
The Annals of Statistics
2004, Vol. 32, No. 2, 528–551
© Institute of Mathematical Statistics, 2004

CONFIDENCE BALLS IN GAUSSIAN REGRESSION

BY YANNICK BARAUD

Ecole Normale Supérieure

Starting from the observation of anRn-Gaussian vector of meanf and
covariance matrixσ2In (In is the identity matrix), we propose a method for
building a Euclidean confidence ball aroundf , with prescribed probability
of coverage. For eachn, we describe its nonasymptotic property and show its
optimality with respect to some criteria.

1. Introduction. In the present paper, we consider the statistical model

Yi = fi + σεi, i = 1, . . . , n,(1)

wheref = (f1, . . . , fn)
′ is an unknown vector,σ a positive number andε1, . . . , εn

a sequence of i.i.d. standard Gaussian random variables. For someβ ∈]0,1[, the
aim of this paper is to build a nonasymptotic Euclidean confidence ball forf with
probability of coverage 1− β from the observation ofY = (Y1, . . . , Yn)

′.
This statistical model includes, as a particular case, the functional regression

model

Yi = F(xi) + σεi, i = 1, . . . , n,(2)

whereF is an unknown function on some interval, say[0,1], and thexi’s are some
distinct deterministic points in this interval. The literature on the topic usually
deals with this particular model, which offers the advantage of focusing on the
quantityF , which does not depend onn. This simplifies the asymptotic point of
view. For this reason, we shall focus in this Introduction on the problem of building
a confidence ball forF . In the sequel, we denote by‖ · ‖n the seminorm defined
on the set of real-valued functionst on [0,1] by ‖t‖2

n = n−1 ∑n
i=1 t2(xi).

The problem of building a confidence ball forF with respect to‖ · ‖n

easily reduces to that of building a Euclidean confidence ball for the vec-
tor f = (F (x1), . . . ,F (xn))

′ by identifying the functionst on [0,1] with the
R

n-vectors(t (x1), . . . , t (xn))
′. Thus, whenσ 2 is known, say equal to 1, the prob-

lem is solved by considering the Euclidean ball centered atY with squared radius
q0,n(β), whereq0,n(β) denotes the(1 − β)-quantile of aχ2-distribution with
n degrees of freedom. However, such a confidence ball is almost useless: besides
providing a very rough estimator ofF , the radius of the confidence ball is very
large. To overcome this problem, a natural idea is to start with a “good” estimator

Received November 2001; revised December 2002.
AMS 2000 subject classifications.Primary 62G15; secondary 62G05, 62G10.
Key words and phrases.Confidence ball, nonparametric regression, hypothesis testing, estima-

tion.

528



CONFIDENCE BALLS 529

of F , sayF̂n, and then to estimateδn(F ) = ‖F − F̂n‖2
n by some suitable estimator,

sayδ̂n. This is the key point of the procedures proposed by Li (1989), Beran (1996)
and Beran and Dümbgen (1998). In the last two papers, the estimatorsF̂n andδ̂n

are such that
√

n(δn(F )− δ̂n) converges to some limit distributionQ asn becomes
large. Thus, if one denotes byQ−1(1− β) the(1− β)-quantile ofQ, the ball cen-
tered atF̂n of squared radiuŝδn + Q−1(1 − β)/

√
n provides a confidence region

with asymptotic probability of coverage 1− β. The limit distributionsQ obtained
in Beran (1996) and Beran and Dümbgen (1998) are both Gaussian of mean 0.
However, their variances depend onF andσ and, consequently,Q−1(1−β) must
be estimated in turn from the data. The disadvantage of the procedures proposed
in Beran (1996) and Beran and Dümbgen (1998) mainly lies in their asymptotic
character. It is indeed difficult to judge whether the asymptotic regime is achieved
or not as it depends on the features of the unknown functionF .

In contrast, the asymptotic confidence balls proposed by Li (1989) are called
honestin the sense that the probability of coverage is uniform with respect to all
possible functionsF . However, in Li (1989) the variance of the errors is assumed
to be known and the radius of the confidence ball involves an inexplicit constant.
His procedure is based on a Stein estimator ofF , F̂n, and a Stein estimator
of ‖F − F̂n‖2

n. A comparison between Li’s confidence balls and ours will be given
in Section 2.3.

Another direction was investigated by Cox (1993). He considered Bayesian
inference for a class of regression models. The regression functionsF were drawn
under a Gaussian prior distribution among the solutions of a high-order stochastic
differential equation. He analyzed theL2([0,1], dx)-distance betweenF and its
estimatorF̂ (the posterior expectation ofF ) and deduced a confidence ball forF .
He proved that ifn is fixed (large enough) the frequentist probability of coverage
of the confidence ball is close to 1 for allF within a set of probability close to 1.
However, this probability of coverage is infinitely often less than any positiveε

asn tends to infinity for almost allF . Unfortunately, this negative result on Cox’s
confidence ball makes it unattractive for non-Bayesians.

The ideas underlying our approach are due to Lepski and have been exposed
by their initiator in a series of lectures at the Institute Henri Poincaré in Paris.
We shall now give a brief account of these ideas and recommend that the reader
have a look at Lepski (1999) for more details. Lepski noted that ifF is known
to belong to a suitable class� of smooth functions, then the minimax approach
allows one to obtain both an estimator ofF and a control on the accuracy of
the estimation. However, unless one has a strong guess on the particular features
of F , � is usually too large to obtain an accurate estimation. The idea of Lepski is
to test one or several additional structures onF in order to improve the accuracy of
estimation. Unlike an adaptive approach, an attractive feature of Lepski’s approach
lies in that the accuracy is available to the statistician and, consequently, that a
nonparametric confidence ball forF can be derived. This is explained in the papers
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by Lepski (1999) and by Hoffmann and Lepski (2002). However, the procedure
described there for the purpose of buildingL

2-confidence balls suffers from the
following weaknesses. First, the point of view is purely asymptotic. The procedure
does not lead to confidence balls with prescribed probability of coverage for fixed
values ofn. Furthermore, a careful look at the proofs shows that, for a fixedn, the
squared radius of the confidence ball is equal to a constant plus some term which
is essentially proportional to the number of hypotheses to test. Consequently,
the number of these cannot be large if one wants to keep the confidence ball
of a reasonable size. In addition, the squared radius of the confidence ball is
proportional to 1/β and is thus very large for small values ofβ. Finally, the
applications developed in Lepski (1999) and Hoffmann and Lepski (2002) mainly
address the Gaussian white noise model and an adaptation of the procedure to the
regression case would require an estimation of the unknownσ .

The results of the present paper are nonasymptotic and the procedures which are
described here aim at obtaining confidence balls which are as sharp as possible. In
particular, the dependency with respect toβ and the number of hypotheses to test is
only logarithmic. This allows us to handle the variable selection problem described
in Section 2.4.

