TAIWANESE JOURNAL OF MATHEMATICS Vol. 12, No. 2, pp. 473-486, April 2008 This paper is available online at http://www.tjm.nsysu.edu.tw/

α -SKEW ARMENDARIZ MODULES AND α -SEMICOMMUTATIVE MODULES

Cui-Ping Zhang* and Jian-Long Chen

Abstract. Let α be a ring endomorphism. We introduce α -skew Armendariz modules and α -semicommutative modules which are generalizations of Armendariz modules and semicommutative modules, respectively. And investigate their properties. Moreover, we study the relationship between a module and its polynomial module.

1. Introduction

All rings are associative and have identity, and modules are unitary right modules. R[x] denotes the polynomial ring over a ring R and M[x] denotes the polynomial module over a module M. Rege and Chhawchharia [9] introduced the notion of an Armendariz ring. Recently, many authors have studied Armendariz rings and given various generalizations. According to Hong, Kim and Kwak [4], for an endomorphism α of a ring R, R is called α -skew Armendariz if p(x)q(x)=0 where $p(x)=\sum_{i=0}^m a_ix^i$ and $q(x)=\sum_{j=0}^n b_jx^j\in R[x;\alpha]$ implies $a_i\alpha^i(b_j)=0$ for all $0\leq i\leq m$ and $0\leq j\leq n$. Chen [2] proved that for an endomorphism α of a ring R and $\alpha^l=1_R$ for some positive integer l, R is α -skew Armendariz iff the polynomial ring R[x] over R is α -skew Armendariz. Huh, Lee and Smoktunowicz [6] made a comparative study of Armendariz rings and semi-commutative rings. Armendariz rings need not be semicommutative rings by [6, Example 14] and semicommutative rings need not be Armendariz rings by [4, Example 3.2]. A right R-module M is an Armendariz module if m(x)g(x)=0 where $m(x)=\sum_{i=0}^t m_ix^i\in M[x]$ and $g(x)=\sum_{j=0}^n a_jx^j\in R[x]$ implies $m_ia_j=0$ for every i and j. Right R-module M is semi-commutative if ma=0 implies mRa=0 for $m\in M$ and ma=0.

Received January 6, 2006, accepted October 14, 2006.

Communicated by Wen-Fong Ke.

2000 Mathematics Subject Classification: Primary 16N60, 16P60.

Key words and phrases: α -Skew Armendariz modules, α -Semicommutative modules, α -Reduced modules, Flat modules, Polynomial modules.

^{*}Correspondence author.

ring R is reduced if $a^2=0$ implies a=0 for $a\in R$. Buhphang and Rege [1] studied the basic properties of Armendariz modules and semi-commutative modules. Moreover, they proved that all flat modules over a reduced ring are both Armendariz and semi-commutative. For an endomorphism α of a ring R, a right R-module M is called α -reduced if for $m\in M$ and $a\in R$ (1) ma=0 implies $mR\cap Ma=0$ (2) ma=0 iff $m\alpha(a)=0$. If $\alpha=1_R$, α -reduced module is called reduced module. Lee and Zhou [8] introduced those notions and proved that a right R-module M is reduced iff $M[x]/M[x](x^n)$ is an Armendariz module over $R[x]/(x^n)$ for integer $n\geq 2$.

In this paper, we introduce the notions of α -skew Armendariz module and α -semicommutative module for an endomorphism α of a ring R. Furthermore, we show that for an endomorphism α of a ring R (1) R is α -skew Armendariz if and only if every flat right R-module is α -skew Armendariz; (2) R is α -semicommutative if and only if every flat right R-module is α -semicommutative; (3) If $\alpha^l = 1_R$ for some positive integer l, then right R-module M is α -skew Armendariz if and only if M[x] is α -skew Armendariz over R[x]; (4) If $\alpha^l = 0$ for some positive integer l, then M is α -reduced if and only if $M[x]/M[x](x^n)$ is an α -skew Armendariz module over $R[x]/(x^n)$ for integer $n \geq 2$

2. The Properties and the Equivalent Conditions

Let α be an endomorphism of a ring R and M be a right R-module. $M[x;\alpha] = \{\sum_{i=0}^s m_i x^i; s \geq 0, m_i \in M\}$ is an Abelian group under an obvious addition operation. Moreover, $M[x;\alpha]$ becomes a module over $R[x;\alpha]$ under the following scalar product operation: For $m(x) = \sum_{i=0}^s m_i x^i \in M[x;\alpha]$ and $f(x) = \sum_{j=0}^t a_j x^j \in R[x;\alpha], \ m(x)f(x) = \sum_k (\sum_{i+j=k} m_i \alpha^i(a_j))x^k$. M is called α -Armendariz [8] if (1) ma = 0 iff $m\alpha(a) = 0$ for $m \in M$ and $a \in R$; (2) m(x)f(x) = 0 where $m(x) = \sum_{i=0}^s m_i x^i \in M[x;\alpha]$ and $f(x) = \sum_{j=0}^t a_j x^j \in R[x;\alpha]$ implies $m_i \alpha^i(a_i) = 0$ for all i and j.

Definition 2.1. Let α be an endomorphism of a ring R and M be a right R-module. M is called α -skew Armendariz if m(x)f(x)=0 where $m(x)=\sum_{i=0}^s m_i x^i \in M[x;\alpha]$ and $f(x)=\sum_{j=0}^t a_j x^j \in R[x;\alpha]$ implies $m_i \alpha^i(a_j)=0$ for all i and j.

