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GOODNESS-OF-FIT TESTS VIA PHI-DIVERGENCES

BY LEAH JAGER1 AND JON A. WELLNER2

Grinnell College and University of Washington

A unified family of goodness-of-fit tests based on φ-divergences is in-
troduced and studied. The new family of test statistics Sn(s) includes both
the supremum version of the Anderson–Darling statistic and the test statistic
of Berk and Jones [Z. Wahrsch. Verw. Gebiete 47 (1979) 47–59] as special
cases (s = 2 and s = 1, resp.). We also introduce integral versions of the new
statistics.

We show that the asymptotic null distribution theory of Berk and Jones
[Z. Wahrsch. Verw. Gebiete 47 (1979) 47–59] and Wellner and Koltchinskii
[High Dimensional Probability III (2003) 321–332. Birkhäuser, Basel] for
the Berk–Jones statistic applies to the whole family of statistics Sn(s) with
s ∈ [−1,2]. On the side of power behavior, we study the test statistics under
fixed alternatives and give extensions of the “Poisson boundary” phenom-
ena noted by Berk and Jones for their statistic. We also extend the results
of Donoho and Jin [Ann. Statist. 32 (2004) 962–994] by showing that all our
new tests for s ∈ [−1,2] have the same “optimal detection boundary” for nor-
mal shift mixture alternatives as Tukey’s “higher-criticism” statistic and the
Berk–Jones statistic.

1. Introduction. In this paper we introduce and study a new family of
goodness-of-fit tests which includes both the supremum version of the Anderson–
Darling statistic (or, equivalently, Tukey’s “higher criticism” statistics as discussed
by Donoho and Jin [15]) and the test statistic of Berk and Jones [5] as special
cases. The new family is based on phi-divergences somewhat analogously to the
phi-divergence tests for multinomial families introduced by Cressie and Read [10],
and is indexed by a real parameter s ∈ R: s = 2 gives the Anderson–Darling test
statistic, s = 1 gives the Berk–Jones test statistic, s = 1/2 gives a new (Hellinger–
distance type) statistic, s = 0 corresponds to the “reversed Berk–Jones” statistic
studied by Jager and Wellner [24] and s = −1 gives a “Studentized” (or empiri-
cally weighted) version of the Anderson–Darling statistic. We introduce the cor-
responding integral versions of the new statistics (but will study them in detail
elsewhere). Having a family of statistics available gives the possibility of better
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understanding of individual members of the family, as well as the ability to select
particular members of the family that have different desirable properties.

In Section 2 we introduce the new test statistics. In Section 3 we briefly discuss
the null distribution theory of the entire family of statistics, and note that the exact
distributions can be handled exactly for sample sizes up to n = 3000 via Noé’s
recursion formulas (and possibly up to n = 104 via the recursion of Khmaladze
and Shinjikashvili [31]) along the lines explored for the Berk–Jones statistic by
Owen [36]. We also generalize the asymptotic distribution theory of Jaeschke [22]
and Eicker [17] for the supremum version of the Anderson–Darling statistic, and of
Berk and Jones [5] and Wellner and Koltchinskii [43] for the Berk–Jones statistic,
by showing that the existing null distribution theory for s = 1 and s = 2 applies to
(an appropriate version of) the whole family of statistics. We generalize the results
of Owen [36] by showing that our family of test statistics provides a corresponding
family of confidence bands.

In Section 4 we study the behavior of the new family of test statistics under
fixed alternatives. We show that for 0 < s < 1 and fixed alternatives the test sta-
tistics always converge almost surely to their corresponding natural parameters.
For 1 < s < ∞, we provide necessary and sufficient conditions on the alternative
d.f. F for convergence to the corresponding natural parameter to hold, and show
that the “Poisson boundary” phenomena noted by Berk and Jones for their statistic
continues to hold for 1 ≤ s < ∞ and for s < 0 by identifying the Poisson bound-
ary distributions explicitly. We also briefly discuss further large deviation results
and connections between the work of Berk and Jones [5] and Groeneboom and
Shorack [19].

In Section 5 we extend the results of Donoho and Jin [15] by showing that
all our new tests for s ∈ [−1,2] have the same “optimal detection boundary” for
normal shift mixture alternatives as Tukey’s “higher-criticism” statistic and the
Berk–Jones statistic.

Our new family of test statistics not only provides a unifying framework for
the study of a number of existing test statistics as special cases, but also gives the
possibility of “designing” a new test with several different desirable properties. For
example, the new statistic Sn(1/2) satisfies both: (a) it consistently estimates its
“natural parameter” for every alternative and (b) it has the same optimal detection
boundary for the two point normal mixture alternatives of Donoho and Jin [15] as
the existing test statistics Sn(2) and Sn(1) considered by these authors.

2. The test statistics. Consider the classical goodness-of-fit problem: sup-
pose that X1, . . . ,Xn are i.i.d. F , and let Fn(x) = n−1 ∑n

i=1 1{Xi ≤ x} be the em-
pirical distribution function of the sample. We want to test

H :F = F0 versus K :F �= F0,

where F0 is continuous. By the probability integral transformation, we can, with-
out loss of generality, suppose that F0 is the uniform distribution on [0,1],
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F0(x) = (x ∧ 1) ∨ 0, and that all the distribution functions F in the alternative K

are defined on [0,1]. The basic idea behind our new family of tests is simple. For
fixed x ∈ (0,1), the interval is divided into two sub-intervals [0, x] and (x,1], and
we can test the (pointwise) null hypothesis Hx :F(x) = x versus the (pointwise)
alternative Kx :F(x) �= x using any of the general phi-divergence test statistics
Kφ(Fn(x), x) proposed by Csiszár [11] (see also Csiszár [12] and Ali and Sil-
vey [2]) and studied further in a multinomial context by Cressie and Read [10],
where φ is a convex function mapping [0,∞) to the extended reals R ∪ {∞} (cf.
Liese and Vajda [32], pages 10 and 212, and Vajda [39]). Then our proposed test
statistics are of the form

Sn(φ) ≡ sup
x

Kφ(Fn(x), x)

or

Tn(φ) ≡
∫ 1

0
Kφ(Fn(x), x) dx,

where the supremum and/or integral over x may require some restriction depend-
ing on the choice of φ.

In our particular case, we define φ = φs for s ∈ R by

φs(x) ≡



[1 − s + sx − xs]/[s(1 − s)], s �= 0,1,
x(logx − 1) + 1 ≡ h(x), s = 1,
log(1/x) + x − 1 ≡ h̃(x), s = 0

(cf. Liese and Vajda [32], page 34), so that

Ks(u, v) = vφs(u/v) + (1 − v)φs

(
(1 − u)/(1 − v)

)
= 1

s(1 − s)
{1 − usv1−s − (1 − u)s(1 − v)1−s}, s �= 0,1.

Note that this definition makes φs continuous in s for all x in (0,1), and hence,
Ks is continuous in s for all (u, v) ∈ (0,1)2. Also note that Kλ+1(p, q) =
Iλ

2 (p :q), where p = (p,1−p), q = (q,1−q), and Iλ
2 (p :q) is as defined in (5.1),

Cressie and Read [10], page 456. Then our proposed test statistics Sn(s) and Tn(s)

for s ∈ R are defined by

Sn(s) ≡



sup
0<x<1

Ks(Fn(x), x), if s ≥ 1,

sup
X(1)≤x<X(n)

Ks(Fn(x), x), if s < 1(1)

and

Tn(s) ≡




∫ 1

0
Ks(Fn(x), x) dx, if s > 0,∫ X(n)

X(1)

Ks(Fn(x), x) dx, if s ≤ 0.
(2)
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The reasons for changing the definitions of the statistics by restricting the supre-
mum or integral for different values of s will be explained in Section 3; basically,
the restrictions must be imposed for some appropriate value of s in order to main-
tain the same null distribution theory for all values of s in [−1,2].

The most notable special cases of these statistics are s ∈ {−1,0,1/2,1,2}: it is
easily checked that

K2(u, v) = 1

2

(u − v)2

v(1 − v)
,

K1(u, v) = u log
(

u

v

)
+ (1 − u) log

(
1 − u

1 − v

)
,

K1/2(u, v) = 4
{
1 − √

uv − √
(1 − u)(1 − v)

}
= 2

{(√
u − √

v
)2 + (√

1 − u − √
1 − v

)2}
,

K0(u, v) = K1(v, u) = v log
(

v

u

)
+ (1 − v) log

(
1 − v

1 − u

)
,

K−1(u, v) = K2(v, u) = 1

2

(u − v)2

u(1 − u)
.

It follows that:

(a) Sn(2) is (1/2 times) the square of the supremum form of the Anderson–Darling
statistic (or, in its one-sided form, Tukey’s “higher criticism statistic”; see
Donoho and Jin [15] and Section 5).

(b) Sn(1) is the statistic studied by Berk and Jones [5].
(c) Sn(1/2) is (4 times) the supremum of the pointwise Hellinger divergences

between Bernoulli(Fn(x)) and Bernoulli(F0(x)); as far as we know, this is a
new goodness-of-fit statistic [as are all the statistics Sn(s) for s /∈ {−1,0,1,2}].

(d) Sn(0) is the “reversed Berk–Jones” statistic introduced by Jager and Well-
ner [24].

(e) Sn(−1) is (1/2 times) a “Studentized” version of the supremum form of the
Anderson–Darling statistic; see, for example, Eicker [17], page 116.

(f) Tn(1) is the integral form of the Berk–Jones statistic introduced by Einmahl
and McKeague [18].

(g) Tn(2) is the classical (integral form of) the Anderson–Darling statistic intro-
duced by Anderson and Darling [3].

REMARK 2.1. Note that K1/2−r (u, v) = K1/2+r (v, u) for r ∈ R and u,
v ∈ (0,1), so the families of statistics Sn(s) and Tn(s) have a natural symmetry
about s = 1/2. We will continue to use the “s-parametrization” of these families
for reasons of notational simplicity.
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3. Distributions under the null hypothesis.