We consider the case whereσ is known to belong to some interval
I = [(1 − η)τ2, τ2] with η ≥ 0. The situationη = 0 corresponds to the theoretical
situation where one exactly knows the variance. In contrast, the situationη > 0
corresponds to the practical one when the variance is known to belong to some
interval which is either derived by the experimental context or by statistical es-
timation (from an independent sample). In all cases, the optimality (in a suitable
sense) of our confidence balls is established. The proof relies on nonasymptotic
lower bounds for the minimax estimation and separation rates over linear spaces.
We show that if a confidence ball ensures the probability of coverage 1− β uni-
formly over allf ∈ R

n andσ 2 ∈ I , then its radius (normalized by
√

n ) must be
greater thanC max{√η,n−1/4}, whereC is a constant free fromn andη. When
η = 0, this result allows one to recover that established by Li (1989), namely that
asymptotically the radius of such a confidence ball cannot converge toward 0 faster
thann−1/4. Whenη > 0, this result shows that practically the problem of estab-
lishing useful confidence balls is impossible unlessη is small compared ton.

The paper is organized as follows. In Section 2 we consider the case of a
knownσ(η = 0) and describe a procedure free from any prior assumption onf .
This procedure is implemented on numerical examples in Section 4. In Section 3,
we consider the caseη > 0 and provide some lower bounds on the radius of an
honest confidence ball. We show in this section that these lower bounds are sharp
by providing a construction of confidence balls which achieves these bounds. The
proofs are postponed to Section 5.

NOTATION. Throughout this paper we use the following notation. We denote
by ‖ · ‖ the Euclidean distance inRn. For a triplet (z, d,u) ∈ R+ × N \
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{0}× ]0,1[, we denote byχ2
z,d(·) the distribution function of a (non)centralχ2

with noncentrality parameterz and d degrees of freedom and byqz,d(u) its
(1− u)-quantile foru ∈]0,1[. In particular, ifX is distributed asχ2

z,d(·), then

E[X] = z + d, and P
(
X ≥ qz,d(u)

) = u ∀u ∈]0,1[.
We will use the conventionqz,0(u) = 0 for all u ∈]0,1[ andz ≥ 0. For each linear
subspaceS of R

n, we denote by	S the orthogonal projector ontoS and byB(x, r)

the Euclidean ball centered atx ∈ R
n of radiusr > 0. Finally, C,C′, . . . denote

constants that may vary from line to line.

2. Confidence balls when the variance is known. The aim of this section
is twofold: first, explain the basic ideas of our approach and second, in the ideal
case where the varianceσ 2 is known, build a confidence ball forf with controlled
probability of coverage.

2.1. The basic ideas. An ideal procedure to build a confidence ball would
probably be to start with a nice estimator off , say f̂ , and then get a uniform
control of‖f − f̂ ‖ over all possiblef . This strategy is unfortunately impossible
in general. For illustration, let us considerf̂ = 	SY , the projection estimator off
onto a linear subspaceS of R

n of dimensionD < n. By settingz equal to the
squared Euclidean distance betweenf andS and using Pythagoras’ theorem, we
derive that

‖f − f̂ ‖2 = z + ‖	Sε‖2σ 2

and, hence, a control of‖f − f̂ ‖2 necessarily requires that an upper bound onz

be known. This is of course seldom the case in practice. The idea of our procedure
is to get such a piece of information by means of a test. More precisely, let
us fix someα ∈]0,1 − β[ and consider theχ2-test of levelα of hypothesis
“f ∈ S” against “f ∈ R

n \ S” which consists in rejecting the null when the test
statisticT = ‖Y − 	SY‖2 is greater thanq0,n−D(α)σ 2. If the test accepts the
null, then intuitively this means thatf is close toS and, therefore, thatz is small.
The following lemma shows that‖f − f̂ ‖ cannot be large on the event that the
hypothesis “f ∈ S” is accepted.

LEMMA 2.1. Letα ∈]0,1− β[. Let us define

φ(Y ) = 1
{‖Y − 	SY‖2 > q0,n−D(α)σ 2}(3)

and

Z = {
z ∈ R+, χ2

z,n−D

(
q0,n−D(α)

)
> β

}
.

If D �= 0, we set

ρ2 = sup
z∈Z

[
z + q0,D

(
β

χ2
z,n−D(q0,n−D(α))

)]
σ 2;(4)
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if D = 0, we set

ρ2 = inf
{
z ≥ 0, χ2

z,n

(
q0,n(α)

) ≤ β
}
σ 2.(5)

Then, for all f ∈ R
n,

Pf,σ

[
φ(Y ) = 0,‖f − f̂ ‖ ≥ ρ

] ≤ β.(6)

Let us assume thatσ = 1 and make a few comments on the setZ and the
quantityρ. The inequalityα < 1 − β implies that 0 belongs toZ and, hence, the
setZ is always nonvoid. Moreover, since the mapψ : z 	→ χ2

z,n−D(q0,n−D(α)) is
decreasing, continuous and tends to 0 asz becomes large, it appears thatZ is
an interval of the form[0, z̄[, where z̄ satisfiesψ(z̄) = β. When D = 0 we
deduce thatρ2 = z̄ and, consequently, thatρ is finite. Sinceq0,D(u) tends to 0
as u approaches 1 from below, we see thatρ2 is also finite whenD �= 0. The
supremum in (4) is usually achieved at some pointz∗ ∈ Z. If the squared Euclidean
distance betweenf andS equalsz∗, then equality holds in (6). The quantityz∗
is a critical value for the (squared) distancez betweenf and S: if z is large
compared toz∗, then the testφ rejects the null with probability close to 1 and
thus the left-hand side of (6) is small. This is also the case if, on the other hand,
z is small compared toz∗ because thenf̂ is a “good” estimator off and the
event‖f − f̂ ‖ > ρ seldom occurs.

The convention

q0,D(1) = −∞(7)

allows one to define the quantityρ equivalently as

ρ2 = sup
z≥0

[
z + q0,D

(
β

χ2
z,n−D(q0,n−D(α))

∧ 1
)]

σ 2.(8)

In the sequel, we shall use this convention to simplify our notation.
Our procedure for building a confidence ball aroundf is based on Lemma 2.1.

As a control of‖f − f̂ ‖ is possible when the hypothesis “f ∈ S” is accepted,
we increase our chance to accept such hypotheses by considering a family ofS’s
rather than a single one. Moreover, in order to ensure that, for at least oneS the
hypothesis “f ∈ S” is accepted, we add the linear spaceS = R

n to the family, the
hypothesis “f ∈ R

n” being obviously true.

