4020 95.5 95.0
0.6 05646 0.5175 95.8 94.7

0.4 0.7897 0.6696 96.7 94.9
200 0.8 0.1124 o0.1121 95.2 95.1

0.6 0.1374 0.1364 95.0 95.0

0.4 0.1811 0.1789 95.0 94.7

Table 3 displays the mean lengths and the coverages of 95% confidence inter-

vals. The confidence intervals a@— tv'V,d + vV ), wherer = 19,025, andv

is computed using the method of Barnard and Rubin (1999). The coverages of
the confidence intervals are all close to the nominal level. For small sample sizes
the confidence intervals based on the new imputation are slightly narrower than the
confidence intervals based on the SW method. Interval estimation shows less dra-
matic results for small sample size than variance estimation. This is partly because
the distributions of point estimates are bell-shaped and partly because the degrees
of freedom of Barnard and Rubin (1999) attenuate the effect of small sample bias
of the variance estimator.

6. Discussion. We study the mean and the covariance structure of the data set
generated by the conventional multiple-imputation method under the regression
model. Using the mean and the covariance structure of the multiply-imputed data
set, we investigate the exact bias of Rubin’s variance estimator. The bias of Rubin’s
variance estimator is negligible for large sample sizes, as discussed by SW, but
the bias may be sizable for small sample sizes. We propose a simple modified
imputation method that is more efficient than the SW method and makes Rubin’s
variance estimator unbiased. When applied to a general class of linear estimators,
the proposed method produces more efficient estimates and has smaller bias for
variance estimation than that of the SW method. In a simulation study we found
that the bias of Rubin’s variance estimator under the SW method is remarkably
large for small sample sizes. The bias of Rubin’s variance estimator under the new
method is reasonably small in the simulation.



MULTIPLE IMPUTATION ESTIMATORS 77

In practice, the small sample bias of the multiple imputation variance estimator
is of special concern when the scale parametisrgenerated with small degrees of
freedom. One such example is stratified sampling, where the sample selection is
performed independently across the strata. In a stratified sample the assumption
of equalo across the strata is not a reasonable assumption. Thus, the scale
parameters have to be generated independently within each stratum, using only
the respondents in the stratum, which often makes the degrees of freedom very
small even for a large data set. The new method will significantly reduce the bias
in this case.

A commonly used imputation model is the cell mean model, where the study
variables are assumed homogeneous within each cell. Under the cell mean model
Rubin and Schenker (1986) considered various multiple imputation methods.
Since the imputation is performed separately within each cell, the scale parameters
are generated independently within each cell. Thus, the methods considered by
Rubin and Schenker (1986) are subject to small sample biases. The biases can
be significant when there are a small number of respondents within each cell.
Recently, Kim (2002) proposed an alternative imputation method of making the
variance estimator unbiased under the cell mean model.

APPENDIX A

PROOF OFLEMMA 2.1. By (3),
(A1) E(X; B lyr) =X;B,.
So

Cov(Y;, Y} = Cov{Y;, E(Y 5 lyr)} = CowYi, X; B,) =X} (X) X,) X0,
Now, by (2),
(A.2) E(0{3) = E(o{3ly;) = E(A62) = ro?,
wherex = (r — p—2)"1(r — p). So

CoV(X; By X; Bl Yr) = COV[E (X Bl IYrs 0(ky)s E (X Bl IYrs 03 1¥r]
+ E[COV(XQﬂTk)’ X;ﬂfk)lyr’ U&Z))Wr]

(A3) ! v/ -1 *2
= E[X; (X, X,) XjU(k)Wr]
=X/ (X.X,) X672,
and, fork #£s,

(A.4) Cov(x;B{x), X B lyr) =0.
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Hence, by (A.1) and (A.3),
Cov(X;B{x)» X;Bi)) = COV[E (X; By IYr), E (X Bl lYr)]
+ E[Cov(X; B{x). X1 Bl 1Yr)]
A.5 o A
(A-5) = Cov(x;B,,X;B,) + E{X(X.X,) " x;622)
=1+ X (X.X,) X0
and, fork # s, by (A.1) and (A.4),
Cov(xgﬂz‘k), X;ﬂ?s)) = E[Cov(X; ﬂ(k), X, ﬂ(s)|y,)]
(A.G) +COV[ (X-ﬂ(k)|yr), (X'ﬂzks)lyr)]
= Cov(X; ﬂ,,x B.) =X (X'X)"x;02
By (4) we have, foi # j ,
(A7) Cov(Y;%). Y}(i)) = Cov(X: B X By))
and
[ Var(x;Bh) +E(0fE),  ifi=,
Cov(xgﬂfk), X;B)): if i #j.

