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INTERVAL OSCILLATION CRITERIA FOR SECOND ORDER
NONLINEAR DIFFERENTIAL EQUATIONS WITH DAMPING

Wan-Tong Li

Abstract. We present new interval oscillation criteria for certain classes of
second order nonlinear differential equations with damping that are different
from most known ones in the sense that they are based on the information only
on a sequence of subintervals of [t0;1), rather than on the whole half-line.
Our results are sharper than some previous results and handle the cases which
are not covered by known criteria. Finally, several examples that dwell upon
the sharp conditions of our results are also included.

1. INTRODUCTION

In this paper we consider the oscillation behavior of solutions of the second
order nonlinear differential equation

¡
r(t)y0(t)

¢0
+ p(t)y0(t) + q(t)f (y(t)) g

¡
y0(t)

¢
= 0;(1.1)

where t ¸ t0, the functions r, p, q, f and g are to be specified in the following.
We recall that a function y : [t0; t1) ! (¡1;1), t1 > t0 is called a solution

of Eq. (1.1) if y(t) satisfies Eq. (1.1) for all t 2 [t0; t1). In the sequel it will be
always assumed that solutions of Eq.(1.1) exist for any t0 ¸ 0. A solution y(t)
of Eq.(1.1) is called oscillatory if it has arbitrary large zeros, otherwise it is called
nonoscillatory.
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When r(t) ´ 1 and p(t) ´ 0, Eq. (1.1) reduces to

y00(t) + q(t)f(y(t))g(y0(t)) = 0;(1.2)

Eq. (1.1) has been studied by Grace and Lalli [7]. They mentioned that though
stability, boundedness, and convergence to zero of all solutions of Eq. (1.2) have
been investigated in the papers of Burton and Grimmer [2], Grace and Spikes [5,
6], Lalli [12], and Wong and Burton [21]. Nothing much has been known regarding
the oscillatory behavior of Eq.(1.2) except for the result by Wong and Burton [21,
Theorem 4] regarding oscillatory behavior of Eq. (1.2) in connection with that of
the corresponding linear equation

y00(t) + q(t)y(t) = 0:(1.3)

Recently, Li and Agarwal [15] and Rogovchenko [19] presented new sufficient
conditions which ensure oscillatory character of Eq. (1.2). They are different from
those of Grace and Lalli [7] and are applicable to other classes of equations which
are not covered by the results of Grace and Lalli [7]. However, except for the
results of Li and Agarwal [15], all the mentioned above oscillation results involve
the interval of q and hence require the information of q on the entire half-line
[t0;1).

From the Sturm Separation Theorem, we see that oscillation is only an interval
property, i.e., if there exists a sequence of subintervals [ai; bi] of [t0;1), as ai !1,
such that for each i there exists a solution of Eq. (1.3) that has at least two zeros
in [ai; bi], then every solution of Eq. (1.3) is oscillatory.

El-Sayed [4] established an interval criterion for oscillation of a forced second-
order equation, but the result is not very sharp, because a comparison with equations
of constant coefficient is used in the proof. Afterwards, Wong [20] proved a general
result for linear forced equation and Li and Agarwal [16] established more general
results for nonlinear forced equation (1.2).

We remark that, Kong [11] and Li and Agarwal [15] employed the technique in
the work of Philos [18] and obtained several interval oscillation results for second
order linear equation (1.3) and nonlinear equation (1.2). However, they can not be
applied to the nonlinear differential equation (1.1).

Motivated by the ideas of Kong [11] and Li and Agarwal [15], in this paper we
obtain, by using a generalized Riccati technique, several new interval criteria for
oscillation, that is, criteria given by the behavior of Eq. (1.1) (or of r; p; q; f and g)
only on a sequence of subintervals of [t0;1). Our results involve the Kamenev’s
type condition and improve and extend the results of Kamenev [10], Li and Agarwal
[15] and Philos [18]. Finally, several examples that dwell upon the sharp conditions
of our results are also included. Other related oscillation results can refer to [1, 3,
6, 10, 17 and 22].
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Hereinafter, we assume that
(H1) the functions r : [t0;1) ! (0;1) and p : [t0;1) ! R are continuous;
(H2) the function q : [t0;1) ! [0;1) is continuous and q(t) 6´ 0 on any ray