We can easily prove that a ring R is α -skew Armendariz iff R_R is α -skew Armendariz, and a right R-module M is Armendariz iff it is 1_R -skew Armendariz. So α -skew Armendariz modules are not necessarily Armendariz by [4]. Moreover, α -Armendariz module is α -skew Armendariz module, but the converse may not be true. For R_4 in the following example is not α -Armendariz over R_4 , however, Chen [3] proved that it is α -skew Armendariz.

Example 2.2. Let
$$S$$
 be a domain and $R_4 = \left\{ \begin{pmatrix} a & a_{12} & a_{13} & a_{14} \\ 0 & a & a_{23} & a_{24} \\ 0 & 0 & a & a_{34} \\ 0 & 0 & 0 & a \end{pmatrix} \middle| a, a_{ij} \in S \right\}$. Define $\alpha : R_4 \to R_4$ by $\alpha(x) = \operatorname{diag}(a, a, a, a)$ for any $x = \begin{pmatrix} a & a_{12} & a_{13} & a_{14} \\ 0 & a & a_{23} & a_{24} \\ 0 & 0 & a & a_{34} \end{pmatrix}$

Define
$$\alpha: R_4 \to R_4$$
 by $\alpha(x) = \operatorname{diag}(a, a, a, a)$ for any $x = \begin{pmatrix} a & a_{12} & a_{13} & a_{14} \\ 0 & a & a_{23} & a_{24} \\ 0 & 0 & a & a_{34} \\ 0 & 0 & 0 & a \end{pmatrix}$

 $\in R_4$, then R_4 is α -skew Armendariz.

Proof. Suppose that $f(x) = A_0 + A_1x + \cdots + A_nx^n$, and $g(x) = B_0 + B_1x + \cdots + A_nx^n$ $\cdots + B_n x^n \in R_4[x;\alpha]$ with f(x)g(x) = 0. We need to prove that $A_i\alpha^i(B_j) = 0$ for all i and j. Since $\alpha^2 = \alpha$, we only need $A_i \alpha(B_i) = 0$. Put

$$A_{j} = \begin{pmatrix} a^{(j)} & a_{12}^{(j)} & a_{13}^{(j)} & a_{14}^{(j)} \\ 0 & a^{(j)} & a_{23}^{(j)} & a_{24}^{(j)} \\ 0 & 0 & a^{(j)} & a_{34}^{(j)} \\ 0 & 0 & 0 & a^{(j)} \end{pmatrix} \text{ and } B_{j} = \begin{pmatrix} b^{(j)} & b_{12}^{(j)} & b_{13}^{(j)} & b_{14}^{(j)} \\ 0 & b^{(j)} & b_{23}^{(j)} & b_{24}^{(j)} \\ 0 & 0 & b^{(j)} & b_{34}^{(j)} \\ 0 & 0 & 0 & b^{(j)} \end{pmatrix}.$$

Case 1. A_0 is invertible. From f(x)g(x) = 0, we have $B_0 = 0$. We claim that $B_j = 0$ for all $0 \le j \le n$. If not, there exists the least k such that $B_k \ne 0$ and $B_0 = \cdots = B_{k-1} = 0$. Since $A_0 B_k + A_1 \alpha(B_{k-1}) + \cdots + A_k \alpha(B_0) = 0$, we have $A_0B_k=0$ and hence $B_k=0$, which is a contradiction.

Case 2. B_0 is invertible. Similar to the proof of case 1, we can get $A_i = 0$ for all i.

Case 3. Both A_0 and B_0 are not invertible. In the case of $A_0 \neq 0$, we claim that $\alpha(B_i) = 0$ for all j. If not, there exists the least j such that $\alpha(B_i) \neq 0$. From equation $A_0B_i + A_1\alpha(B_{i-1}) + \cdots + A_i\alpha(B_0) = 0$, we have $A_0B_i = 0$. Since $\alpha(B_j) \neq 0$, $b^{(j)} \neq 0$ and so $A_0 = 0$, a contradiction. If $A_0 = 0$, then we claim that $A_i = 0$ or $\alpha(B_i) = 0$ for all i and j. Assume to the contrary, there exist the least i and the least j such that $A_i \neq 0$ and $\alpha(B_j) \neq 0$. Now f(x)g(x) = 0 gives $A_0 B_{i+j} + \dots + A_{i-1} \alpha(B_{j+1}) + A_i \alpha(B_j) + A_{i+1} \alpha(B_{j-1}) + \dots + A_{i+j} \alpha(B_0) = 0.$ It follows that $A_i\alpha(B_i)=0$. On the other hand, $\alpha(B_i)\neq 0$ implies that $b^{(j)}\neq 0$ and so $A_i = 0$, which is a contradiction. From the above discussion we have $A_i\alpha(B_j)=0$ for all i and j. Hence R_4 is an α -skew Armendariz ring.

Definition 2.3. Let α be an endomorphism of a ring R and M be a right R-module. M is called α -semicommutative if ma=0 implies $mR\alpha(a)=0$ for $m\in M$ and $a\in R$.

A ring R is α -semicommutative if R_R is α -semicommutative. It is clear that a right R-module M is semicommutative iff it is 1_R -semicommutative. One may suspect that α -semicommutative modules are semi-commutative, however, the following example erases the possibility.