2.2. Construction of the confidence ball.Let {Sm,m ∈ Mn} be a finite family
of linear subspaces ofRn. For eachm, we setDm = dim(Sm), Nm = n − Dm

and associate withSm some numberβm in ]0,1[. We assume that the following
assumption is fulfilled.

ASSUMPTION 2.1. The subscriptn belongs to Mn and Sn = R
n. We

have
∑

m∈Mn
βm ≤ β.
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For eachm ∈ Mn, we defineρm as follows. Ifm = n, then

ρ2
n = q0,n( βn)σ

2.

If m ∈ Mn \ {n} and Dm �= 0, then ρm is defined by (8) withDm in place
of D andβm in place ofβ. If m ∈ Mn \ {n} andDm = 0, thenρm is defined
by (5) with βm in place ofβ.

For eachm ∈ Mn \ {n}, we definef̂m = 	SmY andφm is the test defined by (3)
with S = Sm. If m = n, thenf̂n = Y andφn(y) = 0 for all y ∈ R

n.
We define

A = {
m ∈ Mn,φm(Y ) = 0

}
and

m̂ = arg min
m∈A

ρm, ρ̂ = ρm̂, f̂ = f̂m̂.(9)

We have the following result.

THEOREM 2.1. Let (f̂ , ρ̂) be the pair of random variables defined by(9).The
regionB(f̂ , ρ̂) is a confidence ball with probability of coverage1− β, that is,

Pf,σ

[
f ∈ B(f̂ , ρ̂)

] ≥ 1− β ∀f ∈ R
n.(10)

Moreover, for eachm ∈ Mn andf ∈ R
n, if for someγ ∈]0,1[ we have

Pf,σ [φm(Y ) = 0] ≥ 1− γ thenPf,σ [ρ̂ ≤ ρm] ≥ 1− γ.(11)

In particular, for all m ∈ Mn,

inf
f ∈Sm

Pf,σ [ρ̂ ≤ ρm] ≥ 1− α.(12)

Let us make a few comments:

1. Inequalities (11) and (12) are clear from the definition ofρ̂ since with
probability not less than 1− γ (resp. 1− α) we havem ∈ A. Inequality (12)
provides an upper bound (in probability) for the random variableρ̂ under the
law Pf,σ as soon asf ∈ Sm. Inequality (11) says that this upper bound remains
valid not only whenf belongs toSm but also whenf is close toSm, as then
the testφm still accepts the hypothesis “f ∈ Sm” with large probability.

2. Note thatA is nonvoid sincen belongs toA. The case wherêρ = ρn

corresponds to the one where none of the hypotheses “f ∈ Sm” (with m ∈
Mn\{n}) is accepted. In this case, the resulting confidence ball is crude, namely
centered atY of radiusρn. Note that whenβn is chosen to be of orderβ,
sayβ/2, the radiusρ2

n is of the same order as̄ρ2 = q0,n( β)σ 2, which means
that the procedure does not lose too much compared with the trivial confidence
ball B(Y, ρ̄).
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3. In the proofs we show something stronger than Theorem 2.1. Namely, we prove
that, with probability not less than 1− β, f belongs to the intersection of
the Euclidean ballsB(f̂m,ρm) for m ∈ A. However, the resulting confidence
region is no longer a ball in general.

The expressions of the quantitiesρm do not allow a direct appreciation of their
orders of magnitude. An upper bound forρm is given in the following proposition.
We restrict ourselves to the case where the dimension ofSm is not larger thann/2.
Indeed, considering linear spaces with dimension larger thann/2 leads to large
radii and thus does not offer a real gain compared toR

n. The proof of the following
proposition contains explicit constants.

PROPOSITION2.1. Assume that, for all m ∈ Mn \ {n}, Dm ≤ n/2. Then there
exists some constantC depending onα only such that, for all m ∈ Mn,

ρ2
m ≤ C max

{
Dm,

√
n log(1/βm), log(1/βm)

}
σ 2.

If Mn reduces to{n}, thenρ̂ = ρn and the radius of the ball is of ordernσ 2 by
taking βn = β. By considering several linear spacesSm we have the opportunity
to capture some specific features off and consequently to reduce the order of
magnitude ofρ̂. The number of tests|Mn| to perform is taken into account via
the quantityβm. If one choosesβm = β/|Mn| for all m ∈ Mn, one gets that the
radius of the confidence ball depends logarithmically on|Mn|. However, a choice
of βm depending onm via the dimension of the linear spaceSm, for example, is
recommended. We shall see an example in Section 2.4.

2.3. Comparison with the procedure proposed by Li.In this section, we make
a comparison between our procedure and that proposed by Li. To simplify the
discussion we assume thatσ 2 = 1. Li’s procedure relies on a Stein estimator off ,
say f̃ ∗, and a Stein estimator of‖f − f̃ ∗‖2. The estimatorf̃ ∗ is obtained by
modifying a linear estimator off , sayf̂ . By takingf̂ = 	SY , whereS is a linear
subspace ofRn of dimensionD < n, the confidence ball Li proposes is centered at

f̃ ∗ = f̂ +
(

1− n − D

‖Y − 	SY‖2

)
(Y − 	SY)

and its squared radius is given by

r2 = c
√

n + n

(
1− (n − D)2

n‖Y − 	SY‖2

)
,

wherec is an unspecified constant depending onβ andσ 2 only. He proved this
confidence ball has probability of coverage 1− β for all f ∈ R

n simultaneously
provided thatn is large enough. To compare this confidence ball to ours, let
us make the a posteriori assumption thatf belongs toS. On the one hand, by
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using our procedure withMn = {m,n}, Sm = S, βm = β/2 = βn, we derive
from Theorem 2.1 that, with probability close to 1,ρ̂2 = ρ2

m, which is of order
max{√n,D}. On the other hand, replacing‖Y −	SY‖2 by its expectationn −D
shows that the squared radius of Li’s confidence ball is of order

r2 ≈ c
√

n + n

(
1− n − D

n

)
= c

√
n + D

and is therefore of the same order as ours.
However, for thosef which do not belong toS the radius of Li’s confidence

ball can become large. The advantage of our approach lies in that it is possible to
deal with a larger family of spaces than just{S,R

n}. By doing so, we can keep
the radius of the confidence ball to a reasonable size for those vectorsf which are
close to at least one of the linear spaces of the family and not onlyS.

2.4. Application to variable selection.In this section, we illustrate the
procedure in the variable selection problem. Assume thatf is of the formXU ,
whereX is a knownp × n full-rank matrix with p ∈ {1, . . . , n} and U some
unknown vector inRp. The problem of variable selection is to determine from
the data the nonzero coordinates ofU , that is,

m∗ = {
j ∈ {1, . . . , p},Uj �= 0

}
.

