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SELF-SIMILAR SOLUTIONS OF A SEMILINEAR HEAT EQUATION

Soyoung Choi and Minkyu Kwak

Abstract. In this note we classify positive solutions of an equation

¢u +
1

2
x ¢ ru +

1

p¡ 1
u¡ jujp¡1u = 0 in RN ;

where 1 < p < (N + 2)=N .
Under the assumption that jxj2=(p¡1)u(x) is uniformly bounded in RN ,

we show that as r = jxj tends to 1 , r2=(p¡1)u(r¾) converges uniformly to a
continuous function A(¾) on SN¡1. Conversely we also show that given any
nonnegative continuous function A(¾) on SN¡1, there exists a unique positive
solution with that property.

1. INTRODUCTION

In 1999, when H. Brezis was visiting Korea, he asked whether we can classify
self-similar solutions of a semilinear heat equation. This problem may be related to
the work by Chen, Matano and Veron [3], where they classified singular solutions
of the equation

¢u= jujp¡1u(1.1)

and investigated an asymptotic behavior of solutions as both r! 0 and r!1.
In this note, we investigate some properties of positive solutions of the equation

¢u+
1

2
x ¢ ru+

1

p¡ 1
u¡ jujp¡1u= 0 in RN ;(1.2)

where 1 < p < (N + 2)=N . We notice that if p ¸ (N + 2)=N, (1.2) does not
have any positive solution decaying to zero. Although, the equation (1.2) looks
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close to (1.1) but it is technically more difficult and possesses quite a different
asymptotic profile. In fact, this equation lacks a priori estimates and we need to
put an additional assumption (see Theorem 2). Even radial solutions are not easy to
classify if they change sign. Thus we here consider only positive solutions of (1.2).

The equation (1.2) arises naturally in the study of the asymptotic behavior of
solutions of a semilinear parabolic equation

vt = ¢v ¡jvjp¡1v in RN £ (0;1):(1.3)

We observe that if v(x; t) solves (1.3), then the rescaled functions

v¸(x; t) = ¸2=(p¡1)v(¸x; ¸2t); ¸ > 0(1.4)

define a one parameter family of solutions to (1.3). A solution v is said to be
self-similar when v¸(x; t) = v(x; t) for every ¸ > 0. It can be easily verified that
v is a self-similar solution to (1.3) if and only if v has the form

v(x; t) = t¡1=(p¡1)u(x=
p
t);(1.5)

where u satisfies (1.2).
The asymptotic behavior of solutions of (1.3) is usually determined by the lim-

iting profile of (1.4) as ¸ ! 1, which becomes a self-similar solution (see [4]).
Henceforth the classification of solutions of (1.2) is also valuable in this respect.

The positive radial solutions are fairly well-understood even though the property
of more general (sign-changing) solutions is not revealed yet. For more details, we
refer to [2], [4] and [8].

Here, we claim that every positive solution of (1.2) such that

lim sup
r!1

r2=(p¡1)u(r¾)

is uniformly bounded on the unit sphere SN¡1 must satisfy

lim
r!1

r2=(p¡1)u(r¾) =A(¾)(1.6)

for some continuous function A(¾) on SN¡1 and conversely for every nonnegative
continuous function A(¾) on SN¡1 , there exists a unique positive solution of (1.2)
satisfying (1.6).

Similar results hold for self-similar solutions of a semilinear heat equation with
source and we put a remark in section 5.

2. EXISTENCE

In treating self-similar solutions, we shall use the standard method introduced
in [4] (see also [5] and [6]).
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Given a nonnegative (nontrivial) continuous function A(¾) on SN¡1, we con-
sider a positive solution of

vt = ¢v ¡ jvjp¡1v(2.1)

with an initial unction

v(x;0) =A(
x

jxj )jxj
¡® for x 6= 0:(2.2)

Here
®=

2

p¡ 1
:

First, we remark that v(x;0) is not locally integrable and the standard existence
theory can not be applied. Secondly, we note that the equation (2.1) has a singular
stationary solution given by

W (x) = c(p;N )jxj¡®

for some positive constant c(p; N). Nevertheless the existence of such a solution is
guaranteed by taking a monotone limit of a family of positive solutions vk(x; t) of
(2.1) with the truncated initial function

vk(x; 0) = minfk;A(
x

jxj)jxj
¡®g;(2.3)

which is integrable in RN and its existence and uniqueness is given in [1] for
example. These truncated solutions are bounded by an a priori estimate

C(jxj2 + t)¡®=2

for some positive constant C larger than the maximum of A(¾) on SN¡1; and thus
the monotone limit exists and becomes smooth.