3.1. Finite sample critical points via Noé’s recursion. Owen [36] showed how
to use the recursions of Noé [35] to obtain finite sample critical points of the
Berk–Jones statistic Rn = Sn(1) for values of n up to 1000. (See Shorack and
Wellner [38], pages 362–366 for an exposition of Noé’s methods.) Jager and Well-
ner [24] pointed out a minor error in the derivations of Owen [36] and extended
his results to the reversed Berk–Jones statistic Sn(0). Jager [23] gives exact finite
sample computations for the whole family of statistics via Noé’s recursions for
values of n up to 3000. (The C and R programs are available at the second author’s
website.) We will not give details of the finite-sample computations here but refer
the interested reader to Jager and Wellner [24] and Jager [23]. See Jager and Well-
ner [24] and Jager [23] for plots of finite sample critical points and several finite
sample approximations based on the asymptotic theory given here.

During the revision of this paper we learned of an alternative finite-sample re-
cursion for calculation of the null distribution of Sn(2) proposed by Khmaladze
and Shinjikashvili [31] which apparently works for n ≤ 104. Presumably this al-
ternative recursion could be used for our entire family of statistics, but this has not
yet been carried out.

3.2. Asymptotic distribution theory for Sn(s) under the null hypothesis. Limit
distribution theory for Sn(2) and Sn(−1) under the null hypothesis follows from
the work of Jaeschke [22] and Eicker [17]; see Shorack and Wellner [38], Chap-
ter 16, pages 597–615 for an exposition. These results are closely related to the
classical results of Darling and Erdös [14]. Berk and Jones [5] stated the asymp-
totic distribution of their statistic Rn = Sn(1). For details of the proof, see Wellner
and Koltchinskii [43], with a minor correction as noted at the end of the proof
here. Here we show that the limit distribution of nSn(s) − rn is the same double-
exponential extreme value distribution for all −1 ≤ s ≤ 2, where

rn = log2 n + 1
2 log3 n − 1

2 log(4π),

with log2 n ≡ log(logn) and log3 n ≡ log(log2 n).

THEOREM 3.1 (Limit distribution under null hypothesis). Suppose that the
null hypothesis H holds so that F is the uniform distribution on [0,1]. Then for
−1 ≤ s ≤ 2 it follows that

nSn(s) − rn
d→ Y4 ∼ E4

v,

where E4
v(x) = exp(−4 exp(−x)) = P(Y4 ≤ x).
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Define

bn =
√

2 log2 n, cn = 2 log2 n + 1
2 log3 n − 1

2 log(4π),

dn = n−1(logn)5, Zn ≡ sup
dn≤x≤1−dn

√
n|Fn(x) − x|√

x(1 − x)
.

As will be seen, the proof involves the following four facts: Fact 1. Zn/bn →p 1.

Fact 2. bnZn − cn
d→ Y4 ∼ E4

v . Fact 3. (1/2)c2
n/b

2
n = rn + o(1). Fact 4. nSn(s) =

(1/2)Z2
n + op(1).

In the ranges s > 2 and s < −1 we do not know a theorem describing the be-
havior of the statistics Sn(s) under the null hypothesis.

3.3. Confidence bands. Owen [36] showed how the Berk–Jones statistic Rn =
Sn(1) can be inverted to obtain confidence bands for an unknown distribution func-
tion F . Similarly, the family of statistics Sn(s) yields a new family of confidence
bands for F as follows: given a continuous d.f. F on R, define

Sn(s,F ) ≡



sup
−∞<x<∞

Ks(Fn(x),F (x)), if s ≥ 1,

sup
X(1)≤x<X(n)

Ks(Fn(x),F (x)), if s < 1.

By the (inverse) probability integral transformation, PF (Sn(s,F ) ≤ t) =
PF0(Sn(s) ≤ t) for all t where Sn(s) is as defined in (1) and F0 is the uniform
distribution on [0,1]. Hence, with qn(s, α) denoting the upper 1 − α quantile of
the distribution of Sn(s) under F0 (which is computable via Noé’s recursion as
discussed in Section 3.1 or can be approximated for large n via Theorem 3.1), it
follows that

PF

(
Sn(s,F ) ≤ qn(s, α)

) = PF0

(
Sn(s) ≤ qn(s, α)

) = 1 − α

for each fixed α ∈ (0,1) and n. Hence,

{F :Sn(s,F ) ≤ qn(s, α)} = {F :Ln(x; s, α) ≤ F(x) ≤ Un(s; s, α) for all x ∈ R}
yields a family of 1 − α confidence bands for F . Here Ln(x; s, α) and Un(x; s, α)

are random functions determined by s, α, n and the data in a straightforward way;
see Owen [36], Jager and Wellner [24] and Jager [23] for details.

3.4. Asymptotic distribution theory for Tn(s) under the null hypothesis. Limit
distribution theory for Tn(2) was established by Anderson and Darling [3]. Ein-
mahl and McKeague [18] noted that this carries over to Tn(1) (for a proof, see
Wellner and Koltchinskii [43]) and extended Tn(1) to other testing problems. Here
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we show that the limit distribution of nTn(s) is (1/2 times) the Anderson–Darling
limit distribution for all s ∈ [−1,2], namely, the distribution of

A2 ≡
∫ 1

0

[U(t)]2

t (1 − t)
dt

d=
∞∑

j=1

Z2
j

j (j + 1)
,(3)

where U is a standard Brownian bridge process on [0,1] and Z1,Z2, . . . are i.i.d.
N(0,1); see, for example, Shorack and Wellner [38], pages 224–227.

THEOREM 3.2 (Limit distribution of Tn(s) under the null hypothesis). Sup-
pose that the null hypothesis H holds so that F is the uniform distribution on [0,1].
Then for −∞ < s ≤ 2 it follows that nTn(s)

d→ A2/2, where A2 is the Anderson–
Darling limit defined in (3).

We will not study the statistics Tn(s) further in this paper, but intend to continue
their study elsewhere.

4. Limit theory under alternatives. The power behavior of individual mem-
bers of our new family of statistics has previously been studied separately and
somewhat in isolation: see, for example, Berk and Jones [5] (for the Berk–Jones
statistic), Durbin, Knott and Taylor [16] and D’Agostino and Stephens [13] for
Tn(2) compared to other integral goodness-of-fit statistics and Nikitin [34] for
treatment of Bahadur efficiencies for many goodness-of-fit statistics. Interest in
these test statistics has received new impetus via the use of appropriate one-sided
versions of the test statistic Sn(2) in the context of multiple testing problems;
see, for example, Donoho and Jin [15], Jin [28] and Meinshausen and Rice [33].
See Cayón, Jin and Treaster [8] for an interesting application to detection of non-
Gaussianity in the cosmic microwave background data gathered by the Wilkinson
Microwave Anisotropy Probe (WMAP) satellite, and see Cai, Jin and Low [7] for
further work on estimation aspects of the problem in connection with the develop-
ments in Meinshausen and Rice [33]. The work of Owen [36] on confidence bands
derived from the Berk–Jones statistic Sn(1) was apparently motivated in large part
by the Bahadur efficiency results of Berk and Jones [4].

It is clear from the results of Donoho and Jin [15] and earlier efforts by
Révész [37] to combine the strengths of the Kolmogorov and Jaeschke–Eicker
statistics that tests based on any of the statistics Sn(s) will do best against “alterna-
tives in the tails.” As suggested by one of the referees of our paper, this may well be
the “Achilles heel” of such test statistics, since the results of Révész [37] suggest
that our statistics will have no asymptotic power for a large class of “contiguous
alternatives” (with departures from the null hypothesis “in the middle” of the dis-
tribution). On the other hand, having a family of statistics such as {Sn(s) : s ∈ R}
available gives the possibility of choosing (or “designing”) a test with several de-
sirable properties. We will return to this briefly in Section 6.
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Here we study convergence of the family of statistics to their “natural parame-
ters” under fixed alternatives, comment briefly on the Bahadur efficiency results
of Berk and Jones [5] in light of the results of Groeneboom and Shorack [19], and
show that the optimal detection boundary results of Donoho and Jin [15] extend to
the whole family of statistics Sn(s) for s ∈ [−1,2]. In spite of the negative results
of Janssen [27] for goodness-of-fit statistics in general, much remains to be learned
about the power behavior of the family {Sn(s)}.

4.1. Almost sure convergence to natural parameter. Let F0 be the Uniform(0,1)

distribution function as in Section 2. The Kolmogorov statistic Dn ≡ ‖Fn − F0‖∞
has the property that for any distribution function F , if X1, . . . ,Xn are i.i.d. F ,
then

Dn
a.s.→ ‖F − F0‖∞ ≡ d(F ).

We call d(F ) = ‖F − F0‖∞ the natural parameter for the Kolmogorov statis-
tic Dn. As Berk and Jones [5] pointed out for their statistic Rn = Sn(1), under
alternatives F the convergence

Sn(1) = Rn = sup
0<x<1

K1(Fn(x), x)
a.s.→ sup

0<x<1
K1(F (x), x) ≡ r(F )

holds only under some condition on F (the exact condition will be given below),
and for a slightly more extreme F , namely, what we call the “Poisson boundary
distribution function,” the behavior changes to convergence in distribution to a
functional of a Poisson process rather than convergence to a natural parameter.
Thus, Berk and Jones [5] showed that if F(x) = 1/(1 + log(1/x)), then

Sn(1) = Rn
d→ sup

t>0

N(t)

t

d= 1

U
,(4)

where N is a standard Poisson process and U ∼ Uniform(0,1).
It turns out that in the range 0 < s < 1 the statistics Sn(s) behave analogously

to the Kolmogorov statistic Dn under fixed alternatives. Namely, we show that in
this range the statistics converge almost surely to their “natural parameter” for all
d.f.’s F .

PROPOSITION 4.1. Suppose that X1, . . . ,Xn are i.i.d. F and that 0 < s < 1.
Then Sn(s)

a.s.→ sup0<x<1 Ks(F (x), x) ≡ S∞(s,F ).

On the other hand, in the range s > 1 we have the following criterion for almost
sure convergence of the statistics Sn(s) to their natural parameters:

PROPOSITION 4.2. Suppose that X1, . . . ,Xn are i.i.d. F and that s > 1. Then
Sn(s)

a.s.→ sup0<x<1 Ks(F (x), x) ≡ S∞(s,F ) if and only if F satisfies∫ 1

0

1

(F−1(u)(1 − F−1(u)))(s−1)/s
du < ∞.
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By the (inverse) probability integral transformation, the convergence in the last
display is equivalent to EF [X(1 − X)]−(1−1/s) < ∞.