Example 2.4. R_4 in Example 2.2 is α -semicommutative.

Proof. Suppose
$$A = \begin{pmatrix} a & a_{12} & a_{13} & a_{14} \\ 0 & a & a_{23} & a_{24} \\ 0 & 0 & a & a_{34} \\ 0 & 0 & 0 & a \end{pmatrix}, B = \begin{pmatrix} b & b_{12} & b_{13} & b_{14} \\ 0 & b & b_{23} & b_{24} \\ 0 & 0 & b & b_{34} \\ 0 & 0 & 0 & b \end{pmatrix}$$

 $\in R_4$ and AB = 0, then we have

$$ab = 0$$

$$ab_{12} + a_{12}b = 0$$

$$ab_{13} + a_{12}b_{23} + a_{13}b = 0$$

$$ab_{14} + a_{12}b_{24} + a_{13}b_{34} + a_{14}b = 0$$

$$ab_{23} + a_{23}b = 0$$

$$ab_{24} + a_{23}b_{34} + a_{24}b = 0$$

$$ab_{34} + a_{34}b = 0$$

Since S is a domain, ab=0 implies a=0 or b=0. If b=0, then $\alpha(B)=0$, so $AR_4\alpha(B)=0$. If $b\neq 0$, then a=0. Using the equations above, we have $a_{12}=a_{13}=a_{14}=a_{23}=a_{24}=a_{34}=0$. Thus A=0, so $AR_4\alpha(B)=0$. Therefore R_4 is α -semicommutative.

However, R_4 is not semi-commutative by [7, Example 1.3].

Remark 2.5. Let R be a subring of a ring S with $1_S \in R$ and $M_R \subseteq L_S$. Let α be an endomorphism of S such that $\alpha(R) \subseteq R$. If L_S is α -skew Armendariz (α -semicommutative), then M_R is also α -skew Armendariz (α -semicommutative).

Proposition 2.6. Let α be an endomorphism of a ring R. The class of α -skew Armendariz (α -semicommutative) modules is closed under direct sums, direct products and submodules.

An R-module M is torsionless if it is a submodule of a direct product of copies of R. If M is a faithful R-module, then R is a submodule of a direct product of copies of M. The following corollary is easy to be obtained by Proposition 2.6.

Corollary 2.7. ([1, Theorem 2.7]) *The following conditions are equivalent.*

- (1) R is an Armendariz (semicommutative) ring;
- (2) Every torsionless R-module is Armendariz (semicommutative);
- (3) Every submodule of a free R-module is Armendariz (semicommutative);
- (4) There exists a faithful R-module which is Armendariz (semicommutative)

Proposition 2.8. Let α be an endomorphism of a ring R. An R-module M is α -skew Armendariz (α -semicommutative) if and only if every finitely generated (cyclic) submodule of M is α -skew Armendariz (α -semicommutative).

The following conclusion is the generalization of Proposition 2.3 in [1].

Proposition 2.9. Let α be an endomorphism of a commutative domain D and M be a torsion free D-module. Then M is α -skew Armendariz (α -semicommutative).

Proposition 2.10. Let α be a monomorphism of a commutative domain D and M be a D-module. Then M is α -skew Armendariz (α -semicommutative) if and only if its torsion submodule T(M) is α -skew Armendariz (α -semicommutative).

Proof. Let $m(x) = \sum_{i=0}^t m_i x^i \in M[x; \alpha]$ and $f(x) = \sum_{j=0}^n a_j x^j \in D[x; \alpha]$ satisfy m(x)f(x) = 0, we have

$$m_0 a_0 = 0 \tag{1}$$

$$m_0 a_1 + m_1 \alpha(a_0) = 0 (2)$$

$$m_0 a_2 + m_1 \alpha(a_1) + m_2 \alpha^2(a_0) = 0 \tag{3}$$

. . .

$$m_t \alpha^t(a_n) = 0 (n+t+1)$$

We can assume $a_0 \neq 0$, then $m_0 \in T(M)$ by (1). Multiplying (2) by a_0 from the right, one obtains $m_1\alpha(a_0)a_0=0$. Since α is monic and D is a domain, so $m_1 \in T(M)$. Multiplying (3) by $\alpha(a_0)a_0$ from the right, we obtain $m_2\alpha^2(a_0)\alpha(a_0)a_0=0$, so $m_2 \in T(M)$. Continuing this process, we have $m(x) \in T(M)[x]$. Since T(M) is α -skew Armendariz, we conclude that $m_i\alpha^i(a_j)=0$ for all i and j, proving that M is α -skew Armendariz. The other implication is trivial.

The proof of α -semicommutative module is similar to that above.

The following two results are the generalizations of the Theorem 2.15 and the Theorem 2.16 in [1], respectively.

Theorem 2.11. Let α be an endomorphism of a ring R. R is α -skew Armendariz if and only if every flat right R-module is α -skew Armendariz.

