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THE GENERALIZED CESARO OPERATOR ON THE UNIT POLYDISK

Der-Chen Chang and Stevo Stevi¢

Abstract. Let D,, = {(21,...,2,) € C": |z;] < 1,j = 1,...,n} be the
unit polydisk in C™. The aim of this paper is to prove the boundedness of
the generalized Cesaro operators C7 on HP(D,,) (Hardy) and A’;’q(Dn) (the

generalized Bergman) spaces, for 0 < p,q < oo and ¥ = (71,...,7,) With
Re (v;)>1,j=1,...,n. Here i = (u1,..., 1) and each p; is a positive
Borel measure on the interval [0,1). Also we present a class of invariant
spaces under the action of this operator.

1. INTRODUCTION AND PRELIMINARIES

The classical Cesaro operator C is defined by

cHE =3 (nilzak)
k=0

n=0

where f(z) = > 775 anz™ is an analytic function on the unit disk D = {z € C :
|z| < 1} in the complex plane C. This operator has been studied extensively by
many mathematicians in the past decade. One of the major interests in this operator
is its behavior on function spaces. It is known that the operator C is bounded on the
Hardy spaces HP(D) for 0 < p < oo. Basic facts on Hardy spaces can be found, for
example, in [6]. For 1 < p < oo, the boundedness of the operator C on HP(D) is a
consequence of a classical result of Hardy [9], and further information can be found
in [12]. The case p = oo was considered in [5]. The boundedness on H' (D) was

Received April 1, 2002.

Communicated by S. B. Hsu.

2000 Mathematics Subject Classification: 47B38, 46E15.

Key words and phrases: Analytic functions, Cesaro operator, polydisk, Hardy spaces, Bergman spaces,
invariant spaces.

Research partially supported by a grant from National Science Foundation and by a William Fulbright
Research Grant.

293



294 Der-Chen Chang and Stevo Stevi¢

given by Siskakis [14] by a particularly elegant method. A different proof of the
result can be found in [8]. Following ideas in [10], Miao [11] extended the result
to HP(D) with 0 < p < 1. Tt has been shown that the operator C is also bounded

on the Bergman spaces (see e.g., [15]) as well as on the weighted Bergman spaces
(see e.g, [1] and [3]). D2y, for a € (0,1). Dy . Indeed, C(1)(z) & Dap.

For each complex v with Re (y) > —1 and k nonnegative integer let A) be
defined as the kth coefficient in the expression

1—%‘ 'y-l—l ZA

k;l
For an analytlc ﬁmctlon f(z) = 3% ,a,2" on D, the generalized Cesaro
operator is defined by

(1) C'(f)(z) = Z ( A3+1 ZAn kak) 2"

k=0

The integral form of C7 is (see [16])

’y—f—l
() T o+l / (¢ 7+1d<’

or, taking simply as a path the segment joining 0 and z,

C'(f)(z)=(y+1) /ftz 7+1dt

These operators were first introduced in [ 16] and have been subsequently studied
in [2] and [20]. The adjoint operator of C? was considered in [2], [7], [12], [13],
[16], [19] and [20]. Note that when «v = 0, we obtain the classical Cesaro operator
CY = C. Stempak proved that C? is bounded on HP(D) for 0 < p 2. For
0 < p 1, his method is similar to that of Miao; for p = 2, it is based on the
boundedness of an appropriate sequence transformation, and an interpolation then
yields the result for 1 < p < 2. After that, Andersen [2] and Xiao [20] proved the
boundedness of C7, on HP(D) for p > 2 using different methods.

Motivated by [16], in [17] we defined a family of Cesaro operators C7, for
the polydisk D,. Let ¥ = (y1,...,7m) € C", Re (y;) > —1,j = 1,...,n. The
generalized Cesdaro operator C7 is defined by

GNE =Y (Zﬁ o 41 ﬂ)

v+l
Ag

] 1
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whenever f(z) = Zm:o aqz® 1s an analytic function on D,, (o and (3 are multi-
indices from (Z4)"). A simple calculation with power series then gives

; " ! L f(nzt, e Tnzn) | T '
2) C7 _ 1) [ 1—7)Vdr,
@ C(N) j:Hl(VJ + )A A [y (1 =7zt jI;[l( /

where dr =dm - -- dm,.

