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α-SKEW ARMENDARIZ MODULES AND
α-SEMICOMMUTATIVE MODULES

Cui-Ping Zhang* and Jian-Long Chen

Abstract. Let α be a ring endomorphism. We introduce α-skew Armen-
dariz modules and α-semicommutative modules which are generalizations of
Armendariz modules and semicommutative modules, respectively. And inves-
tigate their properties. Moreover, we study the relationship between a module
and its polynomial module.

1. INTRODUCTION

All rings are associative and have identity, and modules are unitary right mod-
ules. R[x] denotes the polynomial ring over a ring R and M [x] denotes the polyno-
mial module over a module M . Rege and Chhawchharia [9] introduced the notion
of an Armendariz ring. Recently, many authors have studied Armendariz rings and
given various generalizations. According to Hong, Kim and Kwak [4], for an en-
domorphism α of a ring R, R is called α-skew Armendariz if p(x)q(x) = 0 where
p(x) =

∑m
i=0 aix

i and q(x) =
∑n

j=0 bjx
j ∈ R[x; α] implies aiα

i(bj) = 0 for all
0 ≤ i ≤ m and 0 ≤ j ≤ n. Chen [2] proved that for an endomorphism α of a ring R
and αl = 1R for some positive integer l, R is α-skew Armendariz iff the polynomial
ring R[x] over R is α-skew Armendariz. Huh, Lee and Smoktunowicz [6] made a
comparative study of Armendariz rings and semi-commutative rings. Armendariz
rings need not be semicommutative rings by [6, Example 14] and semicommutative
rings need not be Armendariz rings by [4, Example 3.2]. A right R-module M is
an Armendariz module if m(x)g(x) = 0 where m(x) =

∑t
i=0 mix

i ∈ M [x] and
g(x) =

∑n
j=0 ajx

j ∈ R[x] implies miaj = 0 for every i and j. Right R-module
M is semi-commutative if ma = 0 implies mRa = 0 for m ∈ M and a ∈ R. A
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ring R is reduced if a2 = 0 implies a = 0 for a ∈ R. Buhphang and Rege [1]
studied the basic properties of Armendariz modules and semi-commutative modules.
Moreover, they proved that all flat modules over a reduced ring are both Armendariz
and semi-commutative. For an endomorphism α of a ring R, a right R-module M
is called α-reduced if for m ∈ M and a ∈ R (1) ma = 0 impliesmR∩Ma = 0 (2)
ma = 0 iff mα(a) = 0. If α = 1R, α-reduced module is called reduced module.
Lee and Zhou [8] introduced those notions and proved that a right R-module M is
reduced iff M [x]/M [x](xn) is an Armendariz module over R[x]/(xn) for integer
n ≥ 2.

In this paper, we introduce the notions of α-skew Armendariz module and α-
semicommutative module for an endomorphism α of a ring R. Furthermore, we
show that for an endomorphism α of a ring R (1) R is α-skew Armendariz if and
only if every flat rightR-module is α-skew Armendariz; (2)R is α-semicommutative
if and only if every flat right R-module is α-semicommutative; (3) If αl = 1R for
some positive integer l, then right R-module M is α-skew Armendariz if and only
if M [x] is α-skew Armendariz over R[x]; (4) If αl = 0 for some positive integer
l, then M is α-reduced if and only if M [x]/M [x](xn) is an α-skew Armendariz
module over R[x]/(xn) for integer n ≥ 2

2. THE PROPERTIES AND THE EQUIVALENT CONDITIONS

Let α be an endomorphism of a ring R andM be a right R-module. M [x; α] =
{∑s

i=0 mix
i; s ≥ 0, mi ∈ M} is an Abelian group under an obvious addition opera-

tion. Moreover, M [x; α] becomes a module over R[x; α] under the following scalar
product operation: For m(x) =

∑s
i=0 mix

i ∈ M [x; α] and f(x) =
∑t

j=0 ajx
j ∈

R[x; α], m(x)f(x) =
∑

k(
∑

i+j=k miα
i(aj))xk. M is called α-Armendariz [8]

if (1) ma = 0 iff mα(a) = 0 for m ∈ M and a ∈ R; (2) m(x)f(x) = 0
where m(x) =

∑s
i=0 mix

i ∈ M [x; α] and f(x) =
∑t

j=0 ajx
j ∈ R[x; α] implies

miα
i(aj) = 0 for all i and j.

