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SOME RESULTS ON EXACT CONTROLLABILITY
OF PARABOLIC SYSTEMS

Zhongcheng Zhou, Ping Lin* and Hang Gao

Abstract. In this paper, we first discuss the exact controllability of a linear
parabolic system governed by bilinear control as a coefficient like uy and then
give a result of the locally exact null-controllability of a semilinear parabolic
system. Our main method is based on the Implicit Function Theorem.

1. INTRODUCTION

Let Q C R™, n € N be a bounded domain with a sufficiently smooth boundary
0. We will first consider the exact controllability (reachability) of the following
bilinear control system

Yt — Ay =uy, in QTv
(11) y(x,t) :g(fIf), on ETv
y(z,0) =yo(z), in &

where Qr = Q x (0,T), X7 = 9Q x (0, 7).

In the context of heat-transfer, the term uy describes the heat-exchange at point x
at time ¢ of the given substance according to Newton’s Law (see e.g. [19] pp. 155-
156). In this case, u is proportional to the heat-transfer coefficient, which depends
on the substance at hand, its surface area and the environment. More generally, the
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bilinear control u can be linked to the use of various means (“catalysts”) that can
accelerate or decelerate the reaction at hand.

Let us recall that, in its general form, it is said that the system at hand is
approximately controllable in the given (linear phase-) space H at time 1" > 0 if,
by selecting a suitable available (“traditionally” linear additive) control, it can be
steered in H from any initial state into any neighborhood of any desirable target
state at time 7'. In turn, it is exact controllable if it can be steered in H from any
initial state within the given time-interval [0, T'] to the given state exactly.

We refer to the early paper [12] by J.M. Ball, J.E. Mardsen and M. Slemrod
on controllability of an abstract infinite dimensional bilinear system, which appears
to be the first work on this subject in the framework of pde’s. In [12], the global
approximate controllability of the rod equation wuy + Upyzs + k(t)uz, = 0 with
hinged ends and of the wave equation uy — uy, + k(¢t)u = 0 with Dirichlet bound-
ary conditions, where k is control (the axial load), was shown making use of the
nonharmonic Fourier series approach under the additional (nontraditional) assump-
tion that all the modes in the initial data are active. We refer to just one additional
paper, [13], on bilinear controllability for pde’s, dealing with the simultaneous con-
trol of the rod equation and a simple Schrodinger equation. In [10], A.Y. Khapalov
discussed the non-negative approximate controllability of a parabolic system with
superlinear term governed by a bilinear control, and in [11], he also discussed the
bilinear null-controllability of a parabolic system with the reaction term satisfying
Newton’s Law.

Our first main result is on the exact controllability (reachability) of (1.1).

Theorem 1.1. Letn =1, Q = (0,1), Qr = (0,1) x (0,T). Assume that
6 € W2>(Q), 0 >0inQ, and A0 > 0 a.e. inQ, g(-) € C(Q), g(x) > 0 in
Q and 0(z) = g(z), Vz € {0,1}, then there exists a T(0) > 0 such that for any
yo(x) € L2(RY), there exists a control u € L*(Qr) such that the corresponding
solution to (1.1) in C([0,T); L?(Q)) N L%(0,T; HY(Q)) satisfies

y(z,T) =0(x) a.e. in Q.
Next, we will consider the locally exact null-controllability of the following

semilinear parabolic system governed in a nonempty subdomain w C € by a locally
additive control u,

Yt — Ay + f(y) = Xwl, in QTv
(12) y(w,t) =0, on S,
y(x,0) = yo(z), in Q,

where ¥, is the characteristic function of w, u € L?(Q7) is the control, yo € L?(12),
f(-) € CY(R), f(0) = 0 and satisfies the following conditions
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|f(s1) = f(s2) = f'(0)(s1 — s2)|

< C(|s1]P7 + |sa[P71)[s1 — 82|, Vs1, 52 € R,

(1.3)

where C' > 0, p > 1 such that p < (n+4)/4. It is known (e.g.[4]) that there exists
C > 0 and n > 0 such that when

(1.4) lvoll 2@ + lull2(@r) <,

the solution to (1.2) exists and is unique in C([0,T]; L%(Q)) N L2(0,T; H(2)).
Moreover,

1 — y2HL°°([o,T];LQ(Q))mLQ(o,T;Hg(Q))

(1.5)
< Cllys — wgllez) + llur — u2ll L2gp)s

for any pair of (1, u;) as in (1.4), y¢, i = 1, 2 being the solution to (1.2) with those
data.