In this section we give a way to select those coefficients and provide simultane-
ously a confidence ball forf . We apply the procedure as follows:

Let x1, . . . ,xp be the column vectors of the matrixX and letPn be the class
of nonempty subsetsm of {1, . . . , p} with cardinality|m| not larger thann/2. For
all m ∈ Pn, we defineSm as the linear span of thexj ’s for j ∈ m and set

βm = β

[
n

(
n

D

)]−1

with D = |m|.
We defineMn = Pn ∪ {n} and setβn = β/2. Note that Assumption 2.1 is fulfilled
since ∑

m∈Mn

βm = β

2
+ ∑

m∈Pn

βm = β

2
+ ∑

1≤D≤n/2

∑
m∈Pn,|m|=D

βm ≤ β.

By applying the procedure described in Section 2.2 we select a set of indicesm̂ for
which the Euclidean distance between the least-squares estimatorf̂m̂ and f is
not greater thanρm̂ with probability greater than 1− β. Sincef belongs to the
linear spaceSm∗ , with probability greater than 1− α the setm∗ belongs toA and
consequentlyρm̂ is not greater thanρm∗ . Therefore, either̂m = m∗ and then the
procedure selects the target subsetm∗, orm̂ �= m∗ and then the resulting confidence
ball is at least as accurate as if the target subsetm∗ were selected. In addition,
thanks to the inequality (

n

D

)
≤ exp

(
D log(en/D)

)
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and Proposition 2.1, with probability greater than 1−α, the following upper bound
holds: there exists some constantC depending onα andβ only such that

ρ̂2 ≤ C max
{√

n|m∗| log(en/|m∗|), |m∗| log(en/|m∗|)}σ 2.

Let us denote this upper bound byB. Another possible choice of theβm’s
is βm = βn = β/|Mn| for all m ∈ Mn. For this second strategy,̂ρ2 is of order
B ′ = max{√np,p}σ 2 as|Mn| is of order 2p. In the least favorable situation where
almost all the coefficientsUj ’s are nonzero,|m∗|, p andn are of the same order
and, thus so areB andB ′. In this case, both strategies lead to confidence balls
which are approximately of the same size. Yet, in the more favorable situation
wherep is still of order n but |m∗| is small compared top, the strategy with
nonconstantβm’s leads to a sharper confidence ball. This illustrates the advantage
of takingβm as a function ofm.

3. Confidence balls under some information on the variance. In this
section, we no longer assume thatσ is known but rather that it belongs to some
known intervalI = [√1− ητ, τ ], where(τ2, η) ∈ R+ × [0,1[. As we shall see,
the uncertainty on the value ofσ has a terrible effect on the orders of magnitude
of radii of confidence balls.

3.1. How sharp can the confidence ball be? We have the following result.

THEOREM 3.1. Let α and β be numbers in]0,1[ satisfying2β + α < 1 −
exp(−1/36). Let (f̃ , r̃) be a pair of random variables depending onY only with
values inR

n × R+ satisfying, for all f ∈ R
n andσ ∈ I ,

Pf,σ

[
f ∈ B(f̃ , r̃)

] ≥ 1− β.(13)

For eachm ∈ Mn, let rm be some positive quantity satisfying for allσ ∈ I

inf
f ∈Sm

Pf,σ [r̃ ≤ rm] ≥ 1− α.(14)

Then there exists some constantC depending onα and β only such that, for
all m ∈ Mn,

r2
m ≥ C max

{
ηNm,Dm,

√
Nm

}
τ2.(15)

For eachf ∈ R
n let r(α,f ) be such that, for all σ ∈ I ,

Pf,σ

{
r̃ ≤ r(α,f )

} ≥ 1− α.

Then we have

r2(α,f ) ≥ C max
{
ηn,

√
n

}
τ2.(16)
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To keep our formula as legible as possible, the above theorem involves
an inexplicit constantC. However, lower bounds including explicit numerical
constants are available from the proof in Section 5.3.

Let us make few comments.

1. From an asymptotic point of view, (16) allows one to recover the result
established by Li, namely that the radius of an honest confidence ball
(normalized by

√
n ) cannot converge toward 0 faster thann−1/4. We also get

that the thus normalized radius converges towards 0 only ifη = η(n) does and
then the rate cannot be better than max{√η(n), n−1/4}.

2. Whenη = 0 andDm ≤ n/2 we derive from (15) that

r2
m ≥ C max

{
Dm,

√
n

}
σ 2,

for some constantC depending onα andβ only. This lower bound is of the
same order as the upper bound onρ2

m established in Proposition 2.1 provided
thatβm is free fromn. This is the case ifβm = β/|Mn| and if the cardinality
of the collection,|Mn|, does not depend onn. The procedure is then optimal in
the sense given by Lepski (1999).

A natural idea to establish a confidence ball aroundf when the true variance
is unknown is to use the construction of the previous section and to replace
the varianceσ by the upper boundτ , this latter quantity being connected
“intuitively” to the least favorable situation where the level of the noise is
maximal. Unfortunately, Theorem 3.1 says that such a construction cannot lead
to a confidence ball as changingσ into τ would only affect the order of magnitude
of the radius by a factorτ/σ , which would be contradictory with (16). In the next
section, we show how to modify our previous construction (with a knownσ ) in
view of obtaining a confidence ball whatever the values off andσ ∈ I .

3.2. Construction of a confidence ball.In this section we build a confidence
ball under the information thatσ belongs toI .

The following result holds.

THEOREM 3.2. Let σ ∈ I and assume that Assumption2.1 is fulfilled.
Consider the construction of(f̂ , ρ̂) described in Section2.2 with the following
definitions for theρm’s andA: if m = n, then

ρ2
n = q0,n( βn)τ

2;
if m ∈ Mn \ {n} andDm �= 0,

ρ2
m = sup

z≥0,σ∈I

[
zσ 2 + q0,Dm

(
βm

χ2
z,Nm

(q0,Nm(α)τ2/(σ 2))
∧ 1

)
σ 2

]
;
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if m ∈ Mn \ {n} andDm = 0,

ρ2
m = inf

{
x ≥ 0,sup

σ∈I

χ2
x/σ2,n

(
q0,n(α)τ2/σ 2) ≤ βm

}

and

A = {
m ∈ Mn,‖Y − f̂m‖2 ≤ q0,Nm(α)τ2}.

The regionB(f̂ , ρ̂) is a confidence ball with probability of coverage1 − β; that
is, (10) is satisfied. Moreover, for eachm ∈ Mn,

inf
f ∈Sm

Pf,σ [ρ̂ ≤ ρm] ≥ 1− α.(17)

An upper bound forρm is given by the following proposition.