Proof. Let M be a flat right R-module. Let $0 \to K \to F \to M \to 0$ be an exact sequence with F free over R. (In what follows, for an element g of F, we denote $\overline{y} = y + K$ in M). Let $f(x) = \sum_{i=0}^t \overline{y}_i x^i \in M[x;\alpha]$ and $g(x) = \sum_{j=0}^n a_j x^j \in R[x;\alpha]$ satisfy f(x)g(x) = 0, then we have

$$\overline{y}_0 a_0 = 0$$

$$\overline{y}_0 a_1 + \overline{y}_1 \alpha(a_0) = 0$$

$$\overline{y}_0 a_2 + \overline{y}_1 \alpha(a_1) + \overline{y}_2 \alpha^2(a_0) = 0$$

$$\cdots$$

$$\overline{y}_t \alpha^t(a_n) = 0$$

Therefore the elements y_0a_0 , $y_0a_1 + y_1\alpha(a_0)$, \cdots , $y_t\alpha^t(a_n)$ all belong to K. Since M is a flat R-module, there exists an R-module homomorphism $v: F \to K$ such that $v(y_0a_0) = y_0a_0$, $v(y_0a_1 + y_1\alpha(a_0)) = y_0a_1 + y_1\alpha(a_0)$, \cdots , $v(y_t\alpha^t(a_n)) = y_t\alpha^t(a_n)$.

Write $w_i := v(y_i) - y_i$ for $i = 0, 1, \cdots, t$. Each w_i is an element of F, therefore the polynomial $h(x) = \sum_{i=0}^t w_i x^i \in F[x;\alpha]$ and h(x)g(x) = 0. Since R is α -skew Armendariz and F is a free R-module, F is α -skew Armendariz by Proposition 2.6. Thus, we have $w_i \alpha^i(a_j) = 0$ for all i and j. It follows that $y_i \alpha^i(a_j) \in K$ for all i and j, so $\overline{y}_i \alpha^i(a_j) = 0$ in M, proving that M is α -skew Armendariz. The other implication is obvious.

Theorem 2.12. Let α be an endomorphism of a ring R. R is α -semicommutative if and only if every flat right R-module is α -semicommutative.

Proof. The proof is similar to that of the Theorem 2.11.

Let α be an endomorphism of a ring R and M be a right R-module. According to Lee and Zhou [8], M is called α -reduced if, for any $m \in M$ and $a \in R$,

- (1) ma = 0 implies $mR \cap Ma = 0$;
- (2) $ma = 0 \text{ iff } m\alpha(a) = 0.$

M is reduced if M is 1_R -reduced. It is clear that α -reduced module is reduced.

Lemma 2.13. ([8, Lemma 1.2]). Let M be a right R-module M. The following are equivalent.

(1) M is α -reduced;

- (2) The following conditions hold: For any $m \in M$ and $a \in R$,
 - (a) ma = 0 implies $mRa = mR\alpha(a) = 0$;
 - (b) $ma\alpha(a) = 0$ implies ma = 0;
 - (c) $ma^2 = 0$ implies ma = 0.

R is called α -rigid [5] if $a\alpha(a)=0$ implies a=0 for $a\in R$. It is easy to show that α -rigid ring is reduced.

Lemma 2.14. ([5, Lemma 4]). Let α be an endomorphism of a ring R. R_R is α -reduced if and only if R is an α -rigid ring.

If R is α -rigid, then R is α -skew Armendariz by [4, Corollary 4]. Therefore, if R_R is α -reduced, then R is α -skew Armendariz as well as α -semicommutative by Lemma 2.13 and 2.14.

By a regular ring we mean a von Neumann regular ring. It is well-known that all modules over a regular ring are flat, therefore the following result is immediate.

Remark 2.15. Let α be an endomorphism of a ring R. If R_R is α -reduced and R is a regular ring, then all right R-modules are α -skew Armendariz as well as α -semicommutative.

3. POLYNOMIAL MODULES OVER POLYNOMIAL RINGS

In this section, we study the relations between right R-module M and the polynomial module M[x] over M.

Proposition 3.1. Let α be an endomorphism of a ring R and M be a right R-module. If M is α -skew Armendariz, then the following conditions are equivalent.

- (1) M is α -semicommutative and semicommutative;
- (2) $M[x; \alpha]$ is semicommutative over $R[x; \alpha]$.

Proof. (1) \Rightarrow (2) Let M be an α -semicommutative and semicommutative right R-module. Let $m(x) = \sum_{i=0}^t m_i x^i \in M[x;\alpha]$ and $f(x) = \sum_{j=0}^n a_j x^j \in R[x;\alpha]$ satisfy m(x)f(x) = 0. Since M is α -skew Armendariz, so $m_i\alpha^i(a_j) = 0$ for each i and j. Let $h(x) = \sum_{k=0}^v b_k x^k \in R[x;\alpha]$, and let $c_0, c_1, c_2, \cdots, c_{t+v+n}$ be the coefficients of m(x)h(x)f(x), then

$$c_{0} = m_{0}b_{0}a_{0}$$

$$c_{1} = m_{0}b_{0}a_{1} + (m_{0}b_{1} + m_{1}\alpha(b_{0}))\alpha(a_{0})$$

$$c_{2} = m_{0}b_{0}a_{2} + (m_{0}b_{1} + m_{1}\alpha(b_{0}))\alpha(a_{1}) + (m_{0}b_{2} + m_{1}\alpha(b_{1}) + m_{2}\alpha^{2}(b_{0}))\alpha^{2}(a_{0})$$

$$\cdots$$

$$c_{t+v+n} = m_{t}\alpha^{t}(b_{v})\alpha^{t+v}(a_{n})$$

Since M is α -semicommutative and semicommutative, $m_0a_0=0$ implies $m_0R\alpha(a_0)=0$ and $m_0Ra_0=0$, hence $c_0=0$. $m_0a_1=0$ and $m_1\alpha(a_0)=0$ which imply $m_0Ra_1=0$ and $m_1R\alpha(a_0)=0$, we have $c_1=0$. Continuing we get $c_i=0$ for all i. Hence m(x)h(x)f(x)=0, proving that $M[x;\alpha]$ is a semicommutative $R[x;\alpha]$ -module.

