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SELECTION PRINCIPLES RELATED TO αi-PROPERTIES

Ljubiša D. R. Kočinac

Abstract. We investigate selection principles which are motivated by
Arhangel’skǐi’s αi-properties, i = 1, 2, 3, 4, and their relations with classi-
cal selection principles. It will be shown that they are closely related to the
selection principle S1 and often are equivalent to it.

1. INTRODUCTION

In this paper we use the usual topological notation and terminology [8] and
consider infinite Hausdorff spaces.

Let us fix some more notation and terminology regarding selection principles
and families of open covers of a topological space which are necessary for this
exposition. For more information in connection with selection principles we refer
the interested reader to the survey papers [10, 19, 21].

Let A and B be collections of sets of an infinite set X .
The symbol S1(A,B) denotes the selection principle:

For each sequence (An : n ∈ N) of elements of A there is a sequence
(bn : n ∈ N) such that bn ∈ An for each n ∈ N and {bn : n ∈ N} is
an element of B.

When both A and B are the collection O of open covers of a space X , then
S1(O,O) defines the classical Rothberger covering property (see [16]).

There is an infinite game, denoted G1(A,B), corresponding to S1(A,B). Two
players, ONE and TWO, play a round for each natural number n. In the n–th round
ONE chooses a set An ∈ A and TWO responds by an element bn from An. A
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play A1, b1; · · · ; An, bn; · · · is won by TWO if {bn : n ∈ N} ∈ B; otherwise, ONE
wins.

It is easy to see that if ONE does not have a winning strategy in the game
G1(A,B), then the corresponding selection hypothesis S1(A,B) is true. However,
the converse implication is not always true.

We introduce now new selection principles. The motivation for these definitions
is the Arhangel’skii definition of αi-properties, i = 1, 2, 3, 4, introduced in [1]. A
and B are as above.

Definition 1. The symbol αi(A,B), i = 1, 2, 3, 4, denotes the following
selection hypothesis:

For each sequence (An : n ∈ N) of infinite elements of A there is an
element B ∈ B such that:

α1(A,B): for each n ∈ N the set An \B is finite;
α2(A,B): for each n ∈ N the set An ∩ B is infinite;
α3(A,B): for infinitely many n ∈ N the set An ∩ B is infinite;
α4(A,B): for infinitely many n ∈ N the set An ∩ B is nonempty.

Evidently, if all members of A are infinite, then

α1(A,B) ⇒ α2(A,B) ⇒ α3(A,B) ⇒ α4(A,B)

and
S1(A,B) ⇒ α4(A,B).

However, if A contains finite members, then α1(A,B) does not not imply α2(A,B),
while α3(A,B) fails (see [23]).

If for a space X and a point x ∈ X , Σx denotes the family of nontrivial
sequences in X that converge to x, then X has the Arhangel’skii αi-property,
i = 1, 2, 3, 4, if for each x ∈ X the property αi(Σx, Σx), i = 1, 2, 3, 4, holds.

It is known that the four properties αi(Σx, Σx) are different from each other [1,
14] and that the same holds in topological groups [20, 15]. However, it was shown
in [18] that in function spaces Cp(X) and in some hyperspaces [7] the properties
α2, α3 and α4 are equivalent to each other and to the corresponding S1 property.
We shall see here that for some classes A and B the properties α2(A,B), α3(A,B)
and α4(A,B) are closely related (and often equivalent) to S1(A,B).

Let X be a topological space, x ∈ X , A ⊂ X . Then we use the following
notation.

• O: the collection of open covers of X ;
• Ω: the collection of ω-covers of X ;
• K: the collection of k-covers of X ;
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• Γ: the collection of γ-covers;
• Γk: the collection of γk-covers;
• Ωx: the set {A ⊂ X \ {x} : x ∈ A};
• Σx: the set of all nontrivial sequences in X that converge to x.