PROPOSITION3.1. Assume that, for all m ∈ Mn\{n}, Dm ≤ n/2.There exists
some constantC depending onα only such that, for all m ∈ Mn,

ρ2
m ≤ C max

{
ηn,Dm,

√
n log(1/βm), log(1/βm)

}
τ2.

From an asymptotic point of view, we derive from Theorem 3.1 the optimality
of the procedure whenever the cardinality of the collection|Mn| does not depend
on n by takingβm = β/|Mn| for all m ∈ Mn. For more general collections, the
procedure is also optimal for thosem ∈ Mn for whichβm does not decrease withn.

4. Illustrative numerical examples. In this section we apply our procedure
in three examples. In the sequel, the number of observations isn = 1000. We
chooseβ = 10% andα = 20%. Theεi ’s are standard i.i.d. Gaussian random
variables and we assume that the variance is known, that is,σ 2 = 1. We
setxi = i/n for i = 1, . . . , n and define the vectorf as(F (x1), . . . , F (xn))

′, where
F is one of the following functions on[0,1]:

F1(x) = cos(2πx),

F2(x) = cos(2πx) + 0.3 sin(20πx),

F3(x) =




1.5, if 0 < x < 0.3,
0.5, if 0.3 < x < 0.6,
2, if 0.6 < x < 0.8,
0, else.

For each functionF ∈ {F1,F2,F3}, Figure 1 showsF with one set of simulated
data.

For eachm ≥ 1, we defineFm as the linear span generated by the con-
stant function on[0,1], φ0 ≡ 1, together with the sine and cosine functions
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FIG. 1.

cos(2πjx),sin(2πjx) for j = 1, . . . ,m. For eachm ≥ 1, we defineSm as the linear
space

Sm = {(
F(x1), . . . ,F (xn)

)′
,F ∈ Fm

}
.

We take

Mn = {2k, k = 1, . . . ,Kn} ∪ {n},
with Kn = 8. The numberKn is chosen such that dim(S2Kn ) < n. We choose
βn = β2−Kn and for eachk = 1, . . . ,Kn, β2k = β2−k .

We made 100 simulations. For each simulation and each function
F ∈ {F1,F2,F3} we considerm(F), the smallest integerm ∈ Mn such that the
hypothesis “f ∈ Sm” is accepted. In Table 1 we have displayed for eachF

andm ∈ Mn the number of simulations for whichm(F) = m.
Let us now comment on Table 1. Note that the radiiρm’s are increasing withDm.

This comes from our choices ofβm’s, which are more favorable to linear spaces
with small dimensions. Thus, the smaller is the dimensionSm, the sharper is the
radius of the confidence ball when the hypothesis “f ∈ Sm” is accepted.
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TABLE 1

Indices Dimensions Squared radii “f ∈ Sm”

m Dm ρ2
m/n F1 F2 F3

2 5 0.118 82 47 0
4 9 0.136 1 0 8
8 17 0.155 0 1 20

16 33 0.181 1 33 28
32 65 0.222 1 3 17
64 129 0.293 4 5 6

128 257 0.425 1 1 7
256 513 0.681 4 4 5

1000 1000 1.157 6 6 9

FunctionF1 belongs toF2. As expected, the hypothesis “f ∈ S2” is accepted
for around 80 simulations,α = 20%. This choice ofα is arbitrary. By taking
α smaller, the hypothesis will be accepted more often but on the other hand
the radius of the confidence ball will be larger. For example, the value ofρ2

2/n,
respectively, equals 0.149 and 0.160 forα = 15% andα = 10%.

Function F2 is a perturbation ofF1. The test “f ∈ S2” is accepted for
47 simulations even thoughF2 does not belong toF2 but F16. However, for
these 47 simulations the procedure has taken advantage of the closeness
of F2 to F2 to provide a sharper confidence ball than the one we would obtain
if m(F2) were equal to 16. We emphasize that the procedure provides a confi-
dence ball with probability of coverage 90% even though the “right” model forF2
(namelyF16) is accepted for only 33 simulations. This comes from the fact that
the radius of the confidence ball takes into account a possible bias between the
true and the linear space accepted by the test. Finally note that, as expected from
Theorem 2.1, the radius of the confidence ball exceedsρ2

16/n for 19 simulations
sinceF2 belongs toF16.

FunctionF3 was considered in Beran and Dümbgen (1998) in one simulated
example. In their simulation, the squared radius (with respect to‖ · ‖/√n ) of the
confidence ball was obtained by bootstrap and was equal to 0.144. We obtain a
radius of the same order for 28= 8+ 20 simulations.

5. Proofs. Throughout the proofs we repeatedly use the following inequalities
on the quantiles of noncentralχ2 random variables. These inequalities are due to
Birgé (2001). For allu ∈]0,1[, z ≥ 0, d ≥ 1,

qz,d(u) ≤ z + d + 2
√

(2z + d) log(1/u) + 2 log(1/u),(18)

qz,d(1− u) ≥ z + d − 2
√

(2z + d) log(1/u).(19)

In the sequel,	m for m ∈ Mn denotes the orthogonal projector ontoSm.
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5.1. Proof of Lemma2.1. For simplicity, let us takeσ 2 = 1.
If D = 0, thenf̂ = 	SY = 0, and hence

Pf,1
[
φ(Y ) = 0,‖f − f̂ ‖ ≥ ρ

] = Pf,1
[‖Y‖2 ≤ q0,n(α),‖f ‖ ≥ ρ

]
.(20)

If ‖f ‖ < ρ this probability equals 0. Otherwise,‖f ‖ ≥ ρ. Since ‖Y‖2 is
distributed as aχ2 with noncentrality parameter‖f ‖2 andn degrees of freedom, it
follows from the definition ofρ that the right-hand side of (20) is not larger thanβ.

Now let D �= 0. For allf ∈ R
n, note that‖	Sε‖2 and‖Y − 	SY‖2 = ‖f −

	Sf +ε−	Sε‖2 are independent random variables. By settingz = ‖f −	Sf ‖2,
we deduce

Pf,1
[
φ(Y ) = 0,‖f − f̂ ‖ ≥ ρ

]
= Pf,1

[∥∥Y − 	SY
∥∥2 ≤ q0,n−D(α),‖f − 	Sf ‖2 + ‖	Sε‖2 ≥ ρ2]

= χ2
z,n−D

(
q0,n−D(α)

)(
1− χ2

0,D(ρ2 − z)
)
.

If χ2
z,n−D(q0,n−D(α)) ≤ β, then the result is established. Otherwisez ∈ Z and, by

definition ofρ,

ρ2 − z ≥ q0,D

(
β

χ2
z,n−D(q0,n−D(α))

)
,

which leads to
(
1− χ2

0,D(ρ2 − z)
) ≤ β

χ2
z,n−D(q0,n−D(α))

and the result follows.