(2) \Rightarrow (1) Clearly M is semicommutative. If ma=0 for $m \in M$ and $a \in R$, then $mR[x;\alpha]a=0$ since $M[x;\alpha]$ is semicommutative. So mrxa=0 for any $r \in R$, and $mr\alpha(a)x=0$, $mr\alpha(a)=0$. Therefore M is α -semicommutative.

Corollary 3.2. Let M be an Armendariz right R-module. The following conditions are equivalent.

- (1) M is semicommutative;
- (2) M[x] is semicommutative over R[x].

Recall that if α is an endomorphism of a ring R, then the map $R[x] \to R[x]$ defined by $\sum_{i=0}^m a_i x^i \mapsto \sum_{i=0}^m \alpha(a_i) x^i$ is an endomorphism of the polynomial ring R[x] and clearly this map extends α . We shall also denote the extended map $R[x] \to R[x]$ by α and the image of $f \in R[x]$ by $\alpha(f)$. By Hong, Kim and Kwak [4], R is α -skew Armendariz if and only if R[x] is α -skew Armendariz provided $\alpha^l = 1_R$ for some positive integer l, but the proof had a gap. Chen [2] gave a new proof. In the following, we generalize this to modules.

Theorem 3.3. Let α be an endomorphism of a ring R and $\alpha^l = 1_R$ for some positive integer l. Then right R-module M is α -skew Armendariz if and only if M[x] is α -skew Armendariz over R[x].

Proof. Assume that M is α -skew Armendariz. Suppose that $p(y) = \sum_{i=0}^t m_i(x)y^i \in M[x][y;\alpha], \ q(y) = \sum_{j=0}^n g_j(x)y^j \in R[x][y;\alpha], \ \text{and} \ p(y)q(y) = 0.$ Let $m_i(x) = m_{i0} + m_{i1}x + \cdots + m_{is_i}x^{s_i} \in M[x]$ for $0 \le i \le t$ and $g_j(x) = b_{j0} + b_{j1}x + \cdots + b_{jw_j}x^{w_j} \in R[x]$ for $0 \le j \le n$. We need to prove that $m_i(x)\alpha^i(g_j(x)) = 0$ in M[x] for all i and j. Take a positive integer k such that $k > deg(m_0(x)) + deg(m_1(x)) + \cdots + deg(m_t(x)) + deg(g_0(x)) + deg(g_1(x)) + \cdots + deg(g_n(x)),$ where the degree of $m_i(x)$ is as a polynomial in M[x], the degree of $g_j(x)$ is as a polynomial in R[x] and the degree of zero polynomial is to be 0. Since p(y)q(y) = 0 in $M[x][y;\alpha]$, we have the equations system

$$m_0(x)g_0(x) = 0$$

$$m_0(x)g_1(x) + m_1(x)\alpha(g_0(x)) = 0$$

$$m_0(x)g_2(x) + m_1(x)\alpha(g_1(x)) + m_2(x)\alpha^2(g_0(x)) = 0$$
...
$$m_t(x)\alpha^t(g_n(x)) = 0$$

in
$$M[x]$$
. Put $m(x) = m_0(x^l) + m_1(x^l)x^{lk+1} + m_2(x^l)x^{2lk+2} + \cdots + m_t(x^l)x^{tlk+t}$
and $q(x) = q_0(x^l) + q_1(x^l)x^{lk+1} + q_2(x^l)x^{2lk+2} + \cdots + q_n(x^l)x^{nlk+n}$. Then

$$m(x) = m_{00} + m_{01}x^{l} + m_{02}x^{2l} + \dots + m_{0s_{0}}x^{ls_{0}}$$

$$+ m_{10}x^{lk+1} + m_{11}x^{lk+l+1} + m_{12}x^{lk+2l+1} + \dots + m_{1s_{1}}x^{lk+ls_{1}+1}$$

$$+ \dots$$

$$+ m_{t0}x^{tlk+t} + m_{t1}x^{tlk+l+t} + m_{t2}x^{tlk+2l+t} + \dots + m_{ts_{t}}x^{tlk+s_{t}l+t}$$

and

$$g(x) = b_{00} + b_{01}x^{l} + b_{02}x^{2l} + \dots + b_{0w_{0}}x^{lw_{0}}$$

$$+ b_{10}x^{lk+1} + b_{11}x^{lk+l+1} + b_{12}x^{lk+2l+1} + \dots + b_{1w_{1}}x^{lk+lw_{1}+1}$$

$$+ \dots$$

$$+ b_{n0}x^{nlk+n} + b_{n1}x^{nlk+l+n} + b_{n2}x^{nlk+2l+n} + \dots + b_{nw_{n}}x^{nlk+w_{n}l+n}$$

Using the equations system above and $\alpha^l=1_R$, we have m(x)g(x)=0 in $M[x;\alpha]$. Since M is α -skew Armendariz and $\alpha^l=1_R$, so $m_{iu}\alpha^i(b_{jv})=m_{iu}\alpha^{ilk+ul+i}(b_{jv})=0$ for all $0\leq i\leq t,\ 0\leq j\leq n,\ u\in\{0,1,\cdots,s_0,\cdots,s_t\}$ and $v\in\{0,1,\cdots,w_0,\cdots,w_n\}$. So we have $m_i(x)\alpha^i(g_j(x))=0$ for all $0\leq i\leq t$ and $0\leq j\leq n$ in M[x]. Hence M[x] is α -skew Armendariz .