Definition 2.1. Let α be an endomorphism of a ring R and M be a right
R-module. M is called α-skew Armendariz if m(x)f(x) = 0 where m(x) =∑s

i=0 mix
i ∈ M [x; α] and f(x) =

∑t
j=0 ajx

j ∈ R[x; α] impliesmiα
i(aj) = 0 for

all i and j.

We can easily prove that a ring R is α-skew Armendariz iff RR is α-skew
Armendariz, and a right R-module M is Armendariz iff it is 1R-skew Armendariz.
So α-skew Armendariz modules are not necessarily Armendariz by [4]. Moreover,
α-Armendariz module is α-skew Armendariz module, but the converse may not be
true. For R4 in the following example is not α-Armendariz over R4, however, Chen
[3] proved that it is α-skew Armendariz.
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Example 2.2. Let S be a domain andR4 =







a a12 a13 a14

0 a a23 a24

0 0 a a34

0 0 0 a




∣∣∣∣∣a, aij ∈S



.

Define α : R4 → R4 by α(x) = diag(a, a, a, a) for any x=




a a12 a13 a14

0 a a23 a24

0 0 a a34

0 0 0 a




∈ R4, then R4 is α-skew Armendariz.

Proof. Suppose that f(x) = A0 +A1x+ · · ·+Anxn, and g(x) = B0 +B1x+
· · ·+ Bnxn ∈ R4[x; α] with f(x)g(x) = 0. We need to prove that Aiα

i(Bj) = 0
for all i and j. Since α2 = α, we only need Aiα(Bj) = 0. Put

Aj =




a(j) a
(j)
12 a

(j)
13 a

(j)
14

0 a(j) a
(j)
23 a

(j)
24

0 0 a(j) a
(j)
34

0 0 0 a(j)



and Bj =




b(j) b
(j)
12 b

(j)
13 b

(j)
14

0 b(j) b
(j)
23 b

(j)
24

0 0 b(j) b
(j)
34

0 0 0 b(j)




.

Case 1. A0 is invertible. From f(x)g(x) = 0, we have B0 = 0. We claim that
Bj = 0 for all 0 ≤ j ≤ n. If not, there exists the least k such that Bk �= 0 and
B0 = · · · = Bk−1 = 0. Since A0Bk + A1α(Bk−1) + · · ·+ Akα(B0) = 0, we have
A0Bk = 0 and hence Bk = 0, which is a contradiction.

Case 2. B0 is invertible. Similar to the proof of case 1, we can get Ai = 0 for
all i.

Case 3. Both A0 and B0 are not invertible. In the case of A0 �= 0, we claim
that α(Bj) = 0 for all j. If not, there exists the least j such that α(Bj) �= 0. From
equation A0Bj + A1α(Bj−1) + · · · + Ajα(B0) = 0, we have A0Bj = 0. Since
α(Bj) �= 0, b(j) �= 0 and so A0 = 0, a contradiction. If A0 = 0, then we claim
that Ai = 0 or α(Bj) = 0 for all i and j. Assume to the contrary, there exist the
least i and the least j such that A i �= 0 and α(Bj) �= 0. Now f(x)g(x) = 0 gives
A0Bi+j + · · ·+Ai−1α(Bj+1)+Aiα(Bj)+Ai+1α(Bj−1)+ · · ·+Ai+jα(B0) = 0.
It follows that Aiα(Bj) = 0. On the other hand, α(Bj) �= 0 implies that b(j) �= 0
and so Ai = 0, which is a contradiction. From the above discussion we have
Aiα(Bj) = 0 for all i and j. Hence R4 is an α-skew Armendariz ring.
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Definition 2.3. Let α be an endomorphism of a ring R and M be a right
R-module. M is called α-semicommutative if ma = 0 implies mRα(a) = 0 for
m ∈ M and a ∈ R.