An open cover U of a space X is called an ω-cover (a k-cover) if every finite
(compact) subset of X is contained in a member of U and X is not a member of U
(i.e. we consider non-trivial covers).

An open cover U of X is said to be a γ-cover (γk-cover) if it is infinite, and
for each finite (compact) subset A of X the set {U ∈ U : A � U} is finite.

Observe that each infinite subset of a γ-cover (γk-cover) is still a γ-cover (γk-
cover). So, we may suppose that such covers are countable. Each finite (compact)
subset of an infinite (non-compact) space belongs to infinitely many elements of an
ω-cover (k-cover) of the space.

Recall that a space X is said to be ω-Lindelöf (k-Lindelöf) if every ω-cover
(k-cover) of X contains a countable ω-cover (k-cover).

2. GENERAL RESULTS

In this section we discuss covering and closure-type properties αi(A,B), i =
2, 3, 4, in topological spaces and identify some classes A and B for which these
properties are equivalent to S1(A,B).

We have already mentioned that every space X satisfying the Rothberger cov-
ering property S1(O,O) satisfies also α4(O,O). The real line R satisfies all the
properties αi(O,O), i = 2, 3, 4, but R does not have the Rothberger property.

However, we have the following result.

Theorem 2. For an ω-Lindelöf space X the following are equivalent:
(1) X satisfies α2(Ω, Γ);
(2) X satisfies α3(Ω, Γ);
(3) X satisfies α4(Ω, Γ);
(4) X satisfies S1(Ω, Γ).

Proof. (3) ⇒ (4): Let (Un : n ∈ N) be a sequence of ω-covers of X . Assume
that for each n ∈ N we have Un = {Un,m : m ∈ N}. For every n ∈ N define

Vn = {U1,m1 ∩ · · · ∩Un,mn : n < m1 < m2 < · · · < mn, Ui,mi ∈ Ui, i ≤ n} \ {∅}.
Then each Vn is an ω-cover of X . By (3) and the fact that each infinite subset of
a γ-cover is also a γ-cover, there is an increasing sequence n1 < n2 < · · · in N
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and a γ-cover V = {Vni : i ∈ N} such that for each i ∈ N, Vni ∈ Vni . Let for each
i ∈ N,

Vni = U1,m1 ∩ · · · ∩ Uni,mni
, Uj,mj ∈ Uj , j ≤ ni.

Put n0 = 0. For each i ≥ 0 and each n with ni < n ≤ ni+1 let Hn be the n-th
coordinate in the chosen representation of Vni+1:

Hn = Un,mni+1
.

For each n ∈ N, Hn ∈ Un and the set H := {Hn : n ∈ N} is a γ-cover of X

because V is a refinement of H, and X /∈ H. Therefore, X satisfies S1(Ω, Γ).

(4) ⇒ (1): Let (Un : n ∈ N) be a sequence of ω-covers of X and let for each
n ∈ N, Un = {Un,m : m ∈ N}. We shall use the fact that S1(Ω, Γ) is equivalent to
ONE has no winning strategy in the game G1(Ω, Γ) onX [17]. Define the following
strategy σ for ONE. ONE’s first move is σ(∅) = U1. Assuming that the set U1,mi1

∈
U1 is TWO’s response, ONE plays σ(U1,mi1

) to be V(1, mi1) = {U1,m : m > mi1},
still an ω-cover of X . If TWO now chooses a set U1,mi2

∈ V(1, mi1), ONE plays
σ(U1,mi1

, U1,mi2
) = V(1, mi2) = {U1,m : m > mi2} which is still an ω-cover of

X . Then TWO chooses a set U1,mi3
∈ σ(U1,mi1

, U1,mi2
). And so on.

[Note: For each n ∈ N and each Un moves of ONE form a new sequence of
ω-covers and ensure that from each Un TWO chooses infinitely many elements.]