Obviously, if M[x] is α -skew Armendariz, then M is α -skew Armendariz.

Corollary 3.4. ([4, Theorem 6]). Let α be an endomorphism of a ring R and $\alpha^l = 1_R$ for some positive integer l. Then R is α -skew Armendariz if and only if R[x] is α -skew Armendariz.

We write $M_n(R)$ for the $n\times n$ matrix ring over R. For a right R-module M and $A=(a_{ij})\in M_n(R)$, let $MA=\{(ma_{ij}):m\in M\}$. For $n\geq 2$, let $V=\sum_{i=1}^{n-1}E_{i,i+1}$ where $\{E_{i,j}:1\leq i,j\leq n\}$ are the matrix units, and set $V_n(R)=RI_n+RV+\cdots+RV^{n-1},\,V_n(M)=MI_n+MV+\cdots+MV^{n-1}$, then $V_n(R)$ is a ring and $V_n(M)$ becomes a right module over $V_n(R)$ under usual addition and multiplication of matrices. There is a ring isomorphism $\theta\colon V_n(R)\to R[x]/(x^n)$ given by $\theta(r_0I_n+r_1V+\cdots+r_{n-1}V^{n-1})=r_0+r_1x+\cdots+r_{n-1}x^{n-1}+(x^n)$ and an Abelian group isomorphism $\varphi\colon V_n(M)\to M[x]/M[x](x^n)$ given by $\varphi(m_0I_n+m_1V+\cdots+m_{n-1}V^{n-1})=m_0+m_1x+\cdots+m_{n-1}x^{n-1}+M[x](x^n)$ such that $\varphi(WA)=\varphi(W)\theta(A)$ for all $W\in V_n(M)$ and $A\in V_n(R)$. Lee and Zhou [8] proved that M_R is reduced iff $M[x]/M[x](x^n)$ is an Armendariz right R-module over $R[x]/(x^n)$ for integer $n\geq 2$. In the following we generalize this to α -reduced module. First we prove the Lemma 3.5.

Let α be an endomorphism of a ring R, the map $V_n(R) \to V_n(R)$ defined by $a_0I_n + a_1V + \cdots + a_{n-1}V^{n-1} \mapsto \alpha(a_0)I_n + \alpha(a_1)V + \cdots + \alpha(a_{n-1})V^{n-1}$ is an endomorphism of $V_n(R)$. Similarly the map $R[x]/(x^n) \to R[x]/(x^n)$ defined by $a_0 + a_1x + \cdots + a_{n-1}x^{n-1} + (x_n) \mapsto \alpha(a_0) + \alpha(a_1)x + \cdots + \alpha(a_{n-1})x^{n-1} + (x^n)$ is an endomorphism of $R[x]/(x^n)$. We shall also denote the two maps above by α .

Lemma 3.5. Let α be an endomorphism of a ring R. Then $V_n(M)$ is an α -skew Armendariz module over $V_n(R)$ if and only if $M[x]/M[x](x^n)$ is an α -skew Armendariz module over $R[x]/(x^n)$.

Proof. Let $V_n(M)$ be an α -skew Armendariz module over $V_n(R)$. $p(y) = \sum_{i=0}^t \overline{m}_i(x) y^i \in (M[x]/M[x](x^n))[y;\alpha]$ and $q(y) = \sum_{j=0}^s \overline{f}_j(x) y^j \in (R[x]/(x^n))[y;\alpha]$ where $\overline{m}_i(x) = m_{i0} + m_{i1}x + \dots + m_{i(n-1)}x^{n-1} + M[x](x^n), \ \overline{f}_j(x) = a_{j0} + a_{j1}x + \dots + a_{j(n-1)}x^{n-1} + (x^n), \ m_{iu} \in M, \ a_{jv} \in R, \ 0 \leq i \leq t, \ 0 \leq j \leq s$ and $0 \leq u, v \leq n-1$ satisfy p(y)q(y) = 0, we have

$$\overline{m}_0(x)\overline{f}_0(x) = 0$$

$$\overline{m}_0(x)\overline{f}_1(x) + \overline{m}_1(x)\alpha(\overline{f}_0(x)) = 0$$

$$\overline{m}_0(x)\overline{f}_2(x) + \overline{m}_1(x)\alpha(\overline{f}_1(x)) + \overline{m}_2(x)\alpha^2(\overline{f}_0(x)) = 0$$

$$\cdots$$

$$\overline{m}_t(x)\alpha^t(\overline{f}_s(x)) = 0$$

Let $W_i = m_{i0}I_n + m_{i1}V + \cdots + m_{i(n-1)}V^{n-1} \in V_n(M)$ and $A_j = a_{j0}I_n + a_{j1}V + \cdots + a_{j(n-1)}V^{n-1} \in V_n(R)$ for $0 \le i \le t$ and $0 \le j \le s$. Let $W(y) = \sum_{i=0}^t W_i y^i$ and $A(y) = \sum_{i=0}^s A_j y^j$, we have

$$W_0 A_0 = 0$$

$$W_0 A_1 + W_1 \alpha(A_0) = 0$$

$$W_0 A_2 + W_1 \alpha(A_1) + W_2 \alpha^2(A_0) = 0$$
...
$$W_t \alpha^t(A_s) = 0$$

By the equations system above, W(y)A(y)=0 in $V_n(M)[y;\alpha]$. Since $V_n(M)$ is an α -skew Armendariz module, $W_i\alpha^i(A_j)=0$ for all i and j. Therefore we have $\overline{m}_i(x)\alpha^i(\overline{f}_j(x))=0$ for all i and j, proving that $M[x]/M[x](x^n)$ is a α -skew Armendariz module over $R[x]/(x^n)$.