A ring R is α-semicommutative if RR is α-semicommutative. It is clear that
a right R-module M is semicommutative iff it is 1R-semicommutative. One may
suspect that α-semicommutative modules are semi-commutative, however, the fol-
lowing example erases the possibility.

Example 2.4. R4 in Example 2.2 is α-semicommutative.

Proof. SupposeA =




a a12 a13 a14

0 a a23 a24

0 0 a a34

0 0 0 a


, B =




b b12 b13 b14

0 b b23 b24

0 0 b b34

0 0 0 b




∈ R4 and AB = 0, then we have

ab = 0
ab12 + a12b = 0
ab13 + a12b23 + a13b = 0
ab14 + a12b24 + a13b34 + a14b = 0
ab23 + a23b = 0
ab24 + a23b34 + a24b = 0
ab34 + a34b = 0

Since S is a domain, ab = 0 implies a = 0 or b = 0. If b = 0, then α(B) = 0,
so AR4α(B) = 0. If b �= 0, then a = 0. Using the equations above, we have
a12 = a13 = a14 = a23 = a24 = a34 = 0. Thus A = 0, so AR4α(B) = 0.
Therefore R4 is α-semicommutative.

However, R4 is not semi-commutative by [7, Example 1.3].

Remark 2.5. Let R be a subring of a ring S with 1S ∈ R and MR ⊆ LS . Let
α be an endomorphism of S such that α(R) ⊆ R. If LS is α-skew Armendariz
(α-semicommutative), then MR is also α-skew Armendariz (α-semicommutative).

Proposition 2.6. Let α be an endomorphism of a ring R. The class of α-
skew Armendariz (α-semicommutative) modules is closed under direct sums, direct
products and submodules.

An R-moduleM is torsionless if it is a submodule of a direct product of copies
of R. If M is a faithful R-module, then R is a submodule of a direct product of
copies of M . The following corollary is easy to be obtained by Proposition 2.6.
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Corollary 2.7. ([1, Theorem 2.7]) The following conditions are equivalent.

(1) R is an Armendariz (semicommutative) ring;

(2) Every torsionless R-module is Armendariz (semicommutative);

(3) Every submodule of a free R-module is Armendariz (semicommutative);
(4) There exists a faithful R-module which is Armendariz (semicommutative)

Proposition 2.8. Let α be an endomorphism of a ring R. An R-module M
is α-skew Armendariz (α-semicommutative) if and only if every finitely generated
(cyclic) submodule of M is α-skew Armendariz ( α-semicommutative).

The following conclusion is the generalization of Proposition 2.3 in [1].

Proposition 2.9. Let α be an endomorphism of a commutative domainD andM
be a torsion free D-module. ThenM isα-skew Armendariz (α-semicommutative).

Proposition 2.10. Let α be a monomorphism of a commutative domainD and
M be a D-module. Then M is α-skew Armendariz (α-semicommutative) if and
only if its torsion submodule T (M) is α-skew Armendariz (α-semicommutative).

Proof. Let m(x) =
∑t

i=0 mix
i ∈ M [x; α] and f(x) =

∑n
j=0 ajx

j ∈ D[x; α]
satisfy m(x)f(x) = 0, we have

m0a0 = 0 (1)

m0a1 + m1α(a0) = 0 (2)

m0a2 + m1α(a1) + m2α
2(a0) = 0 (3)

· · ·
mtα

t(an) = 0 (n + t + 1)

We can assume a0 �= 0, then m0 ∈ T (M) by (1). Multiplying (2) by a0 from the
right, one obtains m1α(a0)a0 = 0. Since α is monic and D is a domain, so m1 ∈
T (M). Multiplying (3) by α(a0)a0 from the right, we obtain m2α

2(a0)α(a0)a0 =
0, so m2 ∈ T (M). Continuing this process, we have m(x) ∈ T (M)[x]. Since
T (M) is α-skew Armendariz, we conclude that miα

i(aj) = 0 for all i and j ,
proving that M is α-skew Armendariz. The other implication is trivial.

The proof of α-semicommutative module is similar to that above.