The controllability of linear and semilinear parabolic systems with traditionally
additive control has been analysed in several recent papers. Among them, let us
mention [2,3,6,7,8,20] in what concerns null controllability and for approximate
controllability, we refer to [2,4,5,6]. We note also that it is shown in [6] that for any
/3 > 2, there exists functions f = f(s) with f(0) = 0 and f(s) ~ |s|log?(1+|s|) as
|s| — oo such that (1.2) is not null controllable for all 7' > 0. For general systems
of the form (1.2), the best one one can expect is the local null controllability i.e.,
the exact null controllability for initial data in a neigborhood of the origin.

Our second main result is as follows.

Theorem 1.2. Let f(-) € C'(R) satisfies (1.3) and (1.4), then there exists p > 0
such that for all yo € L*(Q), |lyollr2) < p. there are y € C([0,T]; L*(2)) N
L2(0,T; H}(Q)) and u € L*(Qr) which satisfies (1.2) and such that y(-, T) = 0.

The rest of this paper is organized as follows. Section 2 is devoted to giving
some technical lemmas we will use below. In section 3 and section 4, we will prove
theorems 1.1 and 1.2 by implicit function theorem.

2. PRELIMINARY LEMMAS

In order to prove the above theorems, we need the following results ([21]).
Denote by £(X,Y") the space of continuous linear mappings from X into Y, where
X and Y are Banach spaces. Let D be a dense subset of X.

Definition 2.1. The function G : X — Y is strongly F'réchet differentiable at
a € X if V e > 0, there exists d(¢) > 0 such that

1G(v) = G(z) = M(v - 2)|| <elv—zl,
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whenever z, v satisfies || — al|, ||v — a|| < d(g). Here the linear mapping M =
G'(a) : D =Y is the Fréchet derivative of G at a.

Definition 2.2. The function G : X — Y is Hadamard differentiable at a € X
if there exists M € L(X,Y) such that, for any continuous function w : [0, 1] — X
for which w'(0") exists and w(0) = a, the function F' = G o w is differentiable at
0%, with F/(07) = Mw'(0T), thus

G(w(t)) — G(w(0)) — M (0M)t = o(t) as t | 0,
where M is the Hadamard derivative.

Definition 2.3. The function G : X — Y is strongly Hadamard differentiable
at a € X if F = G ow is strongly differentiable at 0T, that is

im u — -1 w) — _ + '
(t, ul)i(o, 0)( ) [F(u) — F(t)] = F'(07)

Lemma 2.1. Let G : X — Y have a Gateaux variation 6G(x; h) at all points
in a convex neigborhood Q of xo € X and all h € X. If 0G(- ; -) is continous at
(zo, 0), then G is strongly Hadamard differentiable at x .

Definition 2.4. The function G : X — Y is restricted strongly Hadamard
differentiable at a if the strongly Hadamard differentiable property holds, with w
restricted to be strongly differentiable.

Definition 2.5. The linear mapping M : D — Y is called approximately
outer invertible if, for each u € (0, 1), there exists a bounded linear mapping
B, :Y — X, and a bound I', depending on i, for which

|(BuMB, — Byl < ul Buyll and | Buyll < 7l ¥y €Y.

then each B, is called an approximately outer invertible of M, with bound function

().

Lemma 2.2. Let H and Hs be two real Hilbert spaces, Let M : Hy — Hy
be a compact linear operator, then M is approximately outer invertible.
The following lemma will be the main tool in our proof of the above theorems.

Lemma 2.3. (Implicit Function Theorem) Let X and Y be real Banach spaces,
with a € X. Let S be a closed convex cone in Y. Let the function G : X — Y
be restricted strongly Hadamard defferentiable at a. Let b:=G(a) and assume
b € S. Let the Hadamard derivative M = G'(a) : X — Y be bounded linear



Some Results on Exact Controllability of Parabolic Systems 639

with approximate outer inverse B,, and bound function T'(p) = kop™7, with v < 1.
Then for sufficiently small p, whenever ¢ satisfies —|G(a) + G'(a)c] € S, and
llcl| = 1, there exists a solution x = a+tc+n(t) € X to —G(z) € S, valid for all
sufficiently small t < 0, with © # a. With an appropriate choice of = u(t) | 0
ast L0, [[n()|luty=o(t) as t 1 0.