5.2. Proof of Theorems2.1 and 3.2. Theorem 2.1 being a straightforward
consequence of Theorem 3.2 by takingη = 0, we only prove Theorem 3.2.

Let us first prove (17). The result is clear form = n as by definitionρ̂ ≤ ρn. Let
us fix somem ∈ Mn \ {n}. We derive from the definition of̂ρ that

Pf,σ [ρ̂ > ρm] ≤ Pf,σ [m /∈ A]
= Pf,σ

[‖Y − f̂m‖2 > q0,Nm(α)τ2]
≤ Pf,σ

[‖Y − f̂m‖2 > q0,Nm(α)σ 2],
asτ ≥ σ . We conclude by noting that, forf ∈ Sm, ‖Y − f̂m‖2/σ 2 is distributed as
aχ2 with Nm degrees of freedom.

We shall now show something that is stronger than (10), namely that

Pf,σ

[
f /∈ ⋂

m∈A

B(f̂m,ρm)

]
≤ β.
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For allf ∈ R
n,

Pf,σ

[
f /∈ ⋂

m∈A

B(f̂m,ρm)

]

= Pf,σ

[∃m ∈ A,‖f − f̂m‖ > ρm

]
≤ ∑

m∈Mn

Pf,σ

[‖f − f̂m‖ > ρm, m̂ ∈ A
]

= ∑
m∈Mn

Pf,σ

[‖f − f̂m‖ > ρm,‖Y − f̂m‖2 ≤ q0,Nm(α)τ2].
Since

∑
m∈Mn

βm = β, it is enough to prove that, for eachm ∈ Mn, the probability

Pf,σ (m) = Pf,σ

[‖f − f̂m‖ > ρm,‖Y − f̂m‖2 ≤ q0,Nm(α)τ2]
is not greater thanβm.

If m = n, this is clear sinceY = f̂n and, forτ2 ≥ σ 2,

Pf,σ (n) = Pf,σ

[
σ 2‖ε‖2 > q0,n( βn)τ

2] ≤ βn.

Let us now prove the inequality whenDm = 0. In this casef̂m = 0. If ‖f ‖ ≤ ρm,
we havePf,σ (m) = 0 and thus the inequality is true. Otherwise‖f ‖ > ρm and as,
for all u > 0 z → χ2

z,n(u) is nondecreasing withz we get, by definition ofρm,

Pf,σ (m) = χ2
‖f ‖2/σ2,n

(
q0,n(α)τ2/σ 2)

≤ χ2
ρ2

m/σ2,n

(
q0,n(α)τ2/σ 2) ≤ βm.

Let us now fix somem ∈ Mn \ {n} such thatDm �= 0 and setz = ‖f −
	mf ‖2/σ 2. Note that the random variables

‖f − f̂m‖2

σ 2
= ‖f − 	mf + σ	mε‖2

σ 2
= z + ‖	mε‖2

and

‖Y − f̂m‖2

σ 2
= ‖f − 	mf + σ(ε − 	mε)‖2

σ 2

are independent and that the second one is distributed as a noncentralχ2 with
noncentrality parameterz andNm degrees of freedom. Therefore, we get

Pf,σ (m) =
(

1− χ2
0,Dm

(
ρ2

m

σ 2
− z

))
χ2

z,Nm

(
q0,Nm(α)

τ2

σ 2

)
.(21)

We deduce from the definition ofρm that, for allσ ∈ I andz ≥ 0, the right-hand
side of (21) is not larger thanβm, which leads to the result.
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5.3. Proof of Theorem3.1. The principle of the proof leading to the lower
bounds on therm’s is due to Lepski. However, the following nonasymptotic
inequalities are to our knowledge new. In the sequel we setNm = n − Dm. Let
us now fix somem ∈ Mn; we divide the proof into consecutive claims.

CLAIM 1. If α + β < 1− exp(−1/36), then

r2
m ≥

(
Dm

27
− √

L1Dm

)
τ2,

whereL1 = −4 log(1− α − β)/81.

Note that the claim is clear whenDm = 0; we shall thus restrict ourselves to the
caseDm ≥ 1. The proof relies on two lemmas. In the first one, we show that, under
the assumption of Theorem 3.1, with probability close to 1 the Euclidean distance
betweenf ∈ Sm and its estimatorf̃ is not greater thanrm.

LEMMA 5.1. Let the pair(f̃ , r̃) satisfy the assumption of Theorem3.1.Then,
for all m ∈ Mn, f ∈ Sm andσ ∈ I ,

Pf,σ

[‖f − f̃ ‖ > rm
] ≤ α + β.(22)

PROOF. For allf ∈ Sm,

Pf,σ

[‖f − f̃ ‖ > rm
]

≤ Pf,σ

[‖f − f̃ ‖ > rm, rm ≥ r̃
] + Pf,σ

[‖f − f̃ ‖ > rm, r̃ > rm
]

≤ Pf,σ

[‖f − f̃ ‖ > r̃
] + Pf,σ [r̃ > rm]

and we conclude thanks to (13) and (14).�

The second lemma shows that such a property of the estimatorf̃ is possible
only if rm is large enough.

LEMMA 5.2. Let S be a linear subspace ofRn of dimensionD ≥ 1 and δ a

positive number such thatδ < 1 − exp[−D/36]. If f̃ is an estimator off in (1)
which satisfies, for all f ∈ S,

Pf,σ

[‖f − f̃ ‖ > vD (δ)
] ≤ δ,(23)

then

v2
D (δ) ≥

(
D

27
− 2

9

√
D log

(
1/(1− δ)

))
σ 2.
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In light of Lemma 5.1, the claim derives from Lemma 5.2 by takingS = Sm,
δ = α + β andσ = τ . Let us now turn to the proof of Lemma 5.2.

PROOF OF LEMMA 5.2. The Gaussian law being invariant by orthogonal
transformation, with no loss of generality, we assume thatS is the linear span
generated bye1, . . . , eD , the D first vectors of the canonical basis ofR

n.
Moreover, by homogeneity, we assume thatσ 2 = 1. Let v(δ) be some positive
number satisfying

v2(δ) <
D

27
− 2

9

√−D log(1− δ).(24)

Note that the right-hand side of (24) is positive forδ < 1−exp[−D/36]. We prove
Lemma 5.2 by showing that, for all estimatorsf̃ with values inR

n,

inf
f ∈S

Pf,1
[‖f − f̃ ‖2 ≤ v2(δ)

]
< 1− δ.