[T;1) for some T ¸ t0;
(H3) the function f : R! R is continuous and yf(y) > 0 for y 6= 0;
(H4) the function g : R! R is continuous and g(y) ¸ K > 0 for y 6= 0.
We say that a function H = H(t; s) belongs to a function class X , denoted

by H 2 X, if H 2 C(D;R+), where D = f(t; s) : ¡1 < s · t < 1g, which
satisfies

H(t; t) = 0; H(t; s) > 0; for t > s;(1.4)

and has partial derivatives @H=@t and @H=@s on D such that

@H

@t
= h1(t; s)H(t; s)1=2 and

@H

@s
= ¡h2(t; s)H(t; s)1=2;(1.5)

where h1; h2 2 Lloc(D;R).

2. OSCILLATION RESULTS FOR f(x) WITH MONOTONICITY

In this section we always assume the following condition holds.

(H5) there exists f 0(y) for y 2 R and f 0(y) ¸ ¹ > 0 for y 6= 0:(2.1)

First, we estabilish two interesting lemmas, which will be useful for establishing
oscillation criteria for Eq. (1.1).

Lemma 2.1. Let assumptions (H1)-(H5) hold. If y is a solution of Eq. (1.1)
such that y(t) > 0 on [c; b). For any v 2 C1([t0;1); (0;1)); let

u(t) = v(t)
r(t)y0(t)
f(y(t))

;(2.2)

on [c; b). Then for any H 2 X ,
Z b

c
H(b; s)Kv(s)q(s)ds · H(b; c)u(c)

+
1

4¹

Z b

c
r(s)v(s)

·
h2(b; s) +

µ
p(s)

r(s)
¡ v0(s)
v(s)

¶p
H(b; s)

¸2

ds:

(2.3)

Proof. From (1.1) and (2.2) we have for s 2 [c; b)

u0(t) = ¡v(t)q(t)g(y0(t))¡ f 0(y(t))
r(t)v(t)

u2(t)¡ p(t)

r(t)
u(t) +

v0(t)
v(t)

u(t):(2.4)
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In view of f 0(y) ¸ ¹ > 0 and g(y0) ¸ K > 0, we obtain by the above equality

u0(t) +Kv(t)q(t) +
¹

r(t)v(t)
u2(t) +

p(t)

r(t)
u(t)¡ v0(t)

v(t)
u(t) · 0:(2.5)

Multiplying (2.5) byH(t; s), integrating it with respect to s from c to t for t 2 [c; b),
and using (1.4) and (1.5) yield

Z t

c
H(t; s)Kv(s)q(s)ds · ¡

Z t

c
H(t; s)u0(s)ds

¡
Z t

c
H(t; s)

¹u2(s)

r(s)v(s)
ds+

Z t

c
H(t; s)

µ
¡p(s)
r(s)

+
v0(s)
v(s)

¶
u(s)ds

= H(t; c)u(c)

¡
Z t

c

½
h2(t; s)

p
H(t; s)u(s)¡H(t; s)

µ
p(s)

r(s)
¡ v0(s)
v(s)

¶
u(s)+H(t; s)

¹u2(s)

r(s)v(s)

¾
ds

= H(t; c)u(c)

¡
Z t

c

(s
¹H(t; s)

r(s)v(s)
u(s)+

1

2

s
r(s)v(s)

¹

·
h2(t; s)+

µ
p(s)

r(s)
¡ v

0(s)
v(s)

¶p
H(t; s)

)̧2

ds

+
1

4¹

Z t

c
r(s)v(s)

·
h2(t; s) +

µ
p(s)

r(s)
¡ v0(s)
v(s)

¶p
H(t; s)

¸2

ds

· H(t; c)u(c) +
1

4¹

Z t

c
r(s)v(s)

·
h2(t; s) +

µ
p(s)

r(s)
¡ v0(s)
v(s)

¶p
H(t; s)

¸2

ds

Letting t! b¡ in the above, we obtain (2.3). The proof is complete.