Lemma 2.4. [6] For the system
qt — AQ+a(xvt)q :va(xvt)v in Qr,
2.1 q=0, on X,
q(z,0) = qo(x), in Q,

we have, for any qo € L*(2), a € L®(Qr7), there exists a control v € L>®(Qr)
such that the corresponding solution to (2.1) satisfies

q(-,T)=0.
Moreover,
[vll2@ry < C(T, llall Lo (@)l L2 (o -
3. ProoF oF THEOREM 1.1
Proof.

Step 1. Let z = y — 0(x), z0(x) = yo(x) — O(x), from (1.1), we have z
satisfies

2t — 2gg = Wz +60(x)) + 01z, in Qr,
(3.1) Z‘mzo,l = 0,
z(x,0) = zp(x), in Q.

It is known (e.g.[9]) that for any T" > 0, system (3.1) admits a unique solution
in C([0,T]; L*(Q)) N L?(0,T; HX(Q)).

In order to prove theorem 1.1, it is sufficient to prove that there exists a 7'(¢) > 0
such that (3.1) is exact null controllable.

Notice that § € W2 (), we have § € C(2) by Sobolev Embedding Theorem.
Hence, &= € L>(Q). Define the mapping G : L?(Q) x L*(Qr) — L*(Q),
G(z0, u) = z(x,T), where z is the solution to (3.1). We will first prove that G is
strongly Hadamard differentiable at (0, —‘9"7").

By Lemma 2.1, we are sufficient to prove G has a Gateaux variation 6G ((z, u);
(ho, v)) at all points (29, u) € L?(Q) x L?(Qr) and all (hg, v) € L*(Q) x L*(Q71)
and 0G(- ; -) is continous at ((0, —Qg&); (0,0)).
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In fact, for any (2, u) € L%(Q) x L*(Qr), any (hg, v) € L*(Q) x L*(Q7)
and € > 0, let Z° and Z satisfy the following systems
Zi = Zgy = (u+0)(Z2° 4+ 0(2)) + Oz, in Qr,
(3.2) Z%|g=01 =0,
Z%(x,0) = 29 + eho(x), in Q,

Zt — Ly = u(Z + 0(1‘)) + 0&:&07 in QTv
(3.3) Z|z=0,1 =0,
Z(x,0) = 2z, in Q,

respectively.
Let w®(x,t) = (Z° — Z) /e, from (3.2) and (3.3), we have

wi — wh, =uw® +v(Z°+6(x)), in Qr,
(3.4) w*|z=0,1 = 0,

we(xz,0) = ho(z), in Q.
Let Vo(Qr) = C([0, T]; L3(Q)) N L?(0, T; H3(2)) with the norm

HyHVQ(QT) = HyHLoo([o,T];L2(Q)) + HyHL2(0,T;H3(Q))v

from (3.3) and (3.4), it is easily seen that (see e.g. [9])

(3.5) e lvagom < C.

where C' is independent of &.
From (3.5), we have
We = W strongly in L?(Qr),
(3.6) weakly in L2(0,T; H*(£2)) and
weakly star in L°°(0, T; L*(Q2)),

where w satisfies

Wt — Wye = vw +v(Z +6(x)), in Qr,
(3.7) ’w‘mzo,l = 0,

w(,0) = ho(a), in 0,
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where Z is the solution to (3.3).
It is easily seen that the solution w to (3.7) satisfies G ((z0, u); (ho, v)) =
w(x, T). Let {(2F,u*)} and {(hE,v¥)} € L3(Q) x L?(Q7) satisfy

(3.8) (28, uF) — (0, —0;%) in L*(Q) x L*(Qr),
(3.8) (h§,v*) — (0,0) in L*(Q) x L*(Q7),

then we have 0G((2§, uF); (hE, o)) = wh(z, T), where w*, ZF satisfy the
following systems

wf — wk, = uFwk + 08 (ZF 4 0(z)), in Qr,
(3.10) wF|—01 =0,

w”(x,0) = hi(x), in Q,

ZF —7ZF = uF(ZF +0(z)) + Ope, in Qr,
(3.11) Z’ﬂm:&l =0,

Zk(x,0) = 2k, in Q,
respectively, and 6G((0, —%=); (0 0)) = 0.

In view of n = 1, we have V(Qr) — L%(Qr). By (3.8), (3.9) and (3.11), we
have

(3.12) 12511 o(@p) < CillZ¥vi@p) < Co

(where C5 is independent of k). Furthermore, by (3.8), (3.9), (3.10) and Holder
inequality, we have (see e.g. [9])

leo*lva(ar)
< Ca(Ihfllz@ + 10528 g o, + 108l 22(00)
< Calllhbl 2@ + 125 s@n [0l 22y + 1] e @) 0¥ 2(or)

< Ca(lIhllz20) + CallvPll 2@y + 101l (o) 10"l 22r)) < Cs.