Since σ is not a winning strategy for ONE, consider a σ-play

σ(∅), U1,mi1
; σ(U1,mi1

), U1,mi2
; σ(U1,mi1

, U1,mi2
), U1,mi3

; · · ·

lost by ONE. That means that the sequence W consisting of TWO’s moves is a
γ-cover of X . As it contains infinitely many elements from each Un, n ∈ N, W
witnesses for the sequence (Un : n ∈ N) that X has property α2(Ω, Γ).

Similarly to the proof of Theorem 2 we can prove the following two theorems.
For that we use:

(i) X satisfies S1(K, Γ) iff ONE has no winning strategy in the game G1(K, Γ)
on X (see [6]).

(ii) X satisfies S1(K, Γk) iff ONE has no winning strategy in the game G1(K, Γk)
on X (see [12]).

Theorem 3. For a k-Lindelöf non-compact space X , the properties α2(K, Γ),
α3(K, Γ), α4(K, Γ) and S1(K, Γ) are equivalent.

Theorem 4. For a k-Lindelöf non-compact space X , the properties α2(K, Γk),
α3(K, Γk), α4(K, Γk) and S1(K, Γk) are equivalent.
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We also have the following results.

Theorem 5. For a space X and B ∈ {Γ, Γk} the following statements are
equivalent:

(1) X satisfies α2(Γk,B);
(2) X satisfies α3(Γk,B);
(3) X satisfies α4(Γk,B);
(4) X satisfies S1(Γk,B).

Proof. We have to prove only (3) ⇒ (4) and (4) ⇒ (1).

(3) ⇒ (4): Let (Un : n ∈ N) be a sequence of γk-covers of X . Enumerate
every Un bijectively as Un = {Un,m : m ∈ N}. For all n, m ∈ N define

Vn,m = U1,m ∩ U2,m ∩ · · · ∩ Un,m.

Then for each n the set Vn = {Vn,m : m ∈ N} is a γk-cover of X , because Un’s
are γk-covers. By (4) applied to the sequence (Vn : n ∈ N) there is an increasing
sequence n1 < n2 < · · · in N and a cover V = (Vni,mi : i ∈ N) ∈ B such that for
each i ∈ N, Vni,mi ∈ Vni . Put n0 = 0. For each i ≥ 0, each j with ni < j ≤ ni+1

and each Vni+1,mi+1 = U1,mi+1 ∩ · · · ∩ Uni+1 ,mi+1 put

Hj = Uj,mi+1 .

For each j ∈ N, Hj ∈ Uj and the set {Hj : j ∈ N} is in B because this set is
refined by V which is in B. So, X satisfies S1(Γk,B).

(4) ⇒ (1): Let (Un : n ∈ N) be a sequence of γk-covers of X . Suppose that
for each n ∈ N, we have Un = {Un,m : m ∈ N}. Choose an increasing sequence
k1 < k2 < · · · < kp < · · · of positive integers and for each n and each ki consider
V(n, ki) := {Un,m : m ≥ ki}. Then each V(n, ki), n, i ∈ N, is a γk-cover of
X . Apply now (1) to the sequence (V(n, ki) : i ∈ N, n ∈ N) from Γk and find a
sequence (Vn,ki : i, n ∈ N) such that for each (n, i) ∈ N ×N, Vn,ki ∈ V(n, ki) and
the set W := {Vn,ki : n, i ∈ N} ∈ B. It is easy to see that W can be chosen in
such a way that for each n ∈ N the set Un ∩W is infinite. Therefore, W witnesses
for the sequence (Un : n ∈ N) that X has property α2(Γk,B).

Notice that in a similar way one can prove that for a space X the properties
α2(Γ, Γ), α3(Γ, Γ), α4(Γ, Γ) and S1(Γ, Γ) are equivalent.