In what follows, for z,w € C" we write z - w = (21w, ..., 2, Wy, ); € is an
abbreviation for (e, ...,e); dr = dr ---dr,; df = df; - --df,, and r,7, s are
vectors in C™. If we write 0 7 < 1, where 7 = (ry,...,7,) it means 0 r; <1
for j=1,...,n.

In [17] we proved the following theorem:

10

Theorem A. Let 0 < p 1, ¥ = (7,...,Yn) Such that Re (y;) > —1,
j=1,...,nand 0 1 < 1. Then there is a constant C independent of f and r
such that

CT(f)(r-e?) Pl C |f(r - €%)Pdb,
[0,27] ™ [0,27]™
for all H(Dy,).

We proved Theorem A, following Miao’s arguments from [ 11], which are mod-
ifications of the corresponding arguments used in the case of the unit disk.

In[3], quite independently the authors introduced and considered the case ¥ = 0.
They proved a result similar to Theorem A for the operator C° in the case of
0 < p < oco. In the case 1 < p < oo, their method is based on the following result
(Theorem 1.8 in [3]):

Theorem B. Letp € [1,00), 05 > —1,7 =1,...,n and m be a fixed positive
integer and let k = (k1, ..., kn) € (Z1)". Let f be a holomorphic function defined
on the polydisc Dy, in C". Then for & = (au,..., ), [ € AP(dVy) if and only if

- —|z:|?)ki & P(dV- - —
H(l Efl) 5 (2) € LP(dVy), v k with |k| =m.

j:]_ Zlfl .. 8’35"
Moreover,
m—1
olkl £
£ 14p (avig) =< a5 (0)
(V) g_:o ok 0k

n

| oy
+ 1— ||k | ————
3) 1 O e

= =1
[k=m || |7 £ (dVy)
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We first would like to mention that in [ 18], the second author proved similar
results as Theorem B with general weights. Readers can consult the paper [18] and
references therein to study results of weighted Bergman speces. We also want to
point out that there is a small gap in the proof of the case 1 < p < oo of Theorem
A in [3]. Following Andersen’s ideas in [2], we would like to provide a complete
proof for the case 1 < p < oo. To make this paper self-contained, we will also give
a proof for the case 0 < p 1 in section 2. Let us state our first main result as the
following theorem.

Theorem 1. Let 0 < p < 00, ¥ = (Y1, ..., Yn) Such that Re (vy;) > —1,
j=1..nand 0 r < 1. Then there is a constant C independent of f and r
such that

cine-epan [ sy,

[0,27]™

for all H(Dy,).
In order to prove Theorem 1 we need several auxiliary results which are incor-
porated in the following lemmas.

Lemma 1. ([4]) Let 0 <p<ooand 0 r < 1. Then there is a constant C
independent of f and r such that

/ sup |f(r-r-9)Pdo C f(r - €%)[Pd6
0,27 0 7<1 0,27

for all f € H(Dy,).

Lemma 2.  ([6,p.65]) For each 1 < a < oo there is a positive constant
C = C(a) such that

/Il—pewl_acw Cl—p', if 0 p<1.

—Tr
The following lemma is a well-known generalization of a theorem in [9].

Lemma3. [Let0<p<oo,l<a<ooand0 r < 1. Then thereis a
constant C' independent of f and r such that

1/a n
/ (/ |f(T~r'ei9)|p“d9> [[a-m)Year ¢ [  |ftre®)ras,
[071)” [0,2#]"

j=1 [0,27]"

for all f € H(Dy).
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For real y and ¢ > —1, set

L[ 1+l if 0<0
H(y) 1ty log(2+1/lyl), if o=0
y 1, if o>0.