The proof of the other implication is similar to that above.

Theorem 3.6. Let α be an endomorphism of a ring R and $\alpha^l = 1_R$ for some positive integer l. M is α -reduced if and only if $M[x]/M[x](x^n)$ is an α -skew Armendariz module over $R[x]/(x^n)$ for integer $n \geq 2$.

Proof. Assume that M is α -reduced. By Lemma 3.5, it suffices to show that $V_n(M)$ is an α -skew Armendariz module over $V_n(R)$.

Suppose that W(x)A(x) = 0 where $W(x) = \sum_{i=0}^{t} W_i x^i \in V_n(M)[x;\alpha]$ and $A(x) = \sum_{j=0}^{s} A_j x^j \in V_n(R)[x;\alpha]$. Write $W_i = m_{i0}I_n + m_{i1}V + \cdots + m_{i(n-1)}V^{n-1}$ and $A_j = a_{j0}I_n + a_{j1}V + \cdots + a_{j(n-1)}V^{n-1}$ for $0 \le i \le t$ and $0 \le j \le s$. It follows from W(x)A(x) = 0 that $[m_0(x)I_n + m_1(x)V + \cdots + m_{n-1}(x)V^{n-1}][a_0(x)I_n + a_1(x)V + \cdots + a_{n-1}(x)V^{n-1}] = 0$ in $V_n(M[x;\alpha])$ where $m_u(x) = m_{0u} + m_{1u}x + \cdots + m_{tu}x^t$ and $a_v(x) = a_{0v} + a_{1v}x + \cdots + a_{sv}x^s$ for $0 \le u, v \le n-1$, and hence

$$m_0(x)a_0(x) = 0 \tag{1}$$

$$m_0(x)a_1(x) + m_1(x)a_0(x) = 0 (2)$$

$$m_0(x)a_2(x) + m_1(x)a_1(x) + m_2(x)a_0(x) = 0$$
 (3)

. . .

$$m_0(x)a_{n-1}(x) + m_1(x)a_{n-2}(x) + \dots + m_{n-1}(x)a_0(x) = 0$$
 $(n-1)$

in $M[x;\alpha]$. Since M is α -reduced, so $M[x;\alpha]$ is reduced by [8, Theorem 1.6], $m_0(x)R[x;\alpha]a_0(x)=0$. Multiplying (2) by $a_0(x)$ from the right, one obtains $m_1(x)(a_0(x))^2=0$, so $m_1(x)a_0(x)=0$, $m_0(x)a_1(x)=0$ which imply $m_1(x)R[x;\alpha]a_0(x)=0$, $m_0(x)R[x;\alpha]a_1(x)=0$. Multiplying (3) by $a_0(x)$ from the right, we have $m_2(x)(a_0(x))^2=0$, so $m_2(x)a_0(x)=0$, thus (3) becomes

$$m_0(x)a_2(x) + m_1(x)a_1(x) = 0$$
 (3')

Multiplying (3') by $a_1(x)$ from the right, (3') becomes $m_1(x)(a_1(x))^2=0$, $m_1(x)a_1(x)=0$, so $m_0(x)a_2(x)=0$. Continuing this process, we have $m_u(x)a_v(x)=0$ in $M[x;\alpha]$ for all u and v with $0 \le u+v \le n-1$. It follows that

$$m_{0u}a_{0v} = 0$$

$$m_{0u}a_{1v} + m_{1u}\alpha(a_{0v}) = 0$$

$$m_{0u}a_{2v} + m_{1u}\alpha(a_{1v}) + m_{2u}\alpha^{2}(a_{0v}) = 0$$

$$\cdots$$

$$m_{tu}\alpha^{t}(a_{sv}) = 0$$

for all u and v with $0 \le u + v \le n - 1$. Since M is α -reduced, using the similar method above, we have $m_{iu}\alpha^i(a_{jv}) = 0$ for $0 \le i \le t$, $0 \le j \le s$, $0 \le u + v \le n - 1$. So $W_i\alpha^i(A_j) = 0$ for all i and j, proving that $M[x]/M[x](x^n)$ is α -skew Armendariz.

Conversely, if l=1, it is true by [8, Theorem 1.9]. So we can assume l>1. Suppose that ma=0 for $m\in M$ and $a\in R$, then $[mI_n+(mE_{1n})x][aI_n-(\alpha(a)E_{1n})x]=0$. By Lemma 3.5, $V_n(M)$ is an α -skew Armendariz module

over $V_n(R)$, so $m\alpha(a) = 0$. Suppose that $m\alpha(a) = 0$, then $m\alpha^{l-1}(a) = 0$, so $[mI_n + (mE_{1n})x][\alpha^{l-1}(a)I_n - (aE_{1n})x] = 0$, hence ma = 0. If ma = 0, we have $m\alpha^{l-1}(a) = 0$. Let $mr = m_1 a \in mR \cap Ma$, $[mI_n + (m_1E_{1n})x][\alpha^{l-1}(a)I_n - (rE_{1n})x] = 0$, so mr = 0. Thus M is α -reduced.