As Berk and Jones [5] show, if for some γ > 0, the distribution function F

satisfies

F(x) ≤ {log(1/x)(log2(1/x))1+γ }−1, x ≤ γ,

and

1 − F(x) ≤ {
log

(
1/(1 − x)

)(
log2

(
1/(1 − x)

))1+γ }−1
, x ≥ 1 − γ,

then Rn ≡ Sn(1)
a.s.→ sup0<x<1 K1(F (x), x) ≡ S∞(1,F ) ≡ r(F ) < ∞. It can

be shown that this convergence holds if and only if
∫ 1

0 [x(1 − x)]−1F(x)×
(1 − F(x)) dx < ∞; see Jager [23] for details. We do not yet know sharp con-
ditions for Sn(s)

a.s.→ S∞(s,F ) when s ≤ 0.

4.2. Poisson boundaries for s ≥ 1 and s < 0. As noted in the previous sub-
section, the statistic Rn = Sn(1) has a “Poisson boundary” d.f. F1 for which

Rn = Sn(1)
d→ 1/U rather than Rn = Sn(1)

a.s.→ r(F ) ≡ S∞(1,F ). Here we note
that this behavior persists for the entire range s ≥ 1 and for s < 0.

For each fixed s ∈ [0,1)c, define the distribution function Fs on [0,1] by
Fs(0) = 0 and, for 0 < x ≤ 1, by

Fs(x) =




(
1 + x1−s − 1

s − 1

)−1/s

, 1 < s < ∞,(
1 + log(1/x)

)−1
, s = 1,(

1 − s(xs−1 − 1)
)1/s

, s < 0.

(5)

Note that Fs(x) → F1(x) as s ↘ 1 for 0 ≤ x ≤ 1.
The following proposition includes the result (4) of Berk and Jones [5] when s =

1, and it agrees with the case b = 1/2 of Theorem 2 of Jager and Wellner [25] when
s = 2. As in (4), let N be a standard Poisson process, and let U ∼ Uniform(0,1).

PROPOSITION 4.3 (Poisson boundaries for s ≥ 1 and s < 0).

(i) Fix s ≥ 1 and suppose that X1, . . . ,Xn are i.i.d. Fs given in (5). Then

Sn(s)
d→ 1

s

(
sup
t>0

N(t)

t

)s
d= 1

sUs
.

(ii) Fix s < 0 and suppose that X1, . . . ,Xn are i.i.d. Fs given in (5). Then

Sn(s)
d→ 1

(1 − s)

(
sup
t≥S1

t

N(t)

)−s

,(6)

where S1 = E1 is the first jump point of N.
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REMARK 4.1. The distribution of supt≥S1
(t/N(t)), which is also the limit-

ing distribution of sup{(t/Gn(t)) : t ≥ ξ(1)} where Gn is the empirical distribution
function of n i.i.d. Uniform(0,1) random variables ξ1, . . . , ξn, is given by

P

(
sup
t≥S1

(t/N(t)) > x

)
= exp(−x) +

∞∑
k=1

(k − 1)k−1

k! xk exp(−kx), x > 1;

see Wellner [40], pages 1008–1009 and Shorack and Wellner [38], page 412. This
yields an explicit formula for the distribution of the random variable on the right-
hand side of (6).

REMARK 4.2. Although the family of distributions Fs satisfies Fs(x) →
exp(−(1/x − 1)) ≡ F̃0(x) as s ↗ 0, it appears that the natural limit in distribu-

tion under F̃0 is Sn(0)
d→ 1 = sup0<x<1 K0(F̃0(x), x) in this case, so apparently

convergence to the natural parameter continues to hold under F̃0. We do not know

if there is a (more extreme) d.f. F
†
0 for which Sn(0)

d→ g(N) for a nondegenerate
functional g of a standard Poisson process N.

REMARK 4.3. If F ∈ K has Poisson boundary behavior at both 0 and 1,
then natural generalizations of Proposition 4.3 involving two independent Poisson
processes can easily be proved. For example, if F is the standard arcsin law with

density π−1u−1/2(1 − u)−1/21(0,1)(u), then Sn(s)
d→ (2/π2)max{(supt>0(N(t)/

t))2, (supt>0(Ñ(t)/t))2}, where N, Ñ are independent standard Poisson processes.

4.3. Bahadur efficiency comparisons. Berk and Jones [5] studied the Bahadur
efficiency of their statistic Sn(1) = Rn relative to weighted Kolmogorov statis-
tics based on the work of Abrahamson [1]. As pointed out by Groeneboom and
Shorack [19], however, the Bahadur efficacies of the weighted Kolmogorov sta-
tistics are 0 for weights heavier than the (quite light) logarithmic weight function
ψ(x) = − log(x(1 − x)) because the null distribution large-deviation result is de-
generate for heavier weights. A second difficulty for Bahadur efficiency compar-
isons is that both the weighted Kolmogorov statistics and the Berk–Jones statistic
fail to converge almost surely to their natural parameters for sufficiently extreme
alternative d.f.’s F , and as noted by Berk and Jones [5] for the Berk–Jones statistic
and by Jager and Wellner [25] for the weighted Kolmogorov statistics, there is a
certain “Poisson boundary” d.f. F for which the statistics converge in distribution
to a functional of a Poisson process. Thus, comparisons of goodness-of-fit statistics
of the supremum type via Bahadur efficiency are rendered difficult by breakdowns
in both the large-deviation theory under the null hypothesis and by failure of the
statistics to converge almost surely under fixed alternatives. Nevertheless, it would
be interesting to be able to make comparisons where possible.
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To this end, we consider variants of our statistics in the range 0 < s < 1 with
the supremum unrestricted as follows:

Sur
n (s) = sup

0<x<1
Ks(Fn(x), x),

Sur,+
n (s) = sup

0<x<1
K+

s (Fn(x), x), Sur,−
n (s) = sup

0<x<1
K−

s (Fn(x), x),

where

K+
s (u, v) =




Ks(u, v), if 0 < v < u < 1,
0, if 0 ≤ u ≤ v ≤ 1,
∞, otherwise,

K−
s (u, v) =




Ks(u, v), if 0 < u < v < 1,
0, if 0 ≤ v ≤ u ≤ 1,
∞, otherwise.

Also, set K(u, v) = K1(u, v) = u log(u/v) + (1 − u log((1 − u)/(1 − v)) for
(u, v) ∈ (0,1)2 and K+(u, v) = K+

1 (u, v). Although we do not yet have large de-
viation results for the statistics Sn(s) or S+

n (s) ≡ supX(1)≤x<X(n)
K+

s (Fn(x), x), we
can establish the following large deviation results for Sur,+

n (s) and Sur,−
n (s).

THEOREM 4.4. Suppose that X1, . . . ,Xn are i.i.d. with continuous d.f. F0, the
uniform distribution on (0,1). Fix s ∈ (0,1). Then

n−1 logP0
(
Sur,+

n (s) ≥ a
) → − inf

0<x<1
K+(τ+

s (x, a), x)

(7)

= − log[1 − s(1 − s)a]
1 − s

≡ −g+
s (a)

for each 0 ≤ a < 1/[s(1 − s)], where τ+
s (x, a) = inf{t :K+

s (t, x) ≥ a}. Further-
more,

n−1 logP0
(
Sur,−

n (s) ≥ a
) → − inf

0<x<1
K−(τ−

s (x, a), x)

= − log[1 − s(1 − s)a]
1 − s

≡ −g−
s (a)

for each a ≥ 0, where τ−
s (x, a) = sup{t : K−

s (t, x) ≥ a}.
Combining Theorem 4.4 with Proposition 4.1, we have the following corollary

for the Bahadur efficacies of the statistics Sur,+
n (s) and Sur,−

n (s) with 0 < s < 1.

COROLLARY 4.5. Let F be a continuous distribution function on [0,1]. Then
the Bahadur efficacy of Sur,+

n (s) at the alternative F is

ε±
s (F ) = g±

s (S±∞(s,F )) = g+
s (S±∞(s,F )),

where g+
s is defined in (7) and S±∞(s,F ) ≡ sup0<x<1 K±

s (F (x), x).
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REMARK. Note that lims↗1 g+
s (a) = a, in agreement with Theorem 2.2,

page 50, of Berk and Jones [5].

REMARK. Since g+
s (a) = g−

s (a) ∼ sa as s ↘ 0, the Bahadur efficacies of the
statistics Sur,±

n (s) tend to be smaller than the efficacies of the Berk–Jones statistic
S+∞(1,F ) = r(F ) (when the latter exists), and especially so for small s. This, to-
gether with extensive numerical computations of Jager [23], strengthens the case in
favor of the statistics S+

n (s) = supX(1)≤x<X(n)
K+

s (Fn(x), x) with restricted supre-
mum. Unfortunately we do not yet know the large deviation behavior of these
statistics with restricted supremum.

5. Attainment of the Ingster–Donoho–Jin optimal detection boundary.
Jin [28] and Donoho and Jin [15] consider testing in a “sparse heterogenous mix-
ture” problem defined as follows: Suppose that Y1, . . . , Yn are i.i.d. G on R and
consider testing

H0 :G = 
, the standard N(0,1) distribution function

versus

H1 :G = (1 − ε)
 + ε
(· − µ) for some ε ∈ (0,1),µ > 0.

In particular, they consider the n-dependent alternatives H
(n)
1 given by

H
(n)
1 :Gn = (1 − εn)
 + εn
(· − µn) for εn = n−β,µn =

√
2r logn,(8)

where 1/2 < β < 1 and 0 < r < 1. By transforming to Xi ≡ 1 − 
(Yi) i.i.d. F =
1 − G(
−1(1 − ·)) (with the Xi’s taking values in [0,1]), the testing problem
becomes test

H0 :F = F0, the Uniform(0,1) distribution function

versus

H1 :F = F0(u) + ε
{
(1 − u) − 


(

−1(1 − u) − µ

)}
> F0(u).