Let ξ1, . . . , ξD be Rademacher random variables (i.e.,P[ξi = ±1] = 1/2) which
are independent ofY and setf (ξ) = λ

∑D
i=1 ξiei , whereλ denotes some positive

number to be chosen later on. Using that

dPf (ξ),1

dP0,1
(y) = exp

(
−λ2D

2
+ λ

D∑
i=1

ξiyi

)

and the fact thatf (ξ) ∈ S, we have

inf
f ∈S

Pf,1
[‖f − f̃ ‖2 ≤ v2(δ)

]

≤ Pf (ξ),1

[
D∑

i=1

(λξi − f̃i)
2 ≤ v2(δ)

]

= E0,1

[
1

{
D∑

i=1

(
λξi − f̃i(Y )

)2 ≤ v2(δ)

}

×exp

(
−λ2D/2+ λ

D∑
i=1

ξiYi

)]
.

Note thatf̃ = f̃ (Y ) satisfies

D∑
i=1

(λξi − f̃i )
2 ≥ λ2

D∑
i=1

1
{
ξi f̃i(Y ) ≤ 0

}
and thus, setting

N(ξ, f̃ ) = λ2
D∑

i=1

1
{
ξi f̃i(Y ) ≤ 0

}
,
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we derive

inf
f ∈S

Pf,σ

[‖f − f̃ ‖2 ≤ v2(δ)
]

≤ E0,1

[
1
{
N(ξ, f̃ ) ≤ v2(δ)

}
exp

(
−λ2D/2+ λ

D∑
i=1

ξiYi

)]
.

By averaging with respect toξ and using Fubini’s theorem we get

inf
f ∈S

Pf,σ

[‖f − f̃ ‖2 ≤ v2(δ)
]

≤ e−λ2D/2
E0,1

[
Eξ

[
1
{
N(ξ, f̃ ) ≤ v2(δ)

}
exp

(
λ

D∑
i=1

ξiYi

)]]
.

(25)

By the Cauchy–Schwarz inequality we have

E
2
ξ

[
1
{
N(ξ, f̃ ) ≤ v2(δ)

}
exp

(
λ

D∑
i=1

ξiYi

)]

≤ Pξ

[
N(ξ, f̃ ) ≤ v2(δ)

]
Eξ

[
exp

(
2λ

D∑
i=1

ξiYi

)]

= Pξ

[
N(ξ, f̃ ) ≤ v2(δ)

] D∏
i=1

cosh(2λYi),

which together with (25) gives

inf
f ∈S

Pf,σ

[‖f − f̃ ‖2 ≤ v2(δ)
]

≤ e−λ2D/2
E0,1

[
P

1/2
ξ

[
N(ξ, f̃ ) ≤ v2(δ)

] D∏
i=1

cosh1/2(2λYi)

]
.

(26)

Conditionally onY , the random variableN(ξ, f̃ )/λ2 is a sum ofD independent
random variables with values in{0,1}. Thus by Hoeffding’s inequality we obtain
that, for allt ≥ 0,

Pξ

[
N(ξ, f̃ ) ≤ Eξ [N(ξ, f̃ )] − λ2

√
D t

] ≤ e−2t .

Taking t = λ2D/2 − log(1 − δ) and noting thatEξ [N(ξ, f̃ )] ≥ λ2D/2 we get
from (24) that

Eξ [N(ξ, f̃ )] − λ2
√

D t ≥ λ2

(
D

2
−

√
λ2D2

2
− D log(1− δ)

)

≥
(

λ2

2
− λ3

√
2

)
D − λ2

√−D log(1− δ)
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and thus, forλ = √
2/3,

E[N(ξ, f̃ )] − λ2
√

D t ≥ v2(δ).

Consequently,

P
1/2
ξ

[
N(ξ, f̃ ) ≤ v2(δ)

] ≤ e−t = (1− δ)e−λ2D/2.

Now using that

E0,1

[
D∏

i=1

cosh1/2(2λYi)

]
=

D∏
i=1

E0,1
[
cosh1/2(2λYi)

]

< E
D/2
0,1

[
cosh(2λY1)

]
= exp[λ2D],

we derive from (26) that

inf
f ∈S

Pf,σ

[‖f − f̃ ‖2 ≤ v2(δ)
]
< 1− δ,

which concludes the proof.�

CLAIM 2. If α + 2β ≤ 1− exp(−1/4), then

9r2
m ≥ max

{√
L2Nm,

(
Nm − 2

√
L3Nm

)
η
}
τ2,(27)

with L2 = 2 log(1+ 4(1− α − 2β)2) andL3 = − log(1− α − 2β).

The claim is clear whenNm = 0; thus we only consider the case whereNm ≥ 1.
Again, the proof relies on two lemmas. The first one shows that if the pair(f̃ , r̃)

satisfies the assumptions of Theorem 3.1, then it is possible to build a level
(α + β)-test of “f ∈ Sm” against “f ∈ R

n \ Sm” which achieves the power 1− β

on the complement of a ball of radius 3rm. Namely, the following holds:

LEMMA 5.3. Let(f̃ , r̃) be a pair of random variables with values inR
n ×R+

satisfying the assumptions of Theorem3.1.The test of hypothesis“f ∈ Sm” against
the alternative“f /∈ Sm” associated with the critical region

R = {r̃ > rm} ∪ {‖f̃ − 	mf̃ ‖ > 2r̃
}

(28)

has the following properties: for all σ ∈ I ,

sup
f ∈Sm

Pf,σ [R] ≤ α + β,(29)

and for all f satisfying‖f − 	mf ‖ > 3rm,

Pf,σ [R] ≥ 1− β.(30)
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PROOF. Let us show (29). First note that, for allf ∈ Sm,

‖f̃ − 	mf̃ ‖ ≤ ‖f − f̃ ‖ + ‖f − 	mf̃ ‖
≤ 2‖f − f̃ ‖.

(31)

By (13), (14) and (31), for allf ∈ Sm we have

Pf,σ [R] ≤ Pf,σ [r̃ > rm]
+ Pf,σ

[‖f̃ − 	mf̃ ‖ > 2r̃
]

≤ α + Pf,σ

[
2‖f − f̃ ‖ > 2r̃

] ≤ α + β.

Let us now show (30). Letf ∈ R
n be such that‖f − 	mf ‖ ≥ 3rm. Since

‖f̃ − 	mf̃ ‖ ≥ ‖f − 	mf̃ ‖ − ‖f − f̃ ‖ ≥ 3rm − ‖f − f̃ ‖,
we derive that

Pf,σ [Rc] = Pf,σ

[‖f̃ − 	mf̃ ‖ ≤ 2r̃ , r̃ ≤ rm
]

≤ Pf,σ

[‖f̃ − 	mf̃ ‖ ≤ 2rm, r̃ ≤ rm
]

≤ Pf,σ

[‖f − f̃ ‖ ≥ rm, rm ≥ r̃
]

≤ Pf,σ

[‖f − f̃ ‖ ≥ r̃
] ≤ β. �

We obtain the claim by proving that a test having the properties described in the
previous lemma exists only ifrm is large enough. The inequality

9r2
m ≥ √

L2Nmτ2

derives from Baraud [(2002), Proposition 1]. For the second inequality,

9r2
m ≥ (

Nm − 2
√

L3Nm

)
ητ2,

we use the following lemma.