As B. Tsaban observed [23], the property α1(Γ, Γ) is strictly stronger than
S1(Γ, Γ).
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3. APPLICATIONS TO TOPOLOGICAL GROUPS

Let (G, ·, τ) be a topological group with the neutral element e and let Be be a
local base at e. For each U ∈ Be with U �= G define

o(U) = {x · U : x ∈ G},
O(e) = {o(U) : U ∈ Be};

ω(U) = {F · U : F ∈ F(G)},
Ω(e) = {ω(U) : U ∈ Be and there is no F ∈ F(G) with F · U = G};

k(U) = {K · U : K ∈ K(G)},
K(e) = {k(U) : U ∈ Be and there is no K ∈ K(G) with K · U = G}.

Then clearly, O(e) ⊂ O, Ω(e) ⊂ Ω; K(e) ⊂ K.

In [2] (see also [9, 13, 22]) Menger-bounded, Rothberger-bounded and Hurewicz-
bounded topological groups have been studied. A topological group G is Menger-
bounded (Rothberger-bounded, Hurewicz-bounded) if it satisfies the selection prin-
ciple S1(Ω(e),O) (S1(O(e),O), S1(Ω(e), Γ)).

We have the following results. Their proofs are similar, so we prove only the
first of them.

Theorem 6. For a topological group G the following are equivalent:
(1) G satisfies α4(Ω(e), Γ);
(2) G satisfies S1(Ω(e), Γ);
(3) G satisfies S1(K(e), Γ).

Proof. The implications (2) ⇒ (1) and (2) ⇒ (3) are obvious.

(1) ⇒ (2): Let (Un : n ∈ N) be a sequence of elements of Be. For each n ∈ N
let Vn = U1∩U2∩· · ·∩Un be a member of Be. If we now apply (1) to the sequence
(Vn : n ∈ N) we find an increasing sequence n1 < n2 < · · · in N and finite sets
Fni ⊂ G, i ∈ N, so that {Fni · Vni : n ∈ N} is a γ-cover of G. If n0 = 0, then
for each positive integer n with ni−1 < n ≤ ni, i ∈ N, put Fn = Fni and Un

to be the n-th component in the representation U1 ∩ · · · ∩ Uni of Vni . Evidently,
{Fn · Un : n ∈ N} is a γ-cover of G, i.e. the sequence (Fn : n ∈ N) guaranties for
(Un : n ∈ N) that G satisfies S1(Ω(e), Γ).

(3) ⇒ (2): Let (Un : n ∈ N) be a sequence of elements of Be. For each n
pick a Vn ∈ Be so that V 2

n ⊂ Un. By (3) choose a sequence (Kn : n ∈ N) of
compact subsets of G such that {Kn · Vn : n ∈ N} is a γ-cover of G. Next, for



Selection Principles Related to αi-Properties 567

each n pick a finite set Fn in G such that Kn ⊂ Fn · Vn. Then for each n we have
Kn · Vn ⊂ (Fn · Vn) · Vn ⊂ Fn · Un and one concludes that {Fn · Un : n ∈ N} is a
γ-cover of G.

Notice that α2(Ω(e), Γ) and α3(Ω(e), Γ) are also equivalent to the properties
listed in the theorem above.

Theorem 7. For a topological group G the following are equivalent:
(1) G satisfies α4(Ω(e), Γk);
(2) G satisfies S1(Ω(e), Γk);
(3) G satisfies S1(K(e), Γk).

4. αi(A,B) PROPERTIES IN HYPERSPACES

In this section we consider αi(A,B) properties, i = 2, 3, 4, in hyperspaces. We
begin with some definitions that we need.

For a (Hausdorff) space X by 2X we denote the family of all closed subsets
of X . K(X) is the collection of all non-empty compact subsets of X , and F(X)
denotes the family of all non-empty finite subsets of X . If A is a subset of X and
A a family of subsets of X , then we write

A+ = {F ∈ 2X : F ⊂ A}, A+ = {A+ : A ∈ A}.