[The corresponding n-dependent sequence is Fn(u) = u+εn{(1−u)−
(
−1(1−
u) − µn)} with the same choice of εn and µn as in (8).] Donoho and Jin [15]
consider several different test statistics, among which the principal contenders are
Tukey’s “higher criticism” statistic HC∗

n defined by

HC∗
n ≡ sup

X(1)≤x<X([α0n])

√
n(Fn(x) − x)√

x(1 − x)

for some α0 > 0 (they seem to usually take α0 = 1/2), and a one-sided version of
the Berk–Jones statistic BJ+

n ≡ n supX(1)≤x<1/2 K+
1 (Fn(x), x), where K+

s (u, v) ≡
Ks(u, v)1{0 < v < u < 1}.
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Jin [28] (see also Ingster [20, 21]) showed that the likelihood ratio test of H0

versus H
(n)
1 has a “detection boundary” defined in terms of the parameters β ∈

(1/2,1) and r ∈ (0,1) involved in (8) which is described as follows: set

ρ∗(β) =
{

β − 1/2, 1/2 < β ≤ 3/4,(
1 − √

1 − β
)2

, 3/4 < β < 1.

Then for r > ρ∗(β), the likelihood ratio test (which makes use of knowledge of β

and r) is size and power consistent against H
(n)
1 as n → ∞. Donoho and Jin [15]

show that the tests of H0 versus H
(n)
1 based on HC∗

n and BJ+
n are also size and

power consistent as n → ∞ and that both of these tests dominate several other
tests based on multiple comparison procedures such as the sample range, sample
maximum, FDR (False Discovery Rate) and Fisher’s method; see, for example,
Figure 1 of Donoho and Jin [15] and their Theorems 1.4 and 1.5.

We show here that the tests based on appropriate one-sided versions of the sta-
tistics Sn(s), namely,

nS+
n (s) ≡ n sup

X(1)≤x≤1/2
K+

s (Fn(x), x),

have the same detection boundary for testing H0 versus H
(n)
1 as the statistics HC∗

n

and BJ+
n . More formally, define a function ρs(β) such that if µn = √

2r logn and
if we use a sequence of levels αn → 0 slowly enough [slowly enough so that with
qn(s, α) as defined in Section 3.2, αn satisfies nqn(s,αn) = (1 + o(1)) log logn],
then for r > ρs(β), the resulting sequence of tests has power tending to 1 as
n → ∞, while for r < ρs(β), the sequence of tests has power tending to zero.
In terms of the functions ρs(β), our theorem is as follows.

THEOREM 5.1. For each s ∈ [−1,2], ρs(β) = ρ∗(β) for 1/2 < β < 1.

While this may not be too suprising for 1 ≤ s ≤ 2 in view of the Donoho–
Jin results for nS+

n (1) = BJ+
n and nS+

n (2) = (1/2)(HC∗
n)2, it seems new and

interesting for s ∈ [−1,1). Figure 1 gives smoothed histograms of the values of
the statistics nSn(s) − rn under the null hypothesis H0 (solid line) and under
the alternative hypothesis H

(n)
1 (dotted line) for n = 0.5 × 106, r = 0.15 and

β = 1/2. This should be compared with Figure 2 on page 978 of Donoho and
Jin [15] showing values of HC∗

n and HC+
n , corresponding to our s = 2; their

HC+
n ≡ sup1/n≤x≤1/2

√
n(Fn(x) − x)+/

√
x(1 − x).

6. Discussion and some further problems. In Section 4 we have shown that
the statistics {Sn(s) : s ∈ R} behave quite differently for 0 < s < 1, for s ≤ 0 and
s ≥ 1. In particular, for 0 < s < 1, the statistics Sn(s) converge almost surely
to their natural parameters for fixed F �= F0. Moreover, the different Poisson
boundary behaviors for s < 0 and s ≥ 1 suggest that the statistics Sn(s) with
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FIG. 1. Smoothed histograms of (reps) values of the statistics S+
n (s) under the null hypothesis H0

(solid line) and alternative hypothesis H
(n)
1 (dotted line) with r = 0.15, β = 1/2 for s = 0,0.2,0.5,1.

s ≥ 1 are geared toward “heavy tails,” while the statistics Sn(s) with s ≤ 0 are
geared more toward “light tails.” This also becomes apparent from plots of the
functions K1(F1(x), x), K1(F̃0(x), x), and of K0(F1(x), x) and K0(F̃0(x), x),
where F1(x) = 1/(1 + log(1/x)) and F̃0(x) = exp(−(1/x − 1)); see, for exam-
ple, Jager [23], page 11.

In Section 5 we have shown that all of the statistics {Sn(s) :−1 ≤ s ≤ 2} have the
same optimal detection boundary for the two-point normal mixture testing problem
considered by Donoho and Jin [15]. Thus, we have some flexibility in designing a
test to detect these subtle tail alternatives, and yet behaving very stably under fixed
alternatives (in the sense of always consistently estimating a natural parameter).
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Thus, it seems that the (Hellinger-type) statistic Sn(1/2) may be a very reasonable
compromise test statistic.

Here is a brief listing of some of the remaining open problems:

• Problem 1: What is the limit distribution of Sn(s) under the null hypothesis
when s < −1 or s > 2?

• Problem 2: What are necessary and sufficient conditions for Sn(s) to converge
to its natural parameter under fixed alternatives F for s ≤ 0?

• Problem 3: What is the large deviation behavior of Sn(s) under the null hypoth-
esis for 0 < s < 1?

• Problem 4: Is there an appropriate contiguity theory for the statistics Sn(s)?
(The only example involving something similar of which we are aware is The-
orem A1 of Bickel and Rosenblatt [6], but their results do not seem to apply to
the statistics Sn(s).)

• It is fairly easy to construct versions of our statistics Sn(s) in more general
settings by replacing the intervals [0, x] and (x,1] with sets C and Cc for C in
some class of sets C. Then for testing H0 :P = P0 versus H1 :P1 �= P0, a natural
generalization of the statistics Sn(s) is

Sn(s,C) = sup
C∈C

Ks(Pn(C),P0(C)),

where Pn is the empirical measure of X1, . . . ,Xn i.i.d. P .
• Problem 5: Do the statistics Sn(s,C) have reasonable power behavior for some

of the “chimeric alternatives” of Khmaladze [30] for some choice of C?

7. Proofs.

7.1. Proofs for Section 3.

PROOF OF THEOREM 3.1. We first carry out the proof for −1 ≤ s < 1, and
then indicate the changes that are necessary for 1 ≤ s ≤ 2. Fix s ∈ [−1,1). Note
that

∂

∂u
Ks(u, v)

∣∣∣∣
u=v

= φs

(
u

v

)
− φs

(
1 − u

1 − v

)∣∣∣∣
u=v

= φs(1) − φs(1) = 0

and

∂2

∂u2 K(u, v) =
(

u

v

)s−2 1

v
+

(
1 − u

1 − v

)s−2 1

1 − v
≡ Ds(u, v).

Hence, it follows by Taylor expansion of u �→ Ks(u, v) about u = v that

Ks(u, v) = Ks(v, v) + ∂

∂u
Ks(u, v)

∣∣∣∣
u=v

(u − v) + 1

2

∂2

∂u2 Ks(u, v)

∣∣∣∣
u=u∗

(u − v)2

= 0 + 0 + 1

2
(u − v)2Ds(u

∗, v) = 1

2
(u − v)2Ds(u

∗, v)
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for some u∗ satisfying |u∗ − v| ≤ |u − v|. This yields

Ks(Fn(x), x) = 1
2

(
Fn(x) − x

)2
Ds(F

∗
n(x), x)(9)

for 0 < x < 1, where |F∗
n(x)− x| ≤ |Fn(x)− x|; that is, x ≤ F

∗
n(x) ≤ Fn(x) on the

event x ≤ Fn(x) and Fn(x) ≤ F
∗
n(x) ≤ x on the event Fn(x) ≤ x.

We can write (9) as

Ks(Fn(x), x) = 1

2

(Fn(x) − x)2

x(1 − x)
{1 + x(1 − x)Ds(F

∗
n(x), x) − 1},(10)

where

|Remn(x)| ≡ |x(1 − x)Ds(F
∗
n(x), x) − 1|

=
∣∣∣∣x(1 − x)

{(
F

∗
n(x)

x

)s−2 1

x
+

(
1 − F

∗
n(x)

1 − x

)s−2 1

1 − x

}
− 1

∣∣∣∣
=

∣∣∣∣(1 − x)

(
x

F∗
n(x)

)2−s

+ x

(
1 − x

1 − F∗
n(x)

)2−s

− (1 − x) − x

∣∣∣∣
≤ (1 − x)

∣∣∣∣
(

x

F∗
n(x)

)2−s

− 1
∣∣∣∣ + x

∣∣∣∣
(

1 − x

1 − F∗
n(x)

)2−s

− 1
∣∣∣∣.

Fix δ ∈ (0,1/2). Now for x ∈ [δ,1 − δ], Fn(x) ∈ [δ/2,1 − δ/2] a.s. for n ≥ Nω,
so, much as in Wellner and Koltchinskii [43],

sup
δ≤x≤1−δ

|Remn(x)| = Op(n−1/2).

For 0 < v ≤ 1/2 and 1 ≤ s ≤ 2, the function u �→ Ds(u, v) is monotone for u ∈
(0,1/2], while for 0 < v ≤ 1/2 and −1 ≤ s ≤ 1, the function u �→ Ds(u, v) is
monotone for u ∈ (0, b(v, s)], where b(v, s) ≡ 1/(1+c(v, s)) with c(v, s) ≡ ((1−
v)/v)(1−s)/(3−s), so

x(1 − x)Ds(F
∗
n(x), x) ≤ x(1 − x){Ds(x, x) ∨ Ds(Fn(x), x)}

on the set {Fn(x) < 1/2 ∧ b(x, s)}. Since P(Fn(δ) ≥ 1/2 ∧ b(δ, s)) → 0 for δ <

1/2 and s ∈ [−1,2], we get

sup
X(1)≤x≤δ

|Remn(x)| ≤ sup
X(1)≤x≤δ

∣∣∣∣
(

x

Fn(x)

)2−s

− 1
∣∣∣∣

+ sup
X(1)≤x≤δ

∣∣∣∣
(

1 − x

1 − Fn(x)

)2−s

− 1
∣∣∣∣(11)

= Op(1) + op(1) = Op(1)
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by Shorack and Wellner [38], inequality 1, page 415, and inequality 2, (10.3.6),
page 416. Alternatively, see Wellner [42], Lemma 2, page 75, and Remark 1(ii).
Similarly,

sup
1−δ≤x<X(n)

|Remn(x)| ≤ sup
1−δ≤x<X(n)

∣∣∣∣
(

x

Fn(x)

)2−s

− 1
∣∣∣∣

+ sup
1−δ≤x<X(n)

∣∣∣∣
(

1 − x

1 − Fn(x)

)2−s

− 1
∣∣∣∣(12)

= op(1) + Op(1) = Op(1).