Lemma 2.2. Let assumptions (H1)-(H5) hold and suppose that y is a solution
of Eq. (1.1) such that y(t) > 0 on (a; c]. For any v 2 C1([t0;1); (0;1)); let
u(t) be defined by (2.2) on (a; c]. Then for any H 2 X ,

Z c

a
H(s; a)Kv(s)q(s)ds · ¡H(c; a)u(c)

+
1

4¹

Z c

a
r(s)v(s)

·
h1(s; a)¡

µ
p(s)

r(s)
¡ v0(s)
v(s)

¶p
H(s; a)

¸2

ds:
(2.6)

Proof. Similar to the proof of Lemma 2.1, we multiply (2.5) byH(s; t), integrate
it with respect to s from c for t 2 (a; c], and use (1.4) and (1.5), then we obtain
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thatZ c

t
H(s; t)Kv(s)q(s)ds · ¡

Z c

t
H(s; t)u0(s)ds

¡
Z c

t
H(s; t)

¹u2(s)

v(s)r(s)
ds+

Z c

t
H(s; t)

µ
¡p(s)
r(s)

+
v0(s)
v(s)

¶
u(s)ds

= ¡H(c; t)u(c)

+

Z c

t

½
h1(s; t)

p
H(s; t)u(s)¡H(s; t)

¹u2(s)

r(s)v(s)
¡H(s; t)

µ
p(s)

r(s)
¡ v0(s)
v(s)

¶
u(s)

¾
ds

= ¡H(c; t)u(c)¡
Z c

t

1

r(s)v(s)

½hp
¹H(s; t)u(s)

i2

¡
³
h1(s; t)

p
H(s; t)r(s)v(s) +H(s; t)v0(s)r(s)

´
u(s)

+
1

4¹
r2(s)v2(s)

·
h1(s; t)¡

µ
p(s)

r(s)
¡ v0(s)
v(s)

¶p
H(s; t)

¸2)
ds

+
1

4¹

Z c

t
r(s)v(s)

·
h1(s; t)¡

µ
p(s)

r(s)
¡ v0(s)
v(s)

¶p
H(s; t)

¸2

ds

= ¡H(c; t)u(c)¡
Z c

t

1

r(s)v(s)

np
¹H(s; t)u(s)

¡ 1

2
p
¹
r(s)v(s)

·
h1(s; t)¡

µ
p(s)

r(s)
¡ v0(s)
v(s)

¶p
H(s; t)

¸¾2

ds

+
1

4¹

Z c

t
r(s)v(s)

·
h1(s; t)¡

µ
p(s)

r(s)
¡ v0(s)
v(s)

¶p
H(s; t)

¸2

ds

· ¡H(c; t)u(c) +
1

4¹

Z c

t
r(s)v(s)

·
h1(s; t)¡

µ
p(s)

r(s)
¡ v0(s)
v(s)

¶p
H(s; t)

¸2

ds:

Letting t! a+ in the above, we obtain (2.6). The proof is complete.
The following theorem is an immediate result from Lemmas 2.1 and 2.2.

Theorem 2.1. Assume that (H1)-(H5) hold and that for some c 2 (a; b) and
for some H 2 X; v 2 C1([t0;1); (0;1));

1

H(c; a)

Z c

a
H(s; a)Kv(s)q(s)ds+

1

H(b; c)

Z b

c
H(b; s)Kv(s)q(s)ds

>
1

4¹H(c; a)

Z c

a
r(s)v(s)

·
h1(s; a)¡

µ
p(s)

r(s)
¡ v0(s)
v(s)

¶p
H(s; a)

¸2

ds

+
1

4¹H(b; c)

Z b

c
r(s)v(s)

·
h2(b; s) +

µ
p(s)

r(s)
¡ v0(s)
v(s)

¶p
H(b; s)

¸2

ds:

(2.7)
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Then every solution of Eq.(1.1) has at least one zero in (a; b).

Theorem 2.2. Assume that (H1)-(H5) holds. If; for each T ¸ t0; there exist
H 2 X; v 2 C1([t0;1); (0;1)) and a; b; c 2 R such that T · a < c < b and
(2.7) holds; then every solution of Eq. (1.1) is oscillatory.