Notice that we use the same symbol F to denote a closed subset of X and the point
F in 2X ; from the context it will be clear what F is.

The upper Fell topology F+ on 2X is the topology whose base is the collection

{(Kc)+ : K ∈ K(X)} ∪ {2X},

while the upper Vietoris topology V + has basic sets of the form U+, U open in
X . It is clear that (K(X), V+) and (F(X), V+) are considered as subspaces of
(2X , V+).

In [7] it was shown that in (2X , F+) each of Arhangel’skii’s α2, α3 and α4

properties is equivalent to S1(ΣE, ΣE), E ∈ 2X . We discuss here some other
properties. For similar consideration see [5, 11].

Theorem 8. If X is a space whose all open subspaces are k-Lindel öf and
E ∈ 2X , then the following statements are equivalent:

(1) (2X , F+) satisfies α4(ΩE, ΣE);
(2) (2X , F+) satisfies S1(ΩE, ΣE).
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Proof. We have to prove only (1) implies (2). Let (An : n ∈ N) be a sequence
of elements of ΩE. Since each open subspace of X is k-Lindelöf, (2X , F+) has
countable tightness (see [4, 3]) and we may assume that for each n ∈ N, An is
countable, say An = {An,m : m ∈ N}. For each n let Bn be the collection of all
sets of the form

A1,m1 ∪ A2,m2 ∪ · · ·An,mn , Ai,mi ∈ Ai, i ≤ n.

Then each Bn belongs to ΩE . Apply (1) to the sequence (Bn : n ∈ N) of elements
of ΩE . There exist an increasing sequence n1 < n2 < · · · in N and a sequence
B := (Bni : i ∈ N) ∈ ΣE such that for each i ∈ N, Bni ∈ Bni . Put n0 = 0 and
define the sequence (Sn : n ∈ N) in the following manner:

If i ≥ 0, then for each n with ni < n ≤ ni+1 define Sn to be An,mn

in the chosen representation of Bni+1 .

Note that for each n ∈ N, Sn ∈ An and evidently the sequence S := (Sn : n ∈ N)
is an element of ΣE. So, S is a selector for the original sequence (An : n ∈ N)
showing that (2X , F+) satisfies (2).

In what follows we shall need the following two simple lemmas. Because their
proofs are similar we prove only the first of them.

Lemma 9. For a space X and an open cover W of (K(X), V+) the following
holds: W is an ω-cover of (K(X), V+) if and only if U(W) := {U ⊂ X :
U is open in X and U + ⊂ W for some W ∈ Wn} is a k-cover of X .

Proof. LetW be an ω-cover of (K(X), V+) and let K be a compact subset of
X . Then there existsW ∈ W such that K ∈ W and consequently there is an open
set U ⊂ X with K ∈ U+ ⊂ W . It is understood, U ∈ U(U). On the other hand,
K ⊂ U , i.e. U(W) is a k-cover of X .

Conversely, let U(W) be a k-cover of X and let {K1, · · · , Km} be a finite
subset of (K(X), V+). Then K =

⋃m
i=1 Ki is a compact subset of X and thus K

is contained in some U ∈ U(W); pick W ∈ W such that U + ⊂ W . From Ki ⊂ U
for each i ≤ m, it follows {K1, · · · , Km} ⊂ U+ ⊂ W which just means that W
is an ω-cover of (K(X), V+).

Lemma 10. For a space X and an open coverW of (F(X), V+) the following
holds: W is an ω-cover of (F(X), V+) if and only if U(W) := {U ⊂ X :
U is open in X and U + ⊂ W for some W ∈ Wn} is an ω-cover of X .

We use now the last two lemmas to prove the next two propositions.
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Proposition 11. A space X is k-Lindeloöf if and only if (K(X), V+) is ω-
Lindelöf.