Lemma 4. ([2]) For 0 > —1, there is a constant C = C(0) such that

/1 $U+ld$ CHU (90/9)
o 2+l + e

for all real p and 0 # 0. ‘ ‘ ‘
For any measurable function g(e), define Esg(e’) = Fs,,. s, g(¢®) by

; ei(s+1)0) if |s;60;] m forall je€{l,..,n},
Esg(ew) :{ g( 0 ) ’ J ]‘ Otherwisej_ { }

The following lemma is a generalization of Lemma 2.2 in [2].

Lemma 5. Leto; > —1,j=1,..,n,1<p<ooand

“r HY(s))
L _on/p i G
Ao',p = 2 /nJHl ’SJ +1’1/pd8.

Then Azp < 0o and

p

/ / ] E% () Esg(®)ds | do a2 / ()b,
[—m,m]™ n j=1 = S

for all measurable g > 0.

Proof.  The first assertion can be easily proved. Let H(s) = [[;_; H% (s;).
By Minkowski’s inequality we obtain

</[‘“’“]" ( R HU(S)Esg(e”)dS)p d9> ’

1/p
o 160\1p s.
[ ) ( /[W[Esg@ ) de) d

On the other hand, since for real b, min{|b + 1|, |(b+1)/b|} 2, for s; # —1,
j=1,...,n, we obtain



298 Der-Chen Chang and Stevo Stevi¢

gp(ei(s+l)0)d0
@p_1{0;:1s;0;1 =3n{0;:10;] =}

@ = II

o l5i U Jer o501 Isi+imne; s losl [s;+1im)
n
1 |
g° (") dp
jl;llfsj‘f'l’ @ {|lp;| 2r}

)
prd gp [ ®
jl:[l ’Sj =+ 1’ [—,7]"

From (3) and (4) the result follows.

gP (") dyp

2. PrROOF OF THEOREM 1

In this section we give a proof of Theorem 1. Throughout the following proof
C will denotes a constant which may change from line to line.

Proof of Theorem 1. In what follows, for the sake of simplicity, we assume that
Vi, j = 1,...,n, are real numbers such that v; > —1.

Case 0 <p 1l.Letfe€H(Dy)andty=1-2"% k ecNU{0}. Let

=M= [ e

By Lemma 1 and some simple calculations, we obtain

p
I C / [z r-e? ﬁl—’i’ Yidr | do
,2xn \ Jonn | TTj= (1 = mymje "’J W 3)
o0
c > |
Zk—l [0727-‘-177,
thy b |f(r-7-e "
(5) / 0 H (1—m)dr | do
tey—1 thy, —1 ’H] 1 1 _taujr i€ 7]+1|
C —— sup
kl,%—l 2 Zf K00t Jlo amn ey <r <t

faore
Ty (1= myrgei® |
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- 1
C n—/ su
) Z_l QPZJ':1 kj(v;+1) [0,27]7 0 TEtk
e\,
0=

1 p
; If(tk 7€)

Ky s
tk1+1 2 1f(r- 7 eif)| p

‘ / A / d9
ki, Z t 0,27]n (\ IT;- (1 — Tyrjeii )+
XH p('yfﬂ —Ldr

7j=1

fr-r- 69) s (y+1)—1
d9 5P dr.

Al /027r (|H" (1 — 7jrje®iyitl ]1_[

Here, ty denotes (tx,, ..., tk, )-
Choose a > 1 such that max;—1,..,{1 —p(y; + 1)} < 1/a. Then by Holder’s
inequality with exponents a and b = a/(a — 1), and using Lemma 2 we obtain

[f(r 7€) :
©) /0271']" <|H] 1( —Tjrje 191)'Yj+1|> do

1/a ” 1/b
10\ | pa
T-T-€ do / :
(/[0,27@" Jd ) ) ( [0,27]" B! |j:1 (1 —TjTjelej)’Yj+1|Pb)

1/a
¢ / [f(roree)Pedp | TJ(1— mry)~Cot izt
[0,27]™ i
1/a
[0,27] ™ i
From (5) and (6) we obtain
1/a o
MpCI ) C / [f(rer-e®)pedg ) [ — ) dr
[071)" [O,QTF}" ol
c |f(r- e9)Pdd,

[0,27]™

as desired.
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Casep > 1. Let f € H(Dp) and 0 < r < 1, set f(e) = f(r - €*%). Then for
0<7 <1, f(r-r-€?) is given by the following integral

(7) flror-é%) = (271T)” /[ } fr(e¥) HP(TJ'7(PJ' —0;)dy
—,m|™ j=1

where P(p, ¢) is the Poisson’s kernel i.e.