Now we write

Sn(s) = Sn(s, I ) ∨ Sn(s, II) ∨ Sn(s, III),

where

Sn(s, I ) ≡ sup
δ≤x≤1−δ

Ks(Fn(x), x) = sup
δ≤x≤1−δ

1
2

(
Fn(x) − x

)2
Ds(F

∗
n(x), x),

Sn(s, II) ≡ sup
X(1)≤x≤δ

Ks(Fn(x), x) = 1
2 sup

X(1)≤x≤δ

(
Fn(x) − x

)2
Ds(F

∗
n(x), x),

Sn(s, III) ≡ sup
1−δ≤x<X(n)

Ks(Fn(x), x) = 1
2 sup

1−δ≤x<X(n)

(
Fn(x) − x

)2
Ds(F

∗
n(x), x).

By the monotonicity of u �→ Ds(u, v) for u ≤ 1/2 again, with probability tending
to 1,

Sn(s, II) ≤ 1
2 sup

X(1)≤x≤δ

(
Fn(x) − x

)2{Ds(Fn(x), x) ∨ Ds(x, x)}

≥ 1
2 sup

X(1)≤x≤δ

(
Fn(x) − x

)2{Ds(Fn(x), x) ∧ Ds(x, x)},

and similarly, by the monotonicity of u �→ Ds(u, v) for 1/2 ≤ u < 1,

Sn(s, III) ≤ 1
2 sup

1−δ≤x<X(n)

(
Fn(x) − x

)2{Ds(Fn(x), x) ∨ Ds(x, x)}

≥ 1
2 sup

1−δ≤x<X(n)

(
Fn(x) − x

)2{Ds(Fn(x), x) ∧ Ds(x, x)}.

For Sn(s, I ),

Sn(s, I ) = 1

2
sup

δ≤x≤1−δ

(Fn(x) − x)2

x(1 − x)
{1 + Op(n−1/2)}

≤ 1

2
sup

δ≤x≤1−δ

(
Fn(x) − x

)2{Ds(Fn(x), x) ∨ Ds(x, x)}{1 + Op(n−1/2)}.
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In the second region the argument above leading to (11) yields

Sn(s, II) ≤ 1
2 sup

X(1)≤x≤δ

(
Fn(x) − x

)2{Ds(Fn(x), x) ∨ Ds(x, x)}

≥ 1
2 sup

X(1)≤x≤δ

(
Fn(x) − x

)2{Ds(Fn(x), x) ∧ Ds(x, x)},

and similarly for Sn(s, III). It follows that

Sn(s) ≤ 1

2
sup

X(1)≤x<X(n)

(
Fn(x) − x

)2

× {Ds(Fn(x), x) ∨ Ds(x, x)}{1 + Op(n−1/2)}
(13)

= 1

2
sup

X(1)≤x<X(n)

{
(Fn(x) − x)2

x(1 − x)
{1 ∨ x(1 − x)Ds(Fn(x), x)}

}

×{1 + Op(n−1/2)}
and, on the other hand,

Sn(s) ≥ 1

2
sup

X(1)≤x<X(n)

(
Fn(x) − x

)2{Ds(Fn(x), x) ∧ Ds(x, x)}

× {1 + Op(n−1/2)}
(14)

= 1

2
sup

X(1)≤x<X(n)

{
(Fn(x) − x)2

x(1 − x)
{1 ∧ x(1 − x)Ds(Fn(x), x)}

}

×{1 + Op(n−1/2)}.
Now we break the supremum into the regions [X(1), dn], [dn,1 − dn] and [1 −
dn,X(n)) with dn = (logn)k/n for any k ≥ 1. Then we have

n sup
X(1)≤x≤dn

(Fn(x) − x)2

x(1 − x)
= op(b2

n),

where bn = √
2 log2 n; see Shorack and Wellner [38], (26), page 602. Moreover,

sup
X(1)≤x≤dn

|x(1 − x)Ds(Fn(x), x)| = Op(1),

so

n sup
X(1)≤x≤dn

(Fn(x) − x)2

x(1 − x)

(
1#x(1 − x)Ds(Fn(x), x)

) = op(b2
n)(15)

for # = ∧ or # = ∨, and similarly for the region [1 − dn,X(n)] by a symmetric
argument. On the other hand, if we define

Zn ≡ sup
dn≤x≤1−dn

√
n|Fn(x) − x|√

x(1 − x)
,
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then, for k ≥ 5,

Zn

bn

p→ 1(16)

and

bnZn − cn
d→ Y4 ∼ E4

v ,(17)

where cn = 2 log2 n + (1/2) log3 n − (1/2) log(4π) (see, e.g., Shorack and Well-
ner [38], page 600, (16.1.20) and (16.1.17)). [Note that for the middle bracket
in (15) we have

x(1 − x)Ds(Fn(x), x) = (1 − x)

(
x

Fn(x)

)2−s

+ x

(
1 − x

1 − Fn(x)

)2−s

,

so

sup
X(1)≤x≤X(1)

x(1 − x)Ds(Fn(x), x) ≤
(

sup
X(1)≤x≤dn

x

Fn(x)

)2−s

+ op(1),

so by Wellner [42], Remark 1, the probability of large values of the main term can
be bounded by

P

((
sup

X(1)≤x≤dn

x

Fn(x)

)2−s

> λ

)
= P

(
sup

X(1)≤x≤dn

x

Fn(x)
> λ1/(2−s)

)

≤ P

(
sup

X(1)≤x≤1

x

Fn(x)
> λ1/(2−s)

)

≤ e · λ1/(2−s) exp
(−λ1/(2−s)).]

Furthermore, ∥∥∥∥Fn(x) − x

x

∥∥∥∥1

dn

= O(an)(18)

almost surely where

a2
n ≡ log2 n

ndn

= log2 n

(logn)k
→ 0;

see Shorack and Wellner [38], page 424, (4.5.10) and (4.5.11). It follows from (13),
(14) and (15)–(18) that

nSn(s) = 1

2

{
sup

dn≤x≤1−dn

n(Fn(x) − x)2

x(1 − x)

(
1 + Op(an)

) ∨ op(b2
n)

}

× {1 + Op(n−1/2)}(19)

= 1

2
{Z2

n ∨ op(b2
n)} + op(1).
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Hence, we can write

1

2
Z2

n = 1

2
(Zn − cn/bn)(Zn + cn/bn) + 1

2

c2
n

b2
n

= 1

2
bn(Zn − cn/bn)

Zn + cn/bn

bn

+ 1

2

c2
n

b2
n

.

It follows that

nSn(s) − 1

2

c2
n

b2
n

= bn(Zn − cn/bn)
Zn + cn/bn

2bn

∨
(
op(b2

n) − 1

2

c2
n

b2
n

)
+ op(1)

(20)

= bn(Zn − cn/bn)
Zn/bn + cn/b

2
n

2
∨ (

op(1) − 1/2
)
b2
n + op(1)

d→ Y4
1 + 1

2
∨ {−∞} = Y4;

here we used c2
n/b

2
n ∼ b2

n in the second equality. Since

1

2

c2
n

b2
n

= log2 n + (1/2) log3 n − (1/2) log(4π) + o(1) = rn + o(1),

this yields

P
(
nSn(s) − rn ≤ x

) → exp(−4 exp(−x)),(21)

and completes the proof of Theorem 3.1. Note that the centering c2
n/(2b2

n) emerges
naturally in the course of this proof. This completes the proof for the case s ∈
[−1,1). For 1 ≤ s ≤ 2, there are two additional terms that enter, and both of these
are op(b2

n) from the arguments in the previous section. The case s = 2 is easy
since in this case v(1 − v)Ds(u, v) = 1 for all u, while the result was stated for
the case s = 1 by Berk and Jones [4] and proved in Wellner and Koltchinskii [43].
(Wellner and Koltchinskii [43] incorrectly claim (page 324) that K(Fn(x), x) = 0
if x < X(1); in fact, the supremum over this region is stochastically bounded and,
hence, can be neglected.) �

PROOF OF THEOREM 3.2. The fact that nTn(2) = A2
n/2

d→ A2/2 is classical;

see Shorack and Wellner [38], page 148. That nTn(1)
d→ A2/2 was noted by Ein-

mahl and McKeague [18] and proved by Wellner and Koltchinskii [43]. The proof
for s �= 1,2 proceeds along the same lines as the proof in Wellner and Koltchinskii
[43] for the case s = 1, and hence will not be given here. For details, see Jager [23]
or Jager and Wellner [26]. �
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7.2. Proofs for Section 4.

PROOF OF PROPOSITION 4.1. We first prove the claim for the “unrestricted
version” of the statistics Sur

n (s) defined by Sur
n (s) ≡ sup0<x<1 Ks(Fn(x), x), and

then show that the difference between Sn(s) and Sur
n (s) is negligible. Now for

s ∈ (0,1) and Cs ≡ 1/(s(1 − s)), we have

|Sur
n (s) − S∞(s,F )|

≤ Cs sup
0<x<1

∣∣{1 − Fn(x)sx1−s − (
1 − Fn(x)

)s
(1 − x)1−s}

− {
1 − F(x)sx1−s − (

1 − F(x)
)s

(1 − x)1−s}∣∣
≤ Cs

{
sup
x

∣∣(Fn(x)s − F(x)s
)
x1−s

∣∣
+ sup

x

∣∣{(1 − Fn(x)
)s − (

1 − F(x)
)s}

x1−s
∣∣}

≤ Cs

{
sup
x

|Fn(x)s − F(x)s | + sup
x

∣∣(1 − Fn(x)
)s − (

1 − F(x)
)s ∣∣}

a.s.→ 0.

Thus, the proposition will be proved if we show that

Sur
n (s) − Sn(s)

a.s.→ 0.(22)

Now write S0
n(s) = max{Rn,Mn,Ln}, where

Mn ≡ sup
X(1)≤x<X(n)

Ks(Fn(x), x) = Sn(s),

Ln ≡ sup
x<X(1)

Ks(Fn(x), x)

and

Rn ≡ supx≥X(n)
Ks(Fn(x), x).

Note that

S0
n(s) − Sn(s) = max{Ln,Mn,Rn} − Mn =




0, if Mn ≥ Ln ∨ Rn,
Ln − Mn, if Ln > Mn ∨ Rn,
Rn − Mn, if Rn > Mn ∨ Ln.