The following two results are the generalizations of the Theorem 2.15 and the
Theorem 2.16 in [1], respectively.
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Theorem 2.11. Let α be an endomorphism of a ring R. R is α-skew Armen-
dariz if and only if every flat right R-module is α-skew Armendariz.

Proof. Let M be a flat right R-module. Let 0 → K → F → M → 0
be an exact sequence with F free over R. (In what follows, for an element y
of F , we denote y = y + K in M ). Let f(x) =

∑t
i=0 yix

i ∈ M [x; α] and
g(x) =

∑n
j=0 ajx

j ∈ R[x; α] satisfy f(x)g(x) = 0, then we have

y0a0 = 0
y0a1 + y1α(a0) = 0

y0a2 + y1α(a1) + y2α
2(a0) = 0

· · ·
ytα

t(an) = 0

Therefore the elements y0a0, y0a1 +y1α(a0), · · · , ytα
t(an) all belong to K . Since

M is a flat R-module, there exists an R-module homomorphism v : F → K such
that v(y0a0) = y0a0, v(y0a1 + y1α(a0)) = y0a1 + y1α(a0), · · · , v(ytα

t(an)) =
ytα

t(an).
Write wi := v(yi)−yi for i = 0, 1, · · · , t. Each wi is an element of F , therefore

the polynomial h(x) =
∑t

i=0 wix
i ∈ F [x; α] and h(x)g(x) = 0. Since R is α-skew

Armendariz and F is a free R-module, F is α-skew Armendariz by Proposition 2.6.
Thus, we have wiα

i(aj) = 0 for all i and j. It follows that yiα
i(aj) ∈ K for all

i and j, so yiα
i(aj) = 0 in M , proving that M is α-skew Armendariz. The other

implication is obvious.

Theorem 2.12. Let α be an endomorphism of a ringR. R is α-semicommutative
if and only if every flat right R-module is α-semicommutative.

Proof. The proof is similar to that of the Theorem 2.11.

Let α be an endomorphism of a ring R and M be a right R-module. According
to Lee and Zhou [8], M is called α-reduced if, for any m ∈ M and a ∈ R,
(1) ma = 0 impliesmR ∩ Ma = 0;
(2) ma = 0 iff mα(a) = 0.

M is reduced if M is 1R-reduced. It is clear that α-reduced module is reduced.

Lemma 2.13. ([8, Lemma 1.2]). Let M be a right R-module M . The follow-
ing are equivalent.

(1) M is α-reduced;
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(2) The following conditions hold: For any m ∈ M and a ∈ R,
(a) ma = 0 implies mRa = mRα(a) = 0;
(b) maα(a) = 0 implies ma = 0;
(c) ma2 = 0 implies ma = 0.

R is called α-rigid [5] if aα(a) = 0 implies a = 0 for a ∈ R. It is easy to
show that α-rigid ring is reduced.

Lemma 2.14. ([5, Lemma 4]). Let α be an endomorphism of a ring R. RR

is α-reduced if and only if R is an α-rigid ring.

If R is α-rigid, then R is α-skew Armendariz by [4, Corollary 4]. Therefore,
if RR is α-reduced, then R is α-skew Armendariz as well as α-semicommutative
by Lemma 2.13 and 2.14.

By a regular ring we mean a von Neumann regular ring. It is well-known that
all modules over a regular ring are flat, therefore the following result is immediate.

Remark 2.15. Let α be an endomorphism of a ring R. If RR is α-reduced
and R is a regular ring, then all right R-modules are α-skew Armendariz as well
as α-semicommutative.

3. POLYNOMIAL MODULES OVER POLYNOMIAL RINGS

In this section, we study the relations between right R-module M and the
polynomial module M [x] over M .

Proposition 3.1. Let α be an endomorphism of a ring R andM be a right R-
module. If M is α-skew Armendariz, then the following conditions are equivalent.
(1) M is α-semicommutative and semicommutative;
(2) M [x; α] is semicommutative over R[x; α].