1—p?
P(IO7¢)_ 1—2PCOS¢)+p2.

Combining (2) and (7) and using Fubini’s theorem, we obtain

(- = T 2L / K7(6,0) (@) dg
[—m,m]™

i 27

where

drj.

/ (L4 7)1 =7y

1 —27; cos pj +77) (1 — rj7jeids )it

Using an estimate in [2,p.621], we have that there is a constant C' = C(*) such
that

. 2Vitlde
|I<1’"y , P ’ / ,11,'2 +(P] x2+0?]('yj+1)/2

for |0;] m || mj= 1,...,n. Thus, by Lemma 4, we obtain

- H(p;/0;)
K (0, o ] 22 8i%)
K7(6.9) H o

for0 <10;| =, |¢j] m, 0<r <1 Hence

el e ]H—HWTZ;W/—G”‘)|fr<ei<9+¢>>rdso
T, =1

o[ Hmj(s]->Es|fr|<e”>ds
=1

From this estimates, using Lemma 5 and the 27 periodicity of the subintegral
function, the result follows.
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The Hardy space HP(Dy,) (0 < p < 00) is defined on D,, by

HP(Dn) ={f|f € HDn) and ||f|larp,) <o},

where
oy = sup [ 15+ pae.
r<1J[0,2x]n

We obtain the following corollaries from Theorem 1.

Corollary 1.  The generalized Cesaro operator is bounded on HP(D,,) for
p>0.

Given 0 < p,q < oo, and positive Borel measures pj, 7 = 1,...,n on the
interval (0, 1), the weighted space Afj’q(Dn) consists of those functions f analytic
on D,, for which

a/p n 1/a

Il aza = / / f(r-e9Pde dpi(r; < 0.
| HAN (Dy) 0" [O,27r]”| ( )| ]1;[1 145 (75)

Of particular interest are the absolutely continuous measures of the form dy;(r;) =
(1- rj)“rg’-drj; the spaces obtained include the Bergman spaces.

Corollary 2.  The generalized Cesaro operator is bounded on A’gq(Dn) for
p,q > 0. Moreover, there is a constant C' independent of f, such that

IC" Dz o,y CllFllazao,)-

Remark 1. If p = oo then the operator C7 is not bounded. Indeed, taking
g(z) =1 we obtain

+1 -
-1t = 1

j=1k=1

o0
Z?, for 0<z; <1,
k=1
which is not in H*(D,,).
3. SOME INVARIANT SPACES OF THE GENERALIZED CESARO OPERATORS

The a-Bloch space B%(D,,) is the space of all analytic functions f on D,, such

that of
a—zj( 2)

< 0Q.

ba(f) = max sup (1 —|z[*)
-]:17’nZ€Dn
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It is clear that B® is a normed space, modulo constant functions and B C 5%
for a1 < ap. Hardy and Littlewood (see [10]) proved that B*(D) = A1_4(D) for
0 < a < 1. Here Ag(D) is the Lipschitz space of order 5 which can be used
to characterize the dual space of Hardy space HP(D) for 0 < p < 1 (see [6]).
Therefore, B are important in the theory of Hardy spaces. This is the main reason
for us to bring a-Bloch space into the picture.

With Sz we denote the space which consists of all analytic functions f on D),
such that

n

N(f)sz = sup |f(z IIA = 1z)™ <o,

zeD, =1
where & = (a1,...,0m), aj >0, j=1,...,n

It is well-known that when n =1 and a > 1, the following are equivalent:

0
bo(f) < 00 & sup(1— |2]?)® z—f(z)
z€D 0z
In order to prove the main theorem in this section, we need the following auxiliary
result:

< oo & N(f)s, , < oc.