Moreover, the above solution is minimal among all the positive solutions satis-
fying (2.2) (see [4] for details) and thus becomes self-similar. In fact, let v(x; t) be
the minimal solution. Then given ¸ > 0, obviously

¸2=(p¡1)v(¸x;¸2t) ¸ v(x; t):

One also has for every ¹ > 0

¹2=(p¡1)v(¹¸x;¹2¸2t)¸ v(¸x;¸2t):

Simply taking ¹ = 1=¸, we obtain

v(x; t)¸ ¸2=(p¡1)v(¸x;¸2t):
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As remarked earlier since v(x; t) is self-similar, v has the form

v(x; t) = t¡1=(p¡1)w(x=
p
t);(2.4)

where w satisfies (1.2). Moreover, we also have

lim
r!1

r®w(r¾) = lim
t!0

t¡1=(p¡1)w(
¾p
t
)

= lim
t!0

v(¾; t)

=A(¾):

Thus summarizing the above arguments, we may conclude that

Theorem 1. Given any nonnegative continuous function A(¾) on SN¡1, there
exists a unique positive solution of (1.2) satisfying (1.6).

Remark. When A(¾) is identically zero, the solution corresponds to a very sin-
gular solution and its existence and uniqueness is known (see [2]). The uniqueness
for the general case will be proved in the next section.

3. UNIQUENESS

When A(¾) is strictly positive for all ¾ 2 SN¡1 , the uniqueness can be proved
by applying the maximum principle as we will see below. In fact, let U and u be
any two solutions. We may assume that U ¸ u.

We define

l = minfk ¸ 1jku(x) ¸ U(x); x 2 RNg:(3.1)

The set on the right hand side of (3.1) is not empty, because we may take k suf-
ficiently large, in order that the inequality holds due to the boundary assumption
(1.6). The proof of uniqueness is reduced to showing that l is not greater than 1.

Suppose l > 1 to the contrary. From the boundary behavior at infinity, lu(x)
must touch U(x) in a compact subset of RN . But lu(x) is a super-solution and
can not touch U (x) from above. Hence one can slightly reduce the factor l and still
has the same inequality in (3.1), which leads to a contradiction.

The above method does not work when A(¾) vanishes somewhere on SN¡1.
Hence, we provide another argument, which holds in general.

We may assume that A(¾) is not identically zero. Let U and u be two solution
with U ¸ u and limjxj!1 jxj®(U ¡u) = 0. We recall that the problem

¢w+
1

2
x ¢ rw+

1

p¡ 1
w¡jwjp¡1w = 0

lim
jxj!1

jxj®w = 0
(3.2)
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has a unique positive (radial) fast orbit

u0(x) = f(r) = Ae¡r
2=4r®¡Nf1 +O(1=r2)g

and that u¸ u0.
Let v = U ¡u, then v solves

¢v + 1
2x ¢ rv + 1

p¡1v ¡ vp = U p ¡up ¡ (U ¡u)p ¸ 0;

limjxj!1 jxj®v = 0;

and becomes a subsolution. Now, given any ² > 0, we compare v with a positive
solution u² of (3.2) with

lim
jxj!1

jxj®u = ²

(Such a solution exists uniquely and is radial and called a slow orbit). We easily
see that

0 · v · u²:
Taking ²! 0, we find that u² decays to u0 and 0 · v · u0, which implies that v
decays exponentially.

Now, we work in the weighted space L2(K) with K(x) = e¡jxj
2=4. Define

Lu ´¡ 1

K
r ¢ (Kru);

then L is a self-adjoint operator on L2(K). Since

Lu0 =¡ 1

p¡ 1
u0 +up0;

Lv =¡ 1

p¡ 1
v + Up ¡up;

and < Lu0; v >=< Lv;u0 >, we get
Z
Kup0vdx =

Z
K(Up ¡ up)u0dx:

Since Z
Kup¡1u0vdx¸

Z
Kup0vdx

and
Z
K(U p¡ up)u0dx ¸

Z
Kup¡1(U ¡ u)u0dx=

Z
Kup¡1u0vdx;

we must have U ´ u, which proves the uniqueness.
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4. BEHAVIOR NEAR INFINITY

We consider positive solutions of the equation

¢u+
1

2
x ¢ ru+

1

p¡ 1
u¡ jujp¡1u = 0 in RN ;(4.1)

where 1 < p < (N + 2)=N .
Under the assumption that

limsup
r!1

r®u(r¾) <1(4.2)

uniformly on ¾ 2 SN¡1 we show that r®u(r¾) converges uniformly to a continuous
function A(¾) on the unit sphere SN¡1 as r!1. For N = 1, the equation (4.1)
becomes an ordinary differential equation and it is easy to analyze asymptotic profiles
and thus it is enough to assume that limjxj!1u(x) = 0 in this case (see [2]). But we
do not know whether the same results hold for higher dimensions. In any case we can
construct a solution such that limr!1 r®u(r¾1) = 0 and limr!1 r®u(r¾2) = 1
for some ¾1;¾2 2 SN¡1 simply by taking a monotone limit of solutions (1.2) and
(1.6) with continuous A(¾) vanishing on some part of SN¡1 and glowing to infinity
on some other part. We need to rule out these solutions.