(3.13)

where (5 is independent of k.
By (3.8), (3.9) and (3.13), we have

lw*(2, T)ll2(Qr) — 0,
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this implies 0G(- ; -) is continous at ((0, — ‘%T’“); (00)).

Step 2. In this step, we will prove that the linear operator G'(0, —‘9’“7’“) :
L%(Q) x L*(Qr) — L*(Q) is compact. In fact, G(0,—%=) = 0. Let U be a
bounded domain of L%(Q) x L*(Qr), then for any (hg, v) € U, G'(0, —%=)
(ho,v) = w(zx, T), where w is the solution to the following system,

Wy — Weg = —%w +vf(x), in Qr,
(3.14) w|p—0.1,
w(z,0) = ho(z), in Q.

Notice that G’CT" € L>(Q), (3.14) enjoys the following properties: for any (hg, v) €
U, the corresponding solution wj, to (3.14) satisfies

{w } is bounded in L2(0,T; HY(Q)) N C([0, T]; L3(£)),
{Vt (wp )} is bounded in L?(Qr),
{(Vtwy, } is bounded in L2(0,T; H*(Q)) N L>(0,T; HY(Q)).

Hence, we can select a sequence wvz C U such that
q hk

k ~

wZ’g — W weakly in L2(0,T; H'(Q) and
weak-star in L2(Qr),
Vit (wzg)t —/t w;  weakly in L2(Q7),
wzg (t) — w(t) strongly in L?(£2) and
uniformly in L?(£2) on every compact interval [5, 7.
This means that G’(0, —%=) : L%(Q) x L?(Qr) — L*() is compact.

Step 3. In this step, we will prove that the system (3.14) is exact null con-
trollable, that is, for any hy € L%(Q), there exists a control vy, such that the
corresponding solution to (3.14) satisfies w(x,T) = 0.

In fact, set

1

J(%) == 0p>dxdt —|—/ ho(z)e(z,0)dz, ¥ ©° € L*(Q),
2 Qr Q

where ¢ is the corresponding solution to the dual system of (3.14),

0 .
Pt + Prax — %ap = 07 mn QTv

(.15) ©Yle=01 =0,
oo, T) = ), in O
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Similarly to the argument of [2], noticing that #(x) > C > 0 in 2, we have, for any
ho € L*(Q), the functional .J achieves its minimum at a unique point $°. If we set
vp, = P, where @ is the solution to (3.15) with % = @°, we have the correponding
solution to (3.14) with vy, = @ satisfies w(z,T') = 0.

In fact, V ¢° € L?(Q2) and V p € R, we have

J(@° + py°) > J(@%),

hence,

(3.16) Oppdadt + / ho(x)Y(x,0)dx = 0,
Qr Q

where 1) is the solution to (3.15) with ¢ = ¢°.
Multiplying (3.14) by 1 and (3.15) (with ¢ = 1), ©° = %) by w and integrating
by parts, we have

(3.17) Oppdrdt = /

QT Q

By (3.16) and (3.17), we have

w(z, TY(x)dz — / ho(2)(z, 0)da.

Q

/ w(z, T (x)dz =0, ¥ ° € L*(Q).
Q

Hence,
w(z,T)=0.

Furthermore, similar to [6], we have
[vno l2(0) < CllhollL2(0)-

Step 4. In this step, we will prove that the system (3.1) is locally exact null
controllable by lemma 2.3.

In fact, G(0, —Qg&) = 0. From step 3, we have, for any hy € L?(f2), there
exists a control vy, € L?(Q) such that G'(0, —%2)(hg, vy,) = 0. Let ¢ = (ho, vp,)
(we may assume that ||c|[r2(q)xr2(@,) = 1 and S = {0} C L?(2), we have
—(G(0,—%=) + G'(0,—%=)c) = 0 € S. From step 1 to step 3, G satisfies all the
conditions of lemma 2.3, hence, by lemma 2.3, we have the equation G(z, u) =0
has local solution,

20 = 04 thy + ni(t),

rxr

6

u = + top, + ?72(75),
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for t > 0 sufficiently small, (z0,u) # (0, =%=), g1 (t)ll 2y = o(t) (t — 0),
2| 22(@r) = o(t) (t — 0), this implies the system (3.1) is locally null control-
lable, that is, there exists 9 > 0 sufficiently small such that for any zq € L?(Q)
satisfies ||zl 2(q) < €0, there exists a control u € L?(Qr) such that the corre-
sponding solution to (3.1) satisfies

2(z,T) =0.