Lemma 6. Let v > —1 and o > 0. Then

/1 -7 . aty+l 1
o (

1—tz[)otrtt a(y+1) (1— [z

Proof. We have

Loty o - L a1—t)y
| = | (1‘—t!ZD“+7+1dt+_/C|(1——t|zDa+W+1dt
2| 1
[
1

oy
——dt —————dt
(].—t a+1 +/Z (]__ |Z|)a+’y+1
11111
a(l=[z)* a y+1(0-]z])e

aty+1l 1
o(y+1) (1-|[z])~

as desired.

Remark 2. For Re (y) > 0, it is easy to obtain the following identity:

20 (fY (2 7+1/f -t

(1—tz)rt1

—(v+ I)QA f(tz)%dt =1+1I.
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By this identity we can see that the generalized Cesaro operator C” is bounded
from BY(D) to B*(D) for 1 < a < co. Indeed, assuming that f € B%(D), we have

_”/1
1| 7+1/|f A= |

vy +1) / |f(t2)| 1—t|z\)a Y1 -t~ dt

—tfz])+H

1 _ +\7-1
ho+DING)s. - [ %c&

It follows that

(1_ ‘2’2)(1’[‘ 2a(7+1)(a+7)

'N(f)sa_l-

Similarly, one has

(1= [2*)*|11] ‘ 2(y + 1)5;1 D)

'N(f)sal-

Combining the estimates for I and I/, we immediately obtain the following:

Slelg(l — [z () ()] CanN(f)s, ., <o,

as desired.
For the case 0 < a < 1, we choose f =1, then

00 0k
. Rt S 2"
CHNE) Zk+7+1z 20> %
k=0 k=1
for some C' > 0 and for all 0 < z < 1. Howeve Zzozl% = —log(l—2) ¢

1

As for the case a = 1, we may consider f(z ) = Llog 1
f € BY(D). However, C'(f) ¢ BY(D).

It can be shown that for 0 < a < oo,

f€BYBn) & sup [R(f)(2)|(1—[*)* < o0

Zen

where R(f)(2) = i1 2 3Z 9L (%) is the radial derivative of f. Therefore, we may
use this property to obtain some similar results for sliced Cesaro operator. However,
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when we turn to polydisk, the situation is quite different. The following lemma is
a natural generalization of the result for unit disk D to polydisk D,.

Lemma 7. Let a > 1. Then B*(Dy) C Sz_1(Dy), where d— 1 = (a —
1,..,a—1).

Proof. Without loss of generality, we may assume n = 2. It is clear that

|f (21, 22) = f(0,0)| =

’ZQ’dt

=
0 O (1 A=t

L of L of
A D2 (zl,tzz)zzdt+/0 01 (tzl,O)zldt‘
(1 —t|zo])"
92 1 B2 | (T 4]y )
1 8f
+
A D21 (1~ )™
1 £1l5, ( 1 N 1 ) .
a—1 \ (1 —[a])e=t (11— |zg])a"?

From (8), it follows

A lalf 0= ) ) 1FO.0) + s,

as desired.
Since Sz—1 C Sz—1, when @ min{ay, ...,an}, we may obtain the result
easily.

Corollary 3. Let a > 1and oj > 1,5 =1,...,n. Then B(Dy) C Sz_1(Dn),
when a  min{oy, ..., an}.

Remark 3. The inclusion in Lemma 7 is proper. Indeed, let

n

f(215 0y 20) = H(l_Z#

=1

o

then

[T = lzDe L T lesls
k=1 k=1
hence f € Sz_1(Dp).