Therefore, inserting (A.2), (A.5) and (A.6) into (A.7) and (A.8), result (12)
follows. O

APPENDIX B

PrROOF OFTHEOREM 2.1. Before we calculate the variance of the multiple
imputation estimator we provide the following matrix identity.

LEMMA B.1. Let X, beann x p matrix of theform X, = (X/., X, _,), where
X, isanr x p matrixand X,,_, isan (n — r) x p matrix. Assumethat X;Xn and
X X, arenonsingular. Then

51 XX =X X)) T+ (X X)X X (X X)) T
® + (X0 X)X X (X X)X X (X X)) T

PrROOF Using the identity [e.g., Searle (1982), page 261]

(B.2) (D—cA By =D '+ D caA-BD*C)"BD?

withA=1I1,B=X,_,,C=X,_, andD = X, X,,, we have

©3) (X, X))~ = (X X)) ™+ (X0 X0) 72X [T = X (X X)X, ]
X X (X, X)L,
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Using (B.2) again witd = X, X,,, B =X,

n—r?

C=X,_,andD =1, we have
(B.4) [ - X, X X)) 'x, T =T+X, (X.X)" X _

re

Inserting (B.4) into (B.3), we have (B.1).

Note thatB,, , = M2 L1 Bry., and theB gy . Br2yns -+ Browy.n are
identically distributed. Thus,

(B.5) Var(BM,n) =1-M1 COV(ﬁ[(l),n, BI(Z),n) + M_lvar([gl(l),n)'

Definea; = (X, X,,)~1x; andh;; = X/(X.X,)~1x;. By (11) and (12)

Cov(B;wyn Bi2.m) Zalalo +ZZ Z a;hjjdo

i=1j=r+1
(B.6) " "
+ Y > ahjaio?
i=r+1j=r+1
and
var (B;1.n) Za,alo +22 Z ajhija;o?
i=1j=r+1
(B.7)

+(L+2) Z Z ahjdio?+1 Y aao?

i=r+1j=r+1 i=r+1

By the definition ofa; andh;;, we have

(B.8) Yo = (X, X)X, X, (X, X)) 7

Z Z aihi/'a/j:(X/ )_1Xn r ”—V(X;X”)_l
i=1j=r+1
(B.9)

n n
=2 ) ag

i=r+1j=r+1
and
n n
> 2 ahid
(B.10) i=r+1lj=r+1
= (X, X)X X (X X)X X (X X) T
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Hence, inserting (B.8)—(B.10) into (B.6) and (B.7), and applyikgX, +
X,_,X,—»=X,X, and (B.1), we have

(B.11) COV(B[(l),m /}1(2),”) = (X/X,) o2

and

(B.12) Var(B;a).,) = (X, X)) ro? + A[(X,X,) ! = (X, X,)H]o?

Thus, (15) is proved by (B.5).

To show (17), because 48y 1) . B12.ns - - Biy. are identically distrib-
uted,

(B.13) E(Bu.n) = Var(BI(l),n) - COV(B[(l),nB[(Z),n)'
Thus, (17) is proved by inserting (B.11) a}nd (B.12) into (B.13).

To show (16), we deflné/(k) (y,,y(,j‘)) to be the vector of the augmented
data set at theth repeated imputation, wheyg) = (Y71 ). ¥, o) -+ -0 Yo'
k=12,...,M.Then

(n — P)Ulz(k),n = \?/(k) (20— X (X0, X)X ]V )
and, under the regression model (1),
E{Y ([l — Xa (X, X)X, )Y 0} = trace{[1, — Xu (X, X)X, ]V (Y )-
By (11) and (12) we have

Vo= (o XK )
®F 7\ X (X X)X <1+x>xn_r<X;X> X )

Let P = X, (X, X,) "X}, andQ = V (Y{;))o =2 — I,. Then
E{(n = P67y} = E{U = P)(Qx + 1))

=tracdl, — Py}o? +tracd[l, — P,]Q}c?.