Now set

α0 ≡ α0(F ) = sup{x :F(x) = 0} ≥ 0,

α1 ≡ α1(F ) = inf{x :F(x) = 1} ≤ 1.
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Note that

Ln = sup
x<X(1)

Ks(Fn(x), x) = 1

s(1 − s)

{
1 − (

1 − X(1)

)1−s}
a.s.→ 1

s(1 − s)
{1 − (1 − α0)

1−s} ≡ l0(s,F ),

and, on the other hand,

Mn = sup
X(1)≤x<X(n)

Ks(Fn(x), x) ≥ Ks

(
Fn

(
X(1)

)
,X(1)

) = Ks

(
1/n,X(1)

)

= 1

s(1 − s)

{
1 − (1/n)sX1−s

(1) − (1 − 1/n)s
(
1 − X(1)

)1−s} ≡ L0
n

a.s.→ 1

s(1 − s)
{1 − (1 − α0)

1−s} = l0(s,F ).

Similarly,

Rn = sup
x≥X(n)

Ks(Fn(x), x) = 1

s(1 − s)

{
1 − X1−s

(n)

}
a.s.→ 1

s(1 − s)
{1 − α1−s

1 } ≡ r0(s,F ),

while

Mn = sup
X(1)≤x<X(n)

Ks(Fn(x), x) ≥ Ks

(
Fn

(
X(n)−)

,X(n)

) = Ks

(
1 − 1/n,X(n)

)

= 1

s(1 − s)

{
1 − (1 − 1/n)sX1−s

(n) − (1/n)s
(
1 − X(n)

)1−s} ≡ R0
n

a.s.→ 1

s(1 − s)
{1 − α1−s

1 } = r0(s,F ).

By combining these pieces, it follows that

0 ≤ S0
n(s) − Sn(s) = max{Ln,Mn,Rn} − Mn

=



0, if Mn ≥ Ln ∨ Rn,

Ln − Mn, if Ln > Mn ∨ Rn,

Rn − Mn, if Rn > Mn ∨ Ln


 ≤




0, if Mn ≥ Ln ∨ Rn,

Ln − L0
n, if Ln > L0

n ∨ Rn,

Rn − R0
n, if Rn > R0

n ∨ Ln




a.s.→ 0.

This shows that (22) holds and completes the proof. �

PROOF OF PROPOSITION 4.2. Recall that when s = 2 such a condition fol-
lows from Theorem 3 in Jager and Wellner [25]: taking b = 1/2 and applying
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continuous mapping, we conclude that

Sn(2)
a.s.→ sup

0<x<1
K2(F (x), x) if and only if E{[X(1 − X)]−1/2} < ∞.

Similarly, for 1 < s < ∞,

Sn(s) = sup
0<x<1

{
Fn(x)sx1−s + (

1 − Fn(x)
)s

(1 − x)1−s − 1
} 1

s(s − 1)

a.s.→ sup
0<x<1

{
F(x)sx1−s + (

1 − F(x)
)s

(1 − x)1−s − 1
} 1

s(s − 1)

if and only if

‖Fn(x)sx1−s − F(x)sx1−s‖ a.s.→ 0

and ∥∥(
1 − Fn(x)

)s
(1 − x)1−s − (

1 − F(x)
)s

(1 − x)1−s
∥∥ a.s.→ 0,

if and only if ∥∥∥∥
(

Fn(x)

x(s−1)/s

)s

−
(

F(x)

x(s−1)/s

)s∥∥∥∥ a.s.→ 0

and ∥∥∥∥
(

1 − Fn(x)

(1 − x)(s−1)/s

)s

−
(

1 − F(x)

(1 − x)(s−1)/s

)s∥∥∥∥ a.s.→ 0,

if and only if ∥∥∥∥
(

Gn(F (x))

x(s−1)/s

)s

−
(

F(x)

x(s−1)/s

)s∥∥∥∥ a.s.→ 0

and ∥∥∥∥
(

1 − Gn(F (x))

(1 − x)(s−1)/s

)s

−
(

1 − F(x)

(1 − x)(s−1)/s

)s∥∥∥∥ a.s.→ 0.

Since g(u) = us is uniformly continuous on bounded sets, these last two conver-
gences occur if and only ∥∥∥∥Gn(F (x))

x(s−1)/s
− F(x)

x(s−1)/s

∥∥∥∥ a.s.→ 0

and ∥∥∥∥1 − Gn(F (x))

(1 − x)(s−1)/s
− 1 − F(x)

(1 − x)(s−1)/s

∥∥∥∥ a.s.→ 0.

These, in turn, hold if and only if∥∥∥∥ Gn(u) − u

F−1(u)(s−1)/s

∥∥∥∥ a.s.→ 0 and
∥∥∥∥1 − Gn(u) − (1 − u)

(1 − F−1(u))(s−1)/s

∥∥∥∥ a.s.→ 0.
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But in view of Wellner [41], these convergences hold if and only if F satisfies∫ 1

0

1

(F−1(u)(1 − F−1(u)))(s−1)/s
du < ∞.

By the (inverse) probability integral transformation, the convergence in the last
display is equivalent to E[X(1 − X)](1−s)/s < ∞. This completes the proof of the
claimed equivalences. �

PROOF OF PROPOSITION 4.3. For s = 1, this follows from Berk and
Jones [5], pages 55–56. Thus, it suffices to prove the claimed convergences for
s > 1 and s < 0.

For s > 1, fix α ∈ (0,1). We begin by breaking the supremum over (0,1) into
the regions 0 < Fs(x) < n−α , n−α ≤ Fs(x) ≤ 1 − n−α and 1 − n−α < Fs(x) < 1:

Sn(s) = sup
0<x<1

{
Fn(x)sx1−s + (

1 − Fn(x)
)x

(1 − x)1−s − 1
} 1

s(s − 1)

= sup
x:0<Fs(x)<n−α

{
Fn(x)sx1−s + (

1 − Fn(x)
)x

(1 − x)1−s − 1
} 1

s(s − 1)

∨ sup
x:n−α<Fs(x)<1−n−α

{
Fn(x)sx1−s + (

1 − Fn(x)
)x

(1 − x)1−s − 1
} 1

s(s − 1)

∨ sup
x:1−n−α<Fs(x)<1

{
Fn(x)sx1−s + (

1 − Fn(x)
)x

(1 − x)1−s − 1
} 1

s(s − 1)

≡ In(s) ∨ IIn(s) ∨ IIIn(s).

For the main term, In(s), let Gn be the empirical d.f. of n i.i.d. Uniform(0,1)

random variables and use Fn
d= Gn(Fs) to write

s(s − 1)In(s)
d= sup

0<Fs(x)<n−α

{(
Gn(Fs(x))

Fs(x)

)s

Fs(x)sx1−s

+
(

1 − Gn(Fs(x))

1 − Fs(x)

)s(
1 − Fs(x)

)s
(1 − x)1−s − 1

}
,

where

sup
x:Fs(x)<n−α

(
Gn(Fs(x))

Fs(x)

)s

= sup
0<t<n−α

(
Gn(t)

t

)s
d→ sup

t>0

(
N(t)

t

)s

,

Fs(x)sx1−s = x1−s

1 + (x1−s − 1)/(s − 1)
→ s − 1

uniformly in x ∈ [0, n−α], while

sup
x:Fs(x)<n−α

∣∣∣∣1 − Gn(Fs(x))

1 − Fs(x)
− 1

∣∣∣∣ a.s.→ 0
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and

sup
x:Fs(x)<n−α

∣∣(1 − Fs(x)
)s

(1 − x)1−s − 1
∣∣ → 0.

Combining these last five displays shows that In(s)
d→ s−1 supt>0(N(t)/t)s ; note

that the limit variable is ≥ 1/s almost surely.
To handle the term IIn(s), write

IIn(s)
d= sup

n−α<Fs(x)<1−n−α

{(
Gn(Fs(x))

Fs(x)

)s

Fs(x)sx1−s

+
(

1 − Gn(Fs(x))

1 − Fs(x)

)s

× (
1 − Fs(x)

)s
(1 − x)1−s − 1

}
1

s(s − 1)
,

where now the two terms involving the ratio of the empirical d.f. to the true d.f. Fs

converge almost surely to 1. Hence, we conclude that

IIn(s)
a.s.→ sup

0<x<1
Ks(Fs(x), x) = 1

s
,

where the equality follows after some calculation. Finally, it is easily shown that
IIIn(s)

a.s.→ 0.
For s < 0, fix α ∈ (0,1). We begin by breaking the supremum over (0,1) into

the regions X(1) ≤ x < F−1
s (n−α), F−1

s (n−α) ≤ x ≤ F−1
s (1 − n−α) and F−1

s (1 −
n−α) < x < X(n):

Sn(s) = sup
X(1)≤x<X(n)

{
Fn(x)sx1−s + (

1 − Fn(x)
)x

(1 − x)1−s − 1
} 1

s(s − 1)

= sup
x:X(1)≤x<F−1

s (n−α)

{
Fn(x)sx1−s + (

1 − Fn(x)
)x

(1 − x)1−s − 1
} 1

s(s − 1)

∨ sup
x:F−1

s (n−α)≤x≤F−1
s (1−n−α)

{
Fn(x)sx1−s

+ (
1 − Fn(x)

)x
(1 − x)1−s − 1

} 1

s(s − 1)

∨ sup
x:F−1

s (1−n−α)<x<X(n)

{
Fn(x)sx1−s

+ (
1 − Fn(x)

)x
(1 − x)1−s − 1

} 1

s(s − 1)

≡ In(s) ∨ IIn(s) ∨ IIIn(s).
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For the main term, In(s), let Gn be the empirical d.f. of n i.i.d. Uniform(0,1)

random variables and use Fn
d= Gn(Fs) to write

s(s − 1)In(s)
d= sup

x:X(1)≤x<F−1
s (n−α)

{(
Fs(x)

Gn(Fs(x))

)−s

Fs(x)sx1−s

+
(

1 − Fs(x)

1 − Gn(Fs(x))

)−s

× (
1 − Fs(x)

)s
(1 − x)1−s − 1

}
,

where

sup
x:X(1)≤x<F−1

s (n−α)

(
Fs(x)

Gn(Fs(x))

)−s

= sup
ξ(1)≤t<n−α

(
t

Gn(t)

)−s
d→ sup

t≥S1

(
t

N(t)

)−s

,

Fs(x)sx1−s = x1−s(1 − s
(
x−(1−s) − 1

)) → −s

uniformly in x ∈ [0,F−1(n−α)], while

sup
x:Fs(x)<n−α

∣∣∣∣ 1 − Fs(x)

1 − Gn(Fs(x))
− 1

∣∣∣∣ a.s.→ 0

and

sup
x:Fs(x)<n−α

∣∣(1 − Fs(x)
)s

(1 − x)1−s − 1
∣∣ → 0.