Proof. (1)⇒(2) Let M be an α-semicommutative and semicommutative right
R-module. Let m(x) =

∑t
i=0 mix

i ∈ M [x; α] and f(x) =
∑n

j=0 ajx
j ∈ R[x; α]

satisfy m(x)f(x) = 0. Since M is α-skew Armendariz, so miα
i(aj) = 0 for each

i and j. Let h(x) =
∑v

k=0 bkx
k ∈ R[x; α], and let c0, c1, c2, · · · , ct+v+n be the

coefficients of m(x)h(x)f(x), then

c0 = m0b0a0

c1 = m0b0a1 + (m0b1 + m1α(b0))α(a0)

c2=m0b0a2+(m0b1+m1α(b0))α(a1)+(m0b2+m1α(b1)+m2α
2(b0))α2(a0)

· · ·
ct+v+n = mtα

t(bv)αt+v(an)
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SinceM is α-semicommutative and semicommutative,m0a0 = 0 impliesm0Rα(a0)
= 0 and m0Ra0 = 0, hence c0 = 0. m0a1 = 0 and m1α(a0) = 0 which imply
m0Ra1 = 0 and m1Rα(a0) = 0, we have c1 = 0. Continuing we get ci = 0
for all i. Hence m(x)h(x)f(x) = 0, proving that M [x; α] is a semicommutative
R[x; α]-module.

(2) ⇒ (1) Clearly M is semicommutative. If ma = 0 for m ∈ M and a ∈ R,
then mR[x; α]a = 0 since M [x; α] is semicommutative. So mrxa = 0 for any
r ∈ R, and mrα(a)x = 0, mrα(a) = 0. Therefore M is α-semicommutative.

Corollary 3.2. Let M be an Armendariz right R-module. The following
conditions are equivalent.
(1) M is semicommutative;
(2) M [x] is semicommutative over R[x].

Recall that if α is an endomorphism of a ring R, then the map R[x] → R[x]
defined by

∑m
i=0 aix

i 	→ ∑m
i=0 α(ai)xi is an endomorphism of the polynomial

ring R[x] and clearly this map extends α. We shall also denote the extended map
R[x] → R[x] by α and the image of f ∈ R[x] by α(f). By Hong, Kim and Kwak
[4], R is α-skew Armendariz if and only if R[x] is α-skew Armendariz provided
αl = 1R for some positive integer l, but the proof had a gap. Chen [2] gave a new
proof. In the following, we generalize this to modules.

Theorem 3.3. Let α be an endomorphism of a ring R and α l = 1R for some
positive integer l. Then right R-module M is α-skew Armendariz if and only if
M [x] is α-skew Armendariz over R[x].

Proof. Assume that M is α-skew Armendariz. Suppose that p(y) =
∑t

i=0 mi

(x)yi ∈ M [x][y; α], q(y) =
∑n

j=0 gj(x)yj ∈ R[x][y; α], and p(y)q(y) = 0. Let
mi(x) = mi0 + mi1x + · · · + misix

si ∈ M [x] for 0 ≤ i ≤ t and gj(x) =
bj0 + bj1x + · · · + bjwjx

wj ∈ R[x] for 0 ≤ j ≤ n. We need to prove that
mi(x)αi(gj(x)) = 0 in M [x] for all i and j. Take a positive integer k such that
k > deg(m0(x)) + deg(m1(x)) + · · ·+ deg(mt(x)) + deg(g0(x)) + deg(g1(x)) +
· · ·+deg(gn(x)), where the degree of mi(x) is as a polynomial inM [x], the degree
of gj(x) is as a polynomial in R[x] and the degree of zero polynomial is to be 0.
Since p(y)q(y) = 0 in M [x][y; α], we have the equations system

m0(x)g0(x) = 0

m0(x)g1(x) + m1(x)α(g0(x)) = 0

m0(x)g2(x) + m1(x)α(g1(x)) + m2(x)α2(g0(x)) = 0

· · ·
mt(x)αt(gn(x)) = 0
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in M [x]. Put m(x) = m0(xl)+m1(xl)xlk+1 +m2(xl)x2lk+2 + · · ·+mt(xl)xtlk+t