Proof. Let X be a k-Lindelöf space and letW be an ω-cover of (K(X), V+).
By Lemma 9 (and notation from that lemma), U(W) is a k-cover of X . Choose a
countable family {Ui : i ∈ N} ⊂ U(W) which is a k-cover of X . For each i ∈ N
pick Wi ∈ W such that U+

i ⊂ Wi. Again by Lemma 9 {Wi : i ∈ N} ⊂ W is an
ω-cover of (K(X), V+).

Let us show the converse. Let U be a k-cover of X . It is easy to check that U+

is an ω-cover of (K(X), V+). Choose a countable collection {U+
i : i ∈ N} ⊂ U+

which is an ω-cover of (K(X), V+). Then {Ui : i ∈ N} ⊂ U is a k-cover of X ,
i.e. X is a k-Lindelöf space.

Similarly, by using Lemma 10, one obtains

Proposition 12. A space X is ω-Lindeloöf if and only if (F(X), V+) is ω-
Lindelöf.

Theorem 13. For a k-Lindelöf space X the following are equivalent:
(1) (K(X), V+) satisfies α2(Ω, Γ);
(2) (K(X), V+) satisfies α3(Ω, Γ);
(3) (K(X), V+) satisfies α4(Ω, Γ);
(4) (K(X), V+) satisfies S1(Ω, Γ);
(5) X satisfies S1(K, Γk).

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (4) hold for any space.

(4) ⇒ (1): By Proposition 11 the space (K(X), V+) is ω-Lindelöf. It remains
to apply Theorem 12.

(4) ⇒ (5): Let (Un : n ∈ N) be a sequence of k-covers of X . Then (U+
n : n ∈

N) is a sequence of ω-covers of (K(X), V+). Indeed, fix n and let {K1, · · · , Km}
be a finite subset of K(X). Then K = K1 ∪ · · · ∪ Km is a compact subset of X

and thus there is U ∈ U with K ⊂ U . This means that for each i ≤ m, K i ⊂ U ,
i.e. Ki ∈ U+. Therefore {K1, · · · , Km} ⊂ U+ and Un is an ω-cover of K(X). By
(4) for each n, choose an element U+

n in U+
n such that the set U+ = {U+

n : n ∈ N}
is a γ-cover of (K(X), V+). We prove that {Un : n ∈ N} is a γk-cover of X . Let
K be a compact subset of X . Then there is n0 ∈ N such that for each n ≥ n0 we
have K ∈ U+

n , hence K ⊂ Un. It shows that {Un : n ∈ N} is really a γk-cover of
X , i.e. that (5) holds.

(5) ⇒ (4): Let (Wn : n ∈ N) be a sequence of ω-covers of (K(X), V+). For
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each n let

Un = {U ⊂ X : U is open in X and U+ ⊂ W for some W ∈ Wn}.

By Lemma 9 each Un is a k-cover ofX . By (5) applied to the sequence (Un : n ∈ N)
one can find a sequence (Un : n ∈ N) such that for each n ∈ N, Un ∈ Un and the set
U = {Un : n ∈ N) is a γk-cover of X . For each Un ∈ U pick an elementWn ∈ Wn

so that U+
n ⊂ Wn. We claim that {Wn : n ∈ N} is a γ-cover of (K(X), V+) and

so it witnesses for (Wn : n ∈ N) that (4) is satisfied. Let K ∈ K(X). Then there
is n0 such that for each n ≥ n0, K ⊂ Un, i.e. K ∈ U+

n ⊂ Wn.

It is not difficult to verify that in a similar way, using Proposition 12 and
Theorem 2, one obtains the following theorem.

Theorem 14. For an ω-Lindelöf space X the following are equivalent:
(1) (F(X), V+) satisfies α2(Ω, Γ);
(2) (F(X), V+) satisfies α3(Ω, Γ);
(3) (F(X), V+) satisfies α4(Ω, Γ);
(4) (F(X), V+) satisfies S1(Ω, Γ);
(5) X satisfies S1(Ω, Γ).
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