Combining these last five displays shows that In(s)
d→ (1 − s)−1 supt≥S1

(t/

N(t))−s ; note that the limit variable is ≥ 1/(1 − s) almost surely.
To handle the term IIn(s), write

IIn(s)
d= sup

n−α<Fs(x)<1−n−α

{(
Fs(x)

Gn(Fs(x))

)−s

Fs(x)sx1−s

+
(

1 − Fs(x)

1 − Gn(Fs(x))

)−s

× (
1 − Fs(x)

)s
(1 − x)1−s − 1

}
1

s(s − 1)
,

where now the two terms involving the ratio of the empirical d.f. to the true d.f. Fs

converge almost surely to 1. Hence, we conclude that

IIn(s)
a.s.→ sup

0<x<1
Ks(Fs(x), x) = 1

1 − s
,

where the equality follows after some calculation. Finally, it is easily shown that
IIIn(s)

a.s.→ 0. �
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To prove Theorem 4.4 and its corollary, we will use the following lemma from
Chernoff [9].

LEMMA 7.1. Let X1,X2, . . . be i.i.d. with continuous distribution F0.

(a) If t < F0(x), then n−1 logP(Fn(x) ≤ t) → −K−(t,F0(x)).
(b) If t > F0(x), then n−1 logP(Fn(x) ≥ t) → −K+(t,F0(x)).

In both cases, the convergence is from below.

PROOF. This follows from Theorem 1 of Chernoff [9]. �

PROOF OF THEOREM 4.4. We first prove the theorem for Sur,+
n (s). Since

K+
s (t, x) is continuous in t and strictly increasing on (x,1), then for 0 < a < (1 −

x1−s)/[s(1 − s)], there is a unique τ = τ(x) in (x,1) for which K+
s (τ, x) = a and

{t : K+
s (t, x) ≥ a} = [τ,∞). If a ≥ (1 − x1−s)/[s(1 − s)], then τ = 1 necessarily.

For any fixed x ∈ (0,1), we have

1

n
logP

(
Sur,+

n (s) ≥ a
) ≥ 1

n
logP

(
K+

s (Fn(x), x) ≥ a
)

= 1

n
logP

(
Fn(x) ≥ τ

) → −K+(τ, x)

by Lemma 7.1. So

lim inf
n→∞

1

n
logP

(
Sur,+

n (s) ≥ a
) ≥ − inf

0<x<1
K+(τ (x), x).(23)

Now consider the reverse inequality. Let supx|i denote the supremum for X(i) ≤
x < X(i+1). Since Fn(x) = i/n on this range, we have

sup
x|i

K+
s (Fn(x), x) = K+

s

(
i/n,X(i)

) ∨ K+
s

(
i/n,X(i+1)

) = K+
s

(
i/n,X(i)

)
.

Note that for x < X(1), we have Fn(x) = 0, and so K+
s (Fn(x), x) = 0 also. So

we can write Sur,+
n (s) = max1≤i≤n{K+

s (i/n,X(i))} = max1≤i≤n{K+
s (Fn(X(i)),

X(i))}. Now, using monotonicity of τ ,

1

n
logP

(
Sur,+

n (s) ≥ a
)

= 1

n
logP

(
max

1≤i≤n

{
K+

s

(
Fn

(
X(i)

)
,X(i)

)} ≥ a

)

≤ 1

n
log

n∑
i=1

P
(
K+

s

(
Fn

(
X(i)

)
,X(i)

) ≥ a
)

= 1

n
log

n∑
i=1

P
(
Fn

(
X(i)

) ≥ τ
(
X(i)

))
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= 1

n
log

n∑
i=1

P
(
i/n ≥ τ

(
X(i)

)) = 1

n
log

n∑
i=1

P
(
τ−1(i/n) ≥ X(i)

)

≤ 1

n
log

n∑
i=1

P
(
Fn(τ

−1(i/n)) ≥ Fn

(
X(i)

))

= 1

n
log

n∑
i=1

P
(
Fn(τ

−1(i/n)) ≥ i/n
)

≤ 1

n
log

n∑
i=1

e−nK+(i/n,τ−1(i/n)) [by Lemma 7.1(b)]

≤ 1

n
log

n∑
i=1

e−nmin1≤i≤n K+(i/n,τ−1(i/n)) ≤ 1

n
log

n∑
i=1

e−n inf0<x<1 K+(x,τ−1(x))

= 1

n
log

n∑
i=1

e−n inf0<x<1 K+(τ (x),x) = 1

n
log

[
ne−n inf0<x<1 K+(τ (x),x)]

= − inf
0<x<1

K+(τ (x), x) + logn

n
.

So we conclude that

lim sup
n→∞

1

n
logP

(
Sur,+

n (s) ≥ a
) ≤ − inf

0<x<1
K+(τ (x), x).(24)

Combining this last display with (23) yields the convergence part of (7). To prove
the explicit formula for g+

s , note that K+(τ+(x), x) is a decreasing function of x

until x = [1 − s(1 − s)a]1/(1−s), where K+(τ+(x), x) = ∞. Thus,

inf
0<x<1

K+(τ+(x), x)

= lim
ε↘0

K+(
τ+([1 − s(1 − s)a]1/(1−s) − ε

)
, [1 − s(1 − s)a]1/(1−s) − ε

)
= − log[1 − s(1 − s)a]/(1 − s),

so the given formula for the infimum in (7) holds. This completes the proof for
Sur,+

n (s). The proof for Sur,−
n (s) is analogous using Lemma 7.1(a). �

7.3. Proofs for Section 5. The following lemma extends Lemma A.4, page
988, Donoho and Jin [15].

LEMMA 7.2. (i) For 0 < v ≤ u ≤ 1/2, and −1 ≤ s ≤ 2,

K+
s (u, v) ≤ 1

2

(u − v)2

v(1 − v)
≡ K2(u, v).(25)
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(ii) Let 1 < s ≤ 2 and v = v(u) satisfy 0 < v ≤ u < 1. Then, as u → 0,

Ks(u, v) =




K2(u, v)
[
1 + O

(
1 − (v/u)2−s

) ∨ O
((

(1 − v)/(1 − u)
)2−s − 1

)]
,

if u/v → 1,

vφs(u/v)
(
1 + o(1)

) = u{(u/v)s−1 − s}(1 + o(1)
)
/
(
s(s − 1)

)
,

if u/v → ∞.

(iii) Let s = 1 and v = v(u) satisfy 0 < v ≤ u < 1. Then, as u → 0,

K1(u, v) =
{

K2(u, v)
[
1 + O

(
u + (u/v) − 1

)]
, if u/v → 1,

u log(u/v)
(
1 + o(1)

)
, if u/v → ∞.

(iv) Let s ∈ [−1,1) \ {0} and v = v(u) satisfy 0 < v ≤ u < 1. Then, as u → 0,

Ks(u, v) =




K2(u, v)
[
1 + O

(
1 − (v/u)2−s

) ∨ O
((

(1 − v)/(1 − u)
)2−s − 1

)]
,

if u/v → 1,
1

1 − s
u
(
1 + o(1)

)
, if u/v → ∞.

(v) Let s = 0 and v = v(u) satisfy 0 < v ≤ u < 1. Then, as u → 0,

K0(u, v) =



K2(u, v)
[
1 + O

(
1 − (v/u)2) ∨ O

((
(1 − v)/(1 − u)

)2 − 1
)]

,

if u/v → 1,

u
(
1 + o(1)

)
, if u/v → ∞.

REMARK. Note that for 1 < s ≤ 2, as u → 0 and u/v → ∞,

vφs(u/v) = v

{
(1 − s) + s

u

v
−

(
u

v

)s} 1

s(1 − s)

= u

s(s − 1)

{(
u

v

)s−1

+ (s − 1)
v

u
− s

}

∼ u

s(s − 1)

{(
u

v

)s−1

− s

}(
1 + o(1)

)
,

where the right-hand side converges to u log(u/v)(1 + o(1)) as s ↘ 1.

PROOF OF LEMMA 7.2. (i) Letting u = tv, it suffices to show that for 0 <

v ≤ 1/2 and 1 ≤ t ≤ 1/(2v),

Ks(tv, v) ≤ 1

2

(t − 1)2

1 − v
v

or, equivalently, since Ks(tv, v) = vφs(t) + (1 − v)φs((1 − tv)/(1 − t)),

φs(t) +
(

1

v
− 1

)
φs

(
1 − tv

1 − v

)
≤ 1

2

(t − 1)2

1 − v
.
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Let

fs(t) ≡ φs(t) +
(

1

v
− 1

)
φs

(
1 − tv

1 − v

)
− 1

2

(t − 1)2

1 − v
.

Now by direct calculation, fs(1) = 0, and

f ′
s (t) = φ′

s(t) +
(

1

v
− 1

)
φ′

s

(
1 − tv

1 − v

)( −v

1 − v

)
− t − 1

1 − v

= φ′
s(t) − φ′

s

(
1 − tv

1 − v

)
− t − 1

1 − v
,

so that f ′
s (1) = 0. Furthermore,

f ′′
s (t) = φ′′

s (t) + v

1 − v
φ′′

s

(
1 − tv

1 − v

)
− 1

1 − v

= 1

1 − v

{
(1 − v)φ′′

s (t) + vφ′′
s

(
1 − tv

1 − v

)
− 1

}

= 1

1 − v

{
(1 − v)

(
1

t

)2−s

+ v

(
1 − v

1 − tv

)2−s

− 1
}

≤ 1

1 − v

{(
(1 − v)

1

t
+ v

(
1 − v

1 − tv

))2−s

− 1
}

(since x2−s is concave for 1 ≤ s ≤ 2)

= 1

1 − v

{(
1 − v

t (1 − tv)

)2−s

− 1
}

≤ 0

using the fact that v(1 − v) ≤ vt (1 − vt) for 0 ≤ v ≤ vt ≤ 1/2 implies (1 −
v)/(t (1 − tv)) ≤ 1. Here we have used

φ′
s(x) = s − sxs−1

s(1 − s)
= 1 − xs−1

1 − s
, φ′′

s (x) = xs−2.