and g(x) = g0(xl) + g1(xl)xlk+1 + g2(xl)x2lk+2 + · · ·+ gn(xl)xnlk+n. Then

m(x) = m00 + m01x
l + m02x

2l + · · ·+ m0s0x
ls0

+ m10x
lk+1 + m11x

lk+l+1 + m12x
lk+2l+1 + · · ·+ m1s1x

lk+ls1+1

+ · · ·
+ mt0x

tlk+t + mt1x
tlk+l+t + mt2x

tlk+2l+t + · · ·+ mtstx
tlk+stl+t

and

g(x) = b00 + b01x
l + b02x

2l + · · ·+ b0w0x
lw0

+ b10x
lk+1 + b11x

lk+l+1 + b12x
lk+2l+1 + · · ·+ b1w1x

lk+lw1+1

+ · · ·
+ bn0x

nlk+n + bn1x
nlk+l+n + bn2x

nlk+2l+n + · · ·+ bnwnxnlk+wn l+n

Using the equations system above and αl = 1R, we have m(x)g(x) = 0 inM [x; α].
SinceM is α-skew Armendariz and αl = 1R, somiuαi(bjv) = miuαilk+ul+i(bjv) =
0 for all 0 ≤ i ≤ t, 0 ≤ j ≤ n, u ∈ {0, 1, · · · , s0, · · · , st} and v ∈ {0, 1, · · · , w0,
· · · , wn}. So we have mi(x)αi(gj(x)) = 0 for all 0 ≤ i ≤ t and 0 ≤ j ≤ n in
M [x]. Hence M [x] is α-skew Armendariz .

Obviously, if M [x] is α-skew Armendariz, then M is α-skew Armendariz.

Corollary 3.4. ([4, Theorem 6]). Let α be an endomorphism of a ring R and
αl = 1R for some positive integer l. Then R is α-skew Armendariz if and only if
R[x] is α-skew Armendariz.

We write Mn(R) for the n × n matrix ring over R. For a right R-module
M and A = (aij) ∈ Mn(R), let MA = {(maij) : m ∈ M}. For n ≥ 2, let
V =

∑n−1
i=1 Ei,i+1 where {Ei,j : 1 ≤ i, j ≤ n} are the matrix units, and set

Vn(R) = RIn + RV + · · ·+ RV n−1, Vn(M) = MIn + MV + · · ·+ MV n−1, then
Vn(R) is a ring and Vn(M) becomes a right module over Vn(R) under usual addition
and multiplication of matrices. There is a ring isomorphism θ:Vn(R) → R[x]/(xn)
given by θ(r0In + r1V + · · ·+ rn−1V

n−1)=r0 + r1x + · · ·+ rn−1x
n−1 + (xn) and

an Abelian group isomorphism ϕ:Vn(M) → M [x]/M [x](xn) given by ϕ(m0In +
m1V + · · · + mn−1V

n−1)=m0 + m1x + · · · + mn−1x
n−1 + M [x](xn) such that

ϕ(WA) = ϕ(W )θ(A) for all W ∈ Vn(M) and A ∈ Vn(R). Lee and Zhou [8]
proved that MR is reduced iff M [x]/M [x](xn) is an Armendariz right R-module
over R[x]/(xn) for integer n ≥ 2. In the following we generalize this to α-reduced
module. First we prove the Lemma 3.5.
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Let α be an endomorphism of a ring R, the map Vn(R) → Vn(R) defined by
a0In + a1V + · · ·+ an−1V

n−1 	→ α(a0)In + α(a1)V + · · ·+ α(an−1)V n−1 is an
endomorphism of Vn(R). Similarly the map R[x]/(xn) → R[x]/(xn) defined by
a0 +a1x+ · · ·+an−1x

n−1 +(xn) 	→ α(a0)+α(a1)x+ · · ·+α(an−1)xn−1 +(xn)
is an endomorphism of R[x]/(xn). We shall also denote the two maps above by α.

Lemma 3.5. Let α be an endomorphism of a ring R. Then Vn(M) is an α-
skew Armendariz module over Vn(R) if and only if M [x]/M [x](xn) is an α-skew
Armendariz module over R[x]/(xn).