Corollary 3.7. ([8, Theorem 1.9]). Let $n \ge 2$ be an integer. Then M_R is reduced if and only if $M[x]/M[x](x^n)$ is an Armendariz right module over $R[x]/(x^n)$

Let α be an endomorphism of a ring R. By Lemma 3.5, we can show that R is α -rigid if and only if $R[x]/(x^n)$ is α -skew Armendariz for integer $n \geq 2$ in [3]. R_R is α -reduced iff R is α -rigid by Lemma 2.14. So we have the following open question.

Is the condition $\alpha^l = 1_R$ superfluous in Theorem 3.6?

Lemma 3.8. Let α be an endomorphism of a ring R. Then $V_n(M)$ is an α -semicommutative module over $V_n(R)$ if and only if $M[x]/M[x](x^n)$ is an α -semicommutative module over $R[x]/(x^n)$.

Proof. The proof is similar to that of Lemma 3.5.

Theorem 3.9. Let α be an endomorphism of a ring R. If M is α -reduced, then $M[x]/M[x](x^n)$ is an α -semicommutative module over $R[x]/(x^n)$ for integer $n \geq 2$.

Proof. By Lemma 3.8, it suffices to show that $V_n(M)$ is an α -semicommutative module over $V_n(R)$.

Let $W=m_0I_n+m_1V+\cdots+m_{n-1}V^{n-1}$ and $A=a_0I_n+a_1V+\cdots+a_{n-1}V^{n-1}$ satisfy WA=0 where $W\in V_n(M)$ and $A\in V_n(R)$, we have

$$m_0 a_0 = 0 \tag{1}$$

$$m_0 a_1 + m_1 a_0 = 0 (2)$$

$$m_0 a_2 + m_1 a_1 + m_2 a_0 = 0 (3)$$

. . .

$$m_0 a_{n-1} + m_1 a_{n-2} + \dots + m_{n-1} a_0 = 0$$
 $(n-1)$

Since M is α -reduced, $m_0Ra_0=0$. Multiplying (2) by a_0 from the right, (2) becomes $m_1a_0^2=0$, so $m_1a_0=0$, $m_0a_1=0$. Thus $m_1Ra_0=0$, $m_0Ra_1=0$. Multiplying (3) by a_0 from the right, (3) becomes $m_2a_0^2=0$, so $m_2a_0=0$, we have

$$m_0 a_2 + m_1 a_1 = 0 (3')$$

Multiplying (3') by a_1 from the right, (3') becomes $m_1a_1^2=0$, so $m_1a_1=0$, $m_0a_2=0$. Continuing this process, we have $m_ia_j=0$ for all i and j with $0 \le i+j \le n-1$, so $m_iR\alpha(a_j)=0$ for all i and j with $0 \le i+j \le n-1$. Thus $WV_n(R)\alpha(A)=0$, $V_n(M)$ is α -semicommutative.

ACKNOWLEDGMENT

This research is supported by the National Natural Science Foundation of China (No. 10571026) and the Natural Science Foundation of Jiangsu Province in China (No. BK 2005207).

REFERENCES

- 1. A. M. Buhphang and M. B. Rege, Semi-commutative modules and Armendariz modules, *Arab. J. Math. Sci.*, **8** (2002), 53-65.
- 2. W. X. Chen and W. T. Tong, A note on skew Armendariz rings, *Comm. Algebra*, **33** (2005), 1137-1140.
- 3. W. X. Chen, Doctoral dissertation, Nanjing University, 2004.
- 4. C. Y. Hong, N. K. Kim and T. K. Kwak, On skew Armendariz rings, *Comm. Algebra*, **31** (2003), 103-122.
- 5. C.Y.Hong, N. K. Kim and T. K. Kwak, Ore extensions of Baer and PP-rings, *J. Pure Appl. Algebra*, **151** (2000), 215-226.
- 6. C. Huh, Y. Lee and A. Smoktunowicz, Armendariz rings and semi-commutative rings, *Comm. Algebra*, **30** (2002), 751-761.
- 7. N. K. Kim and Y. Lee, Extension of reversible rings, *J. Pure Appl. Algebra*, **185** (2003), 207-223.
- 8. T. K. Lee and Y. Q. Zhou, Reduced modules, rings, modules, algebras, and abelian groups, *Lecture Notes in Pure and Appl. Math, Dekker, New York*, **236** (2004), 365-377.
- 9. M.B.Rege and S. Chhawchharia, Armendariz rings, *Proc. Japan. Acad. Ser. A Math. Sci*, **73** (1997), 14-17.

Cui-Ping Zhang
Department of Mathematics, Southeast University,
Nanjing 210096,
P. R. China
and

Department of Mathematics, Northwest Normal University, Lanzhou 730070, P. R. China. E-mail: zhangcp666@sohu.com

Jian-Long Chen Department of Mathematics, Southeast University, Nanjing 210096, P. R. China.

E-mail: jlchen@seu.edu.cn