The goal of this section is to show that a set of continuous functions fr(¾) =
r®u(r¾) is equicontinuous on the unit sphere SN¡1 as r varies over [1;1) and
then the Arzela-Ascoli theorem implies that the uniform limit exists as r!1 (the
uniqueness of such a limit is already guaranteed in section 3). We notice that the
assumption (4.2) is imposed for the equiboundedness of the set ffrg.

The standard regularity theory for an elliptic equation is not applied in this case
because of the term "x ¢ru". The key ingredient of proof is transforming (4.1) into
a parabolic equation and then applying a regularity theory for a parabolic equation
instead.

Theorem 2. Every positive solution of (4:1) with the assumption (4:2) satisfies

lim
r!1 r

2=(p¡1)u(r¾) =A(¾)(4.3)

for some continuous function A(¾) on the unit sphere SN¡1.

Proof. Let v(x; t) = jyj®u(y), y = x=
p
t, x 2 RN , t > 0. Then the as-

sumption (4.2) implies that v(x; t) is uniformly bounded. An elementary calculation
gives

vt =¡®
2
jyj®u(y)

1

t
¡ 1

2
jyj®y ¢ ryu(y)

1

t
;(4.4)
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vxi = ®jyj®¡2yiu(y)
1p
t

+ jyj®uyi(y)
1p
t
;(4.5)

¢v = ®(®¡ 2)jyj®¡2u(y)
1

t
+N®jyj®¡2u(y)

1

t

+2®jyj®¡2y ¢ ryu(y)
1

t
+ jyj®¢yu(y)

1

t
= ®(®¡ 2)jxj¡2v +N®jxj¡2v+ 2®jyj®y ¢ ryu(y)jxj¡2

+jyj®(¡1

2
y ¢ ryu¡

1

p¡ 1
u+ up)

1

t
:

(4.6)

From the equation (4.4) we have

jyj®y ¢ ryu(y) = ¡2tvt ¡®v

and using the above equation we may write the equation (4.6) as

¢v = kjxj¡2v +Á(x; t)vt + jyj®up(y)
1

t
;

with k = N®+®(®¡ 2)¡ 2®2 and Á(x; t) = 1¡ 4®t=jxj2.
Rewrite the above equation in the form of

vt = a(x; t)¢v + b(x; t)v + c(x; t);

where
a(x; t) =

1

Á(x; t)
;

b(x; t) =¡ k

Á(x; t)jxj2 ;

c(x; t) =¡
(
jxjp
t
)®+2up(

xp
t
)

Á(x; t)jxj2 :

Let
D = f(x; t)j1

2
· jxj · 2; 0 < t · 1

32®
g;

then 1 < a(x; t) · 2 and a(x; t); b(x; t); c(x; t) are continuous and uniformly
bounded in D. Notice that

jyj®+2up(y) = (jyj®u(y))p:
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The standard regularity theory implies that v(x; t) is uniformly Holder continuous
in D, see [7]. In particular v(x; t) is uniformly Holder continuous for jxj = 1 as t
varies over (0; 1

32® ]. Thus for ¾1;¾2 2 SN¡1 ,

jv(¾1; t)¡ v(¾2; t)j ·M j¾1¡ ¾2j±

for some positive constants M and ±, which implies

(1=
p
t)®ju(¾1=

p
t)¡ u(¾2=

p
t)j ·M j¾1 ¡¾2j±:

Hence ffr(¾) = r®u(r¾)g is equicontinuous on SN¡1 as r varies over [1;1).
Therefore limr!1 r®u(r x

jxj ) exists and becomes a continuous function on SN¡1.
The uniqueness of this limit is shown in section 3.

5. REMARK ON BAD SIGN CASE

We may consider self-similar solutions of

vt = ¢v + jvjp¡1v(5.1)

and classify positive solutions of

¢u+
1

2
x ¢ ru+

1

p¡ 1
u+ jujp¡1u = 0 in RN :(5.2)

In this case if p · (N + 2)=N , (5.2) does not have any positive solution and we
need to impose the condition p > (N +2)=N.

The result in section 4 still holds without any changes but the existence part is
a little different. When we consider the Cauchy problem, the initial data (2.2) is
locally integrable and a global solution exists for small initial data. But solutions
may blow up for large initial data as shown in [9]. Moreover the uniqueness result
also breaks down in this case, see [9] for details.
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