On the other hand, it is easy to see that

sup (1 — |z])° = oo

z€Dy,

of
8_%(2)
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for all k € {1,....,n}.
The main result in this section is the following theorem:

Theorem 2. The space Sz(D,,), a > 1 is invariant for the generalized Cesaro
operators on the polydisk D,,. Moreover there is a constant C' independent of f
such that

NC(Ms:  CN(f)s;

Proof. Without loss of generality, we may assume that v;, j = 1,..., n, are real
numbers such that v; > —1. Let f € S5. Then

|f(T-2)] - .
CTf(z ||’y+1/ / [](1—m)vdr
| i +1 [ |1 = Tzt j=1( 2
(- 2) 1= (1 —75120)%
|| +1/ / = [Ja—7)edr
s+ HJ (1= 75 [z )ttt j= 1( 2

Hj 1 1 _T])’YJ
H hj + 1| N / / H] —T; |ZJD%+’YJ+1 i

1 (1 —7;)%

n
- H g+ 1 NS SQJHl/O (1— 75 |])ost+L

1 n
H|Oé] +7; +1] (f)SaHW (by Lemma 6)
j=1

dT

(%]
from which the result follows with C' = N(f)s, [T J—ﬁ—ﬁﬂ

Corollary 4. Let a > 1. Then C7 is bounded operator from B*(Dy,) to Si_1
(Dn).

Denote B, ,_1 (D,,) the collection of all analytic functions f on D,, such that

P(f)B.1 =, max sup H (112" — |2 ')'§i< )

< 0.

By Lemma 7 and Theorem 2, we obtain the following result.

Lemma 8. Let a > 1. Then Boq—1(Dr) = S;_1(Dy).
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Proof. Without loss of generality, we may assume n = 2. As in Lemma 7 we
have

|f (21, 22) = £(0,0)]

1 af 1 af
— A 8Z2(21,tZ2)Z2dt+A 81(152’1, )Z1dt‘

Liof (1 —t]zg])2(1 — |Zl|)a71

A 8_Z2(z1,tz2)’ 0 tlea] oL = o) | zo|dt
1
)

oF (1= tz)e(1 = o)t

Beg °>’ (L gz oot 9!

P(f)Baas 1 1

a1 ((1—\z1\>a TEPiTe *(1—@1)&-1)
2P(f)Ba,a71

@ DU [0 o T

From which it follows that B, q—1(Dr) C Sz_1(Dp).
On the other hand, by Cauchy’s integral formula we have

of (2) = 1 / f(QdC
Oz @)™ S, 085,112 /) €k — 20) TTj=1(G — 25)

Since ¢; € 0B(zj, (1 —|zj|)/2), one has

)

(10) (1 _2’zj|) < (1 _ ’CJD < 3(1 _2|ZJD
From (9) and (10) we obtain

of

o @)

C n
dé:
(1= lakD) ITj= (1 = I2) /1‘[;163(zj,(1_|zj|)/2) (I H| Gl

C N(f)s._
a—1 d
(1= |2k I (@ = I2) /H? 0Bz, (1) 2) T (L= 1G D H’ ‘4
C N(f)szs
(1= l2e) [T (@ — 1z

It follows that Sz_1(Dy) C Baa—1(Dn). Moreover, we conclude that

P(f)Ba,a_l CN(f)Sa_l'
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Remark 4. Applying Lemma 8 we can prove that for a > 1, there is a constant
C independent of f such that

PCT(NBaar CNWs, -

Indeed, without loss of generality, we may assume n = 2 and 71,72 € (—1, ).
For a > 1, we have

ac(f)
21 (2)
' t_1ﬁ+ (Dt f ) (L= t2)n (L~ t)"
(1—t121) 71+1 0z (1 —t1z1)71+2 (1— t222)’Y2+1
C (I—ta|z )*(1 = to|2o))*"
8z1 1—t1|Z1|)“+71+1(1—tz!Zzl)“ L

|’Yl + 1! |fI(L = ta]z1]) 211 — tolza])* 1\ (1 — )™ (1 — o)™
(1—ta|z1])atnHL(1 —t2|zp])a—L (1 — to|ze|)r2tt

1 — tl)'h(l — tg)’Y2
P / / ( 1- t1|21|)“+71+1(1 - t2|22|)“+72> *
1
CN(f)Safl ((1 — |Z1|)a(1 _ |Z2|)a71
CN(f)s

a—1

(1= [z1[)*(1 = [2o] )2

Similarly we obtain

=C

Z

1)

dt

) (by Lemma 6)

9C(f)

1 a-ltas a5 e enms..

From (11) and (12) the result follows immediately.
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