Proof. Let Vn(M) be an α-skew Armendariz module over Vn(R). p(y) =∑t
i=0 mi(x)yi ∈ (M [x]/M [x](xn))[y; α] and q(y) =

∑s
j=0 f j(x)yj ∈ (R[x]/(xn))

[y; α] where mi(x) = mi0 + mi1x + · · · + mi(n−1)x
n−1 + M [x](xn), f j(x) =

aj0 + aj1x + · · ·+ aj(n−1)x
n−1 + (xn), miu ∈ M , ajv ∈ R, 0 ≤ i ≤ t, 0 ≤ j ≤ s

and 0 ≤ u, v ≤ n − 1 satisfy p(y)q(y) = 0, we have

m0(x)f0(x) = 0

m0(x)f1(x) + m1(x)α(f0(x)) = 0

m0(x)f2(x) + m1(x)α(f1(x)) + m2(x)α2(f0(x)) = 0
· · ·

mt(x)αt(fs(x)) = 0

LetWi = mi0In +mi1V + · · ·+mi(n−1)V
n−1 ∈ Vn(M) and Aj = aj0In +aj1V +

· · ·+aj(n−1)V
n−1 ∈ Vn(R) for 0 ≤ i ≤ t and 0 ≤ j ≤ s. Let W (y) =

∑t
i=0 Wiy

i

and A(y) =
∑s

j=0 Ajy
j , we have

W0A0 = 0
W0A1 + W1α(A0) = 0

W0A2 + W1α(A1) + W2α
2(A0) = 0

· · ·
Wtα

t(As) = 0

By the equations system above, W (y)A(y) = 0 in Vn(M)[y; α]. Since Vn(M) is
an α-skew Armendariz module, Wiα

i(Aj) = 0 for all i and j. Therefore we have
mi(x)αi(f j(x)) = 0 for all i and j, proving that M [x]/M [x](xn) is a α-skew
Armendariz module over R[x]/(xn).

The proof of the other implication is similar to that above.

Theorem 3.6. Let α be an endomorphism of a ring R and α l = 1R for some
positive integer l. M is α-reduced if and only if M [x]/M [x](x n) is an α-skew
Armendariz module over R[x]/(xn) for integer n ≥ 2.
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Proof. Assume that M is α-reduced. By Lemma 3.5, it suffices to show that
Vn(M) is an α-skew Armendariz module over Vn(R).

Suppose that W (x)A(x) = 0 where W (x) =
∑t

i=0 Wix
i ∈ Vn(M)[x; α]

and A(x) =
∑s

j=0 Ajx
j ∈ Vn(R)[x; α]. Write Wi = mi0In + mi1V + · · · +

mi(n−1)V
n−1 and Aj = aj0In + aj1V + · · · + aj(n−1)V

n−1 for 0 ≤ i ≤ t and
0 ≤ j ≤ s. It follows from W (x)A(x) = 0 that [m0(x)In + m1(x)V + · · · +
mn−1(x)V n−1][a0(x)In + a1(x)V + · · · + an−1(x)V n−1] = 0 in Vn(M [x; α])
where mu(x) = m0u + m1ux + · · ·+ mtuxt and av(x) = a0v + a1vx + · · ·+ asvx

s

for 0 ≤ u, v ≤ n − 1, and hence

m0(x)a0(x) = 0 (1)
m0(x)a1(x) + m1(x)a0(x) = 0 (2)
m0(x)a2(x) + m1(x)a1(x) + m2(x)a0(x) = 0 (3)

· · ·
m0(x)an−1(x) + m1(x)an−2(x) + · · ·+ mn−1(x)a0(x) = 0 (n − 1)

in M [x; α]. Since M is α-reduced, so M [x; α] is reduced by [8, Theorem 1.6],
m0(x)R[x; α]a0(x) = 0. Multiplying (2) by a0(x) from the right, one obtains
m1(x)(a0(x))2 = 0, som1(x)a0(x) = 0, m0(x)a1(x) = 0 which implym1(x)R[x;
α]a0(x) = 0, m0(x)R[x; α]a1(x) = 0. Multiplying (3) by a0(x) from the right, we
have m2(x)(a0(x))2 = 0, so m2(x)a0(x) = 0, thus (3) becomes

m0(x)a2(x) + m1(x)a1(x) = 0 (3′)