By the classical regression theory tréte— P.} = n — p. For the second
term note that the left-upper x r elements ofQ are all zeros. Defin& =
X! X)X/ _ X, ,andD = (X'X,)"1X/ . Then

(B.14)

n—r ’l—"

trace Q) = trace{(1+ 2) X, (X, X,) X, .+ — DI,

(B.15)
=1+ A1) tracgD) + A —1D(n—r)

and
trace P, Q) = 2trace{ X, (X, X,) "1X/_,}

+ (L4 2 trace{ X, (X, X)X, X, (X. X)) 71X )

B.1
(B.16) + (. — Dtrace{ X, (X, X)X, _,}

=1+ )MtracgC + CD).
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Note that, usingX,. X, + X, _, X, = X, X,, we have
tracgD — CD)
(B.17) = trace{[7 — (X, X,) "X, _, X (X[ X)X, Xy
= trace{(X, X,) "1X!_, X,_,} =tracgC).
Thus, by applying (B.17) to (B.15) and (B.16), we have
(B.18) trac€Q — P, Q)= (A — 1)(n —r).
Therefore, inserting (B.18) into (B.14), we have (16

APPENDIX C

PROOF OF THEOREM 4.1. The variance formula (29) directly follows by
applying the multiple imputation variance formula (B.5)§§@,n and usingg; = o;
in (B.6) and (B.7).

To show (30), we decompose the total variance into three parts:

(C.1)  Var(bu.,) = Varb,) + Var@y ., — 6,) +2CorMby, Opr.n — On).
To compute the bias oW, , as an estimator of Vafﬁn), we first express it as
Vo =Y, QY,, whereY, = (y.,y,_,) andQ = [©;;]; then the within-imputation

var\i(ance term can be writtey , = M~ Y21, Y(, QY ¢). By E(Yg) =
E(Yn),

E(V(k)) = E(?/(k))QE(?(k)) + trace{Q Var (?(k))}
= E(V,) + trace| Q[ Var (Y x)) — Var(Y,)]}.
By the unbiasedness af, and by the covariance structures in (11) and (12) we
have
E(W,,) — Var(,)
r n n n
(C.2) =ZZ Z Qijhijo'2+(o'2+)\0'2) Z Z Qijhij

i=1lj=r+1 i=r+1j=r+1
n
2
+(—Do® > Q.
j=r+1

For the By, term it can be shown that, using the same argument as for
(B.6) and (B.7),

E(Bwy.n) =Var(0r1y..) — Cov(0r1).n012).n)

n n n
Z( > 2 wejhi+ ) %-Z)MZ-

i=r+1j=r+1 j=r+1

(C.3)
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By the covariance structures in (11)

r r n
(C.4) CoVOpt.n. On) = (Za? +2 > “i“ihif')“Z'
i=1

i=1j=r+1
Thus, by (29), (C.4) and Ved,) = Y/, a?02,

Var@y ., — 6n) = Var@u,) + Var@,) — 2 CouOpy,n. 0n)

(C.5) 0 Y 0
:(1+M_l)u)< Z O{iz—{- Z Z O(,'Otjh,‘j)(fz

i=r+1 i=r+1j=r+1
and, by (C.3) and (C.5),

E[A+ M YYBy.,] — Var@y ., — 0,)
(C.6)

n

:(x—l)[ > a? + oy O(l‘O{jhiji|0-2.

i=r+1 i=r+1j=r+1
For the covariance term in (C.1) note that

COV(én, éM,n - én)
(C.7)
= COV(Q,Z, eoo,n - 9,1) + COV(@,,, QM,n - eoo,n) = 07

because the first term on the right-hand side of the above equality is zero by the
congenialitycondition (28) and the sead term is also zero because
COV(én, éM,n - éoo,n) = COV(én, éM,n) - COV(én, éoo,n) = 0,

by the fact thaél(k), k=12,..., M, are identically distributed. Therefore, (30)
follows from (C.2), (C.6) and (C.7).0

APPENDIX D

D.1. Justification for z-statistic in (35). Let (9, Vi), i =1,2,...,L, be
i.i.d. samples from a bivariate distributiagi(¢, V) with second moments. Then
E(V) is unbiasedly estimated by, (V) = L~ Y%, V; and Vard) is unbiasedly
estimated by(L — 1)"1L x E.[(0 — EL(0))?1 =LY E (0 — EL(0))%, where
E (0) =LY L | 6. Thus, by the central limit theorem,

_ EL(V) = EL[@ — EL(9))°] — [E(V) — Var(§)]

(D.1) z - - =
IVar(EL(V) — EL1@ — EL0)2)
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converges to & (0, 1) distribution asl. — oco. As E; (V) — EL[(O — EL(9))?] =
IS L Vi — (8; — EL())?], the variance term in the denominator of (D.1) is
conS|stentIy estimated by

L7EL{[V — (6 — EL®)* - EL[V — (6 — EL()]])
= LYEL [V — (0 — EL()? = EL(V) + Var, (D))

Thus, using Slutsky's theorem, thestatistic in (35) converges to &(0, 1)
distribution undetHy: E(V) = Var(9) asL — .
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