Since 1 ≤ t ≤ 1/(2v), it follows that v ≤ vt ≤ 1/2 < 1, 1 − v ≥ 1 − vt ≥ 1/2 > 0
and 1 ≥ (1 − vt)/(1 − v) ≥ 1/(2(1 − v)). When s < 1, we calculate

f ′′′
s (t) = φ′′′

s (t) −
(

v

1 − v

)2

φ′′′
s

(
1 − tv

1 − v

)

and note that f ′′′
s (1) < 0, while f ′′′

s (t) = 0 has a unique root, so to show f ′′
s (t) ≤ 0,

it suffices to show f ′′
s (1/(2v)) ≤ 0 for 0 ≤ v ≤ 1/2. By a straightforward calcula-

tion, we get

f ′′
s (1/(2v)) = (2v)2−s + v

1 − v

(
1 − v

1/2

)2−s

− 1

1 − v
,
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which is ≤ 0 for 0 ≤ v ≤ 1/2 if s ≥ −1. This shows that f ′′
s (t) ≤ 0 in the range

−1 ≤ s < 1, and completes the proof of (i).
(ii) By expanding Ks(u, v) as a function of u as in (10),

Ks(u, v) = K2(u, v){1 + v(1 − v)Ds(u
∗, v) − 1}

with |u∗ − v| ≤ |u − v|; since 0 < v ≤ u, we necessarily have 0 < v ≤ u∗ ≤ u.
Here

v(1 − v)Ds(u
∗, v) − 1 = (1 − v)

{(
v

u∗
)2−s

− 1
}

+ v

{(
1 − v

1 − u∗
)2−s

− 1
}

≡ I + II.

Now 0 < v ≤ u∗ ≤ u implies 1 ≤ u∗/v ≤ u/v, so v/u ≤ v/u∗ ≤ 1 and 1 − v ≥
1 − u∗ ≥ 1 − u implies (1 − v)/(1 − u) ≥ (1 − v)/(1 − u∗) ≥ 1. Thus, I ≤ 0 and
II ≥ 0. It follows that

v(1 − v)Ds(u
∗, v) − 1 ≤ v

{(
1 − v

1 − u

)2−s

− 1
}
.

Similarly,

v(1 − v)Ds(u
∗, v) − 1 ≥ (1 − v)

{(
v

u

)2−s

− 1
}

in this range, and the claimed bound in the first part of (ii) follows.
To prove the second part of (ii), note that when u/v → ∞, we can write

Ks(u, v)

vφs(u/v)
= 1 − (u/v)sv − ((1 − u)/(1 − v))s(1 − v)

v{1 − s + s(u/v) − (u/v)s}
= (u/v)sv + ((1 − u)/(1 − v))s(1 − v) − 1

(u/v)sv − v(1 − s) − su

= 1 + [((1 − u)/(1 − v))s(1 − v) − 1]/[(u/v)sv]
1 − [v(1 − s) + su]/[(u/v)sv]

≡ 1 + A(u, v)

1 − B(u, v)
,

where, for 1 < s ≤ 2,

B(u, v) = v(1 − s) + su

(u/v)sv
= 1 − s

(u/v)s
+ s(v/u)s−1 = o(1)

and

A(u, v) = ((1 − u)/(1 − v))s(1 − v) − 1

(u/v)sv

= ((1 − u)/(1 − v))s[(1 − v) − 1] + ((1 − u)/(1 − v))s − 1

(u/v)sv



GOODNESS-OF-FIT VIA PHI-DIVERGENCES 2049

= −((1 − u)/(1 − v))s

(u/v)s
+ ((1 − u)/(1 − v))s − 1

(u/v)sv

= o(1) + 1 − su + sv − 1

(u/v)sv
+ o(1)

= o(1) + s
1 − (u/v)

(u/v)s
= o(1) − s(v/u)s−1 = o(1).

Thus, the second part of (ii) holds.
The first part of (iv) is proved exactly as in (ii). To prove the second part of (iv),

we write

Ks(u, v) = 1

s(1 − s)

{
1 − (u/v)sv − (

(1 − u)/(1 − v)
)s

(1 − v)
}

= 1

s(1 − s)

{
v

(
1 −

(
u

v

)s)
+ (1 − v)

(
1 −

(
1 − u

1 − v

)s)}

= 1

s(1 − s)

{
u

(
u

v

)s−1(
−1 +

(
v

u

)s)

+ (1 − v)(s(u − v) + o(u) + o(v))

1 − sv + o(v)

}

= 1

s(1 − s)

{
su

(
1 − (v/u)

)(
1 + o(1)

) − u(v/u)1−s{1 − (v/u)s}}

= 1

1 − s
u
(
1 + o(1)

)
.

(v) The proof of (v) is similar to the proof of (iv). �

LEMMA 7.3. Suppose that X1, . . . ,Xn are i.i.d. Fn with 0 < ρ∗(β) < r <

β/3. Then r < 1/4 and for any 0 < r0 < r ,

sup
n−4r<x<n−4r0

∣∣∣∣Fn(x)

x
− 1

∣∣∣∣ p→ 0.(26)

PROOF. Note that Fn(·) d= Gn(Fn(·)), where Gn is the empirical d.f. of n i.i.d.
U(0,1) random variables ξ1, . . . , ξn and

Fn(x) = x + εn

{
(1 − x) − 


(

−1(1 − x) − µn

)} ≥ x.

Thus, with ‖ · ‖b
a ≡ supa≤t≤b |f (t)|,

sup
n−4r<x<n−4r0

∣∣∣∣Fn(x)

x
− 1

∣∣∣∣
=

∥∥∥∥
(

Fn(x)

x
− 1

)+∥∥∥∥n−4r0

n−4r
∨

∥∥∥∥
(

1 − Fn(x)

x

)+∥∥∥∥n−4r0

n−4r
(27)
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d=
∥∥∥∥
(

Gn(Fn(x))

x
− 1

)+∥∥∥∥n−4r0

n−4r
∨

∥∥∥∥
(

1 − Gn(Fn(x))

x

)+∥∥∥∥n−4r0

n−4r
.(28)

The second term in this last display converges to 0 in probability easily since
Fn(x)/x ≥ 1 implies that it is bounded by∥∥∥∥

(
1 − Gn(Fn(x))

Fn(x)

)+∥∥∥∥1

n−4r
≤

∥∥∥∥
(

1 − Gn(t)

t

)+∥∥∥∥1

n−4r

p→ 0

by Theorem 0 of Wellner [42]. On the other hand,

Gn(Fn(x))

x
− 1 = Gn(Fn(x))

Fn(x)

Fn(x)

x
− 1

=
(

Gn(Fn(x))

Fn(x)
− 1

)
Fn(x)

x
+

(
Fn(x)

x
− 1

)
,

so again by Theorem 0 of Wellner [42], the first term of (27) converges to 0 in
probability if

lim sup
n

‖Fn(x)/x‖1
n−4r < ∞ and sup

n−4r<x<n−4r0

(
Fn(x)

x
− 1

)
→ 0.

But this holds by a straightforward analysis using the asymptotics of 
−1 when
r < β/3. �

Now we have the tools in place to prove our extension of the results of Donoho
and Jin [15].

PROOF OF THEOREM 5.1. First consider 1 < s < 2. As in Donoho and Jin
[15], we first consider the case r < β/3. Then r < 1/4 and we can choose 0 <

r0 < r < 1/4. From Lemma 7.3 the convergence (26) holds. Thus, by part (ii) of
Lemma 7.2, it follows that for n−4r < x < n−4r0 , we have

nK+
s (Fn(x), x) = 1

2

(
(Fn(x) − x)+√

x(1 − x)

)2(
1 + op(1)

)
,

and hence,

nS+
n (s) ≥ sup

n−4r<x<n−4r0

nK+
s (Fn(x), x) ≥ 1

2HC∗2
n,r,r0

(
1 + op(1)

)
.

Thus, nS+
n (s) separates H0 and H

(n)
1 for s ∈ (1,2) and r < β/3.

Now suppose that r > (1 − √
1 − β)2 (and still 1 < s < 2). Since (r +

β)/(2
√

r) < 1, we can pick a constant q < 1 such that

(r + β)

2
√

r
∨ √

r <
√

q < 1.
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As argued by Donoho and Jin [15], under H
(n)
1 , nFn(n

−q) ∼ Binomial(n,

Lnn
−[β+(

√
q−√

r)2]), where Lnn
−[β+(

√
q−√

r)2] � n−q ; here Ln is a logarithmic
term that does not contribute significantly to the argument. Hence, we have
Fn(n

−q)/n−q � 1, and thus, from part (ii) of Lemma 7.2 again,

nK+
s (Fn(n

−q), n−q) = nFn(n
−q)

s(s − 1)

{(
Fn(n

−q)

n−q

)s−1

− s

}(
1 + op(1)

)
.

Hence, we conclude that

nS+
n (s) ≥ nK+

s (Fn(n
−q), n−q) = nFn(n

−q)

s(s − 1)

{(
Fn(n

−q)

n−q

)s−1

− s

}(
1 + op(1)

)
,

so using β + (
√

q − √
r)2 < q < 1, we conclude that nS+

n (s) separates H0 and

H
(n)
1 in this range.
Now consider −1 ≤ s < 1. For this range of s the argument is exactly the same

as above, but now using parts (iv) and (v) of Lemma 7.2. (Note that the conclusion
of Lemma A.1 of Donoho and Jin [15] can be strengthened considerably as fol-

lows: if Zn ∼ Bin(n,πn) with πn → 0 and nπn → ∞, then Zn
p→ ∞; i.e., for any

number M > 0, we have P(Zn ≥ M) → 1. This follows easily from Theorem 0 of

Wellner [42] since |Zn/(nπn)−1| p→ 0 so Zn = (Zn/nπn)nπn
p→ 1 ·∞ = ∞. This

also follows easily from the Paley–Zygmund inequality (see, e.g., Kallenberg [29],
page 40): P(Zn > rE(Zn)) ≥ (1 − r)2+(EZn)

2/[EZ2
n].) �
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