Multiplying (3′) by a1(x) from the right, (3′) becomesm1(x)(a1(x))2 = 0,m1(x)a1

(x) = 0, so m0(x)a2(x) = 0. Continuing this process , we have mu(x)av(x) = 0
in M [x; α] for all u and v with 0 ≤ u + v ≤ n − 1. It follows that

m0ua0v = 0
m0ua1v + m1uα(a0v) = 0

m0ua2v + m1uα(a1v) + m2uα2(a0v) = 0
· · ·

mtuαt(asv) = 0

for all u and v with 0 ≤ u + v ≤ n − 1. Since M is α-reduced, using the
similar method above, we have miuαi(ajv) = 0 for 0 ≤ i ≤ t, 0 ≤ j ≤ s,
0 ≤ u+v ≤ n−1. So Wiα

i(Aj) = 0 for all i and j, proving thatM [x]/M [x](xn)
is α-skew Armendariz.

Conversely, if l = 1, it is true by [8, Theorem 1.9]. So we can assume l > 1.
Suppose that ma = 0 for m ∈ M and a ∈ R, then [mIn + (mE1n)x][aIn −
(α(a)E1n)x] = 0. By Lemma 3.5, Vn(M) is an α-skew Armendariz module
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over Vn(R), so mα(a) = 0. Suppose that mα(a) = 0, then mαl−1(a) = 0, so
[mIn + (mE1n)x][αl−1(a)In − (aE1n)x] = 0, hence ma = 0. If ma = 0, we have
mαl−1(a) = 0. Let mr = m1a ∈ mR ∩ Ma, [mIn + (m1E1n)x][αl−1(a)In −
(rE1n)x] = 0, so mr = 0. Thus M is α-reduced.

Corollary 3.7. ([8, Theorem 1.9]). Let n ≥ 2 be an integer. ThenMR is reduced
if and only if M [x]/M [x](xn) is an Armendariz right module over R[x]/(x n)

Let α be an endomorphism of a ring R. By Lemma 3.5, we can show that R
is α-rigid if and only if R[x]/(xn) is α-skew Armendariz for integer n ≥ 2 in [3].
RR is α-reduced iff R is α-rigid by Lemma 2.14. So we have the following open
question.

Is the condition αl = 1R superfluous in Theorem 3.6?

Lemma 3.8. Let α be an endomorphism of a ring R. Then Vn(M) is an
α-semicommutative module over Vn(R) if and only if M [x]/M [x](xn) is an α-
semicommutative module over R[x]/(xn).

Proof. The proof is similar to that of Lemma 3.5.

Theorem 3.9. Let α be an endomorphism of a ring R. If M is α-reduced,
then M [x]/M [x](xn) is an α-semicommutative module over R[x]/(xn) for integer
n ≥ 2.

Proof. By Lemma 3.8, it suffices to show that Vn(M) is an α-semicommutative
module over Vn(R).

LetW = m0In+m1V +· · ·+mn−1V
n−1 andA = a0In+a1V +· · ·+an−1V

n−1

satisfy WA=0 where W ∈ Vn(M) and A ∈ Vn(R), we have

m0a0 = 0 (1)
m0a1 + m1a0 = 0 (2)
m0a2 + m1a1 + m2a0 = 0 (3)

· · ·
m0an−1 + m1an−2 + · · ·+ mn−1a0 = 0 (n − 1)

Since M is α-reduced, m0Ra0 = 0. Multiplying (2) by a0 from the right, (2)
becomes m1a0

2 = 0, so m1a0 = 0, m0a1 = 0. Thus m1Ra0 = 0, m0Ra1 = 0.
Multiplying (3) by a0 from the right, (3) becomes m2a0

2 = 0, so m2a0 = 0, we
have
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m0a2 + m1a1 = 0 (3′)

Multiplying (3′) by a1 from the right, (3′) becomes m1a
2
1 = 0, so m1a1 = 0,

m0a2 = 0. Continuing this process, we have miaj = 0 for all i and j with
0 ≤ i + j ≤ n− 1, so miRα(aj) = 0 for all i and j with 0 ≤ i + j ≤ n− 1. Thus
WVn(R)α(A) = 0, Vn(M) is α-semicommutative.
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