LEMMA 5.4. Let S be a linear subspace ofRn with dim(S) = D (we set
N = n − D ) and δ and β be numbers satisfying0 < β + δ < 1 − exp(−N/4).
Letφ(Y ) be a test function with values in{0,1} satisfying, for all σ ∈ I ,

sup
f ∈S

Pf,σ [φ(Y ) = 1] ≤ δ,(32)

and for allf ∈ R
n such that‖f − 	Sf ‖2 ≥ �(N,β),

Pf,σ [φ(Y ) = 1] ≥ 1− β.(33)

Then

�(N,β) ≥ (
N − 2

√−N log(1− β − δ)
)
ητ2.
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By applying this lemma withδ = α + β, S = Sm andD = Dm and the test
described in Lemma 5.3 we obtain the claim.

PROOF OFLEMMA 5.4. LetF be the set defined by

F = {
f ∈ R

n,‖	S⊥f ‖2 ≥ �
}
,

where� denotes some positive number. To obtain the desired result it is enough
to show that, for

� <
(
N − 2

√−N log(1− β − δ)
)
ητ2,

we have

inf
σ∈I

inf
f ∈F

Pf,σ [φ(Y ) = 1] < 1− β.(34)

Since the quantityσ∗ = √
1− ητ belongs toI , we have that, for all vectorsZ ∈ R

n,

inf
σ∈I

inf
f ∈F

Pf,σ [φ(Y ) = 1]

≤ PZ,σ∗[φ(Y ) = 1]1{‖	S⊥Z‖2 ≥ �} + 1{‖	S⊥Z‖2 ≤ �}.
By takingZ as a random variable independent ofY distributed as

√
ητε, we obtain

by averaging with respect toZ that

inf
σ∈I

inf
f ∈F

Pf,σ [φ(Y ) = 1] ≤ E
[
PZ,σ∗[φ(Y ) = 1]] + P[‖	S⊥Z‖2 ≤ �].

For the first term of the right-hand side of this inequality, note thatE[PZ,σ∗] = P0,τ .
As 0∈ S andτ ∈ I , we have

E
[
PZ,σ∗[φ(Y ) = 1]] ≤ δ.

For the second term, note that our upper bound on� ensures that

� < q0,N (1− β − δ)ητ2

by using the lower bound on the quantiles ofχ2 random variables (19). As the
random variable‖	S⊥Z‖2/(ητ2) is distributed as aχ2(N), we get

P[‖	S⊥Z‖2 ≤ �] < 1− β − δ,

which concludes the proof.�
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Conclusion. By gathering the inequalities of the two claims we get that, for
some constantC depending onα andβ only,

r2
m ≥ C max

{
Nmη,Dm,

√
Nm

}
τ2.

Let us now prove (16). Let us fix somef ∈ R
n. Whenf = 0, the result is clear

by takingSm = {0}. Then we deduce the result for generalf by arguing as follows.
Let us consider the random variablesf̃∗ = f̃ (Y + f ) + f andr̃∗ = r̃(Y + f ). For
all g ∈ R

n andσ ∈ I , we have that

Pg,σ

[
g ∈ B(f̃∗, r̃∗)

] = Pg+f,σ

[
g + f ∈ B(f̃ , r̃)

] ≥ 1− β.

Consequently, the pair of random variables(f̃∗, r̃∗) satisfies (13) and thus, by
takingr∗(α,0) = r(α,f ) we derive that

r(α,f ) = r∗(α,0) ≥ C max
{
ηn,

√
n
}
τ2.

5.4. Proof of Propositions2.1 and 3.1. The result of the former proposition
being a consequence of the latter by takingη = 0, we only prove Proposition 3.1.
In the sequel we setLm = log(1/βm) andLα = log(1/α). We distinguish three
cases.

CASE m = n. We derive, from (18),

ρ2
n ≤ (

n + 2
√

nLn + 2Ln

)
τ2,

which leads to the result.

CASE Dm �= 0, m �= n. Let us fixσ ∈ I . Since forz satisfying

χ2
z,Nm

(
q0,Nm(α)τ2/σ 2) ≤ βm

we have

z + q0,Dm

(
βm

χ2
z,Nm

(q0,Nm(α)τ2/σ 2)
∧ 1

)
= −∞,(35)

we bound from above the left-hand side of (35) for thosez satisfying

χ2
z,Nm

(
q0,Nm(α)τ2/σ 2) > βm.(36)

It follows from (19) that ifz satisfies (36), then

q0,Nm(α)
τ2

σ 2
≥ z + Nm − 2

√
(2z + Nm)Lm

and as we have

2
√

(2z + Nm)Lm ≤ 2
√

2zLm + 2
√

NmLm ≤ z

2
+ 2

√
NmLm + 4Lm
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and

q0,Nm(α) ≤ Nm + 2
√

NmLα + 2Lα

from (18), we deduce thatz satisfies

zσ 2 ≤
(

2
(
q0,Nm(α)

τ2

σ 2
− Nm

)
+ 4

√
NmLm + 8Lm

)
σ 2

≤
(
2Nmη + 4

√
Nm

(√
Lm + √

Lα

) + 8Lm + 4Lα

)
τ2.

(37)

Thanks to (18) and the facts thatχ2
z,Nm

(q0,Nm(α)τ2/σ 2) ≤ 1 andDm ≤ Nm, we
deduce that, for thosez,

zσ 2 + q0,Dm

(
βm

χ2
z,Nm

(q0,Nm(α)τ2/σ 2)
∧ 1

)
σ 2

≤
(
2Nmη + Dm + 2

√
Nm

(
3
√

Lm + 2
√

Lα

) + 2(5Lm + 2Lα)
)
τ2,

and, consequently, that

ρ2
m ≤

(
2Nmη + Dm + 2

√
Nm

(
3
√

Lm + 2
√

Lα

) + 2(5Lm + 2Lα)
)
τ2.

The result follows asNm ≤ n.

CASE Dm = 0. Arguing as above we have that forx satisfying

x ≥
(
2Nmη + 4

√
Nm

(√
Lm + √

Lα

) + 8Lm + 4Lα

)
τ2

we have that, for allσ ∈ I ,

χ2
x/σ2,n

(
q0,n(α)τ2/σ 2) ≤ βm

and therefore, by definition ofρm,

ρ2
m ≤

(
2nη + 4

√
n
(√

Lm + √
Lα

) + 8Lm + 4Lα

)
τ2,

which leads to the result.
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