Step 5. Multiplifying (3.1) by z(z, t) and integrating over {2, we have

E (xtdm—i—Q/\zmxt\dx

_ 2/uz 2,1) dm+2/u0(m)z(m,t)dm+Q/Hmm(x)z(x,t)dx
7 Q Q

uz® (z, t)dz + ||| oo (@ /22(1‘ t)dz

IN

2
+ull Lo (@p) /0 dm—i—/@ dm—i—/ 2(x,t)dx
_ /(2u +lull g (gn) + 122w, £)da

Q
Hulieign [+ [ 6, (@)
Q Q

esssupq, (2u + H'LLHLOO(QT) +1) /22(x,t)dx

Q
Hulieign [+ [ 6, (@)
Q Q

Let r(t) = [ 2%(x,t)dx, we have
0

IN

dr(t)

7 < cassupg (2utul (g +r()+ el iap) [ oot [ 62, (@)

Q Q
Let (0) = ||2(-, O)H%Q(Q), u < 0 be the constant , we have

d?;z(:) < (u+1)r +\u\/02 dm+/0
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Hence,

t
r(t) < e z(-, 0130 +/e(“+1 (t=7) \u\/02 dx+/0 z)dz | dr
0 Q

t
|2, 0) 2aqy + | Jul / 02 (x)der + / 02, (z)da / () (=) g
Q Q 0

thus

IN

D 2(-,0) 12

e(u+1
—1—7 \u\/@Z dw—i—/@
u—+1

(u+1 _ 1
= Do, )]y + Y / s

u—+1
(ut1)t
e /0
u—|—1

Hence, given 77 > 0, we can select the constant u; < 0 ( u; depends on zy) such
that |uq| is sufficiently large, then there exists M; > 0 (M; depends on 6, but
independent of zp), such that [|2(-, T1)|z2q) < Mi. Furthermore, noticing that
0 > 0 and 0, > 0, if we select u = =%= in (Th, T>), then for

12C, )72

6
_01‘&: .
2 — Zgp = 2 z, inQx (T, T),
(318) 220, on Jf) x (Tl, Tg),
2(2,T1) = 2(x,T1), in ©,
we have
G19) (Tl < NI (T ) < Mye N,

where A > 0 the first eigenfunction of —A in Hg(Q).

Hence for any gy > 0, there exists 7»(f) > 0 sufficiently large such that
12(T2) [l 22(0) < €0

Then by step 4, for the following system,

2t — zZgx = Wz + 0(x)) + O (x), inQx(Ty, Ty + 1),
(3.20) z =0, on I x (Ty, To + 1),
z(vaQ) - Z(T2)7 in Q?
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there exists a control us € L2(Qr) such that the corresponding solution to (3.20)
satisfies
2(x,To +1) =0.

Thus let T'= T + 1, if we select u as follows

0, in Q x (0, Tl),
U= _Zam, in Q x (Tl, Tg),
ug, (Tg, T),

then the corresponding solution to (3.1) satifies
2(z,T) = 0.

This completes the proof of theorem 1.1.

4. PrROOF OF THEOREM 1.2

The proof of theorem 1.2 is similar to that of theorem 1.1, we just give a sketch
of it.

Proof. Define the mapping G : L2(Q) x L?(Qr) — L?(Q), G(yo, u) =y(x,T),
where y is the solution to (1.2).
With the similar argument in theorem 1.1, we have dG((yo, u); (ho, v)) =
p(z, T), where p is the solution to the following system.
bt —Ap—f—f/(Y(fI,',t, y07u))p:Xw’U7 in QTv
4.1 p =0, on X,
p(x,0) = ho(z), in Q,
where Y satisfies
}/;f _AY+f(Y) = Xwl, in QTv
4.2) Y =0, on X,
Y (z,0) = yo(z), in Q.
Similar to theorem 1.1, we can easily prove that 6G (- ; -) is continous at ((0, 0); (0,0))
which implies G is strongly Hadamard differentiable at (0, 0) and G’(0,0) : L?(£2) x

L*(Qr) — L*(Q) is compact by lemma 2.1 and lemma 2.2. Hence lemma 2.3 and
lemma 2.4 implies theorem 1.2.
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