Proof. Pick up a sequence fTig ½ [t0;1) such that Ti !1 as i!1. By the
assumption, for each i 2 N , there exist ai; bi; ci 2 R such that Ti · ai < ci < bi,
and (2.7) holds, where a; b; c are replaced by ai; bi; ci, respectively. From Theorem
2.1, every solution y(t) has at least one zero, ti 2 (ai; bi). Noting that ti > ai ¸ Ti,
i 2 N , we see that every solution has arbitrary large zeros. Thus, every solution of
Eq.(1.1) is oscillatory. The proof is complete.

Theorem 2.3. Assume that (H1)-(H5) hold. If

lim sup
t!1

Z t

l

"
H(s; l)Kv(s)q(s)

¡ 1

4¹
r(s)v(s)

·
h1(s; l)¡

µ
p(s)

r(s)
¡ v0(s)
v(s)

¶p
H(s; l)

¸2
#
ds > 0;

(2.8)

and

lim sup
t!1

Z t

l

"
H(t; s)Kv(s)q(s)

¡ 1

4¹
r(s)v(s)

·
h2(t; s) +

µ
p(s)

r(s)
¡ v0(s)
v(s)

¶p
H(t; s)

¸2
#
ds > 0;

(2.9)

for some H 2 X , v 2 C1([t0;1), (0;1)) and for each l ¸ t0, then every solution
of Eq. (1.1) is oscillatory.

Proof. For any T ¸ t0, let a = T . In (2.8) we choose l = a. Then there exists
c > a such that

Z c

a

"
H(s; a)Kv(s)q(s)

¡ 1

4¹
r(s)v(s)

µ
h1(s; a)¡

µ
p(s)

r(s)
¡ v0(s)
v(s)

¶p
H(s; a)

¶2
#
ds > 0:

(2.10)

In (2.9) we choose l = c. Then there exists b > c such that
Z b

c

"
H(b; s)Kv(s)q(s)

¡ 1

4¹
r(s)v(s)

µ
h2(b; s) +

µ
p(s)

r(s)
¡ v0(s)
v(s)

¶p
H(b; s)

¶2
#
ds > 0:

(2.11)
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Combining (2.10) and (2.11) we obtain (2.7). The conclusion thus comes from
Theorem 2.2. The proof is complete.

For the case where H := H(t¡s) 2 X , we have that h1(t¡s) = h2(t¡s) and
denote them by h(t¡ s). The subclass of X containing such H(t¡ s) is denoted
by X0. Applying Theorem 2.2 to X0, we obtain

Theorem 2.4. Assume that (H1)-(H5) hold. If for each T ¸ t0; there exist
H 2 X0; v 2 C1([t01); (0;1)) and a; c 2 R such that T · a < c and

Z c

a
H(s¡ a)K [v(s)q(s) + v(2c¡ s)q(2c¡ s)] ds

>
1

4¹

Z c

a
[r(s)v(s) + r(2c¡ s)v(2c¡ s)]h2(s¡ a)ds

+
1

2¹

Z c

a

£
r(2c¡ s)v0(2c¡ s)¡ p(2c¡ s)v(2c¡ s)

¡ r(s)v0(s) + p(s)v(s)]h(s¡ a)
p
H(s¡ a)ds

+
1

4¹

Z c

a

"
r(s)v(s)

µ
p(s)

r(s)
¡ v0(s)
v(s)

¶2

+ r(2c¡ s)v(2c¡ s)
µ
p(2c¡ s)
r(2c¡ s) ¡

v0(2c¡ s)
v(2c¡ s)

¶2
#
H(s¡ a)ds;

(2.12)

then every solution of Eq. (1.1) is oscillatory.

Proof. Let b = 2c ¡ a. Then H(b¡ c) = H(c ¡ a) = H((b¡ a)=2), and for
any w 2 L[a; b], we have

Z b

c
w(s)ds =

Z c

a
w(2c¡ s)ds:

Hence Z b

c
H(b¡ s)w(s)ds =

Z c

a
H(s¡ a)w(2c¡ s)ds:

Thus that (2.12) holds implies that (2.7) holds for H 2 X0, v 2 C1([t0;1); (0;1)
and therefore every solution of Eq. (1.1) is oscillatory by Theorem 2.2. The proof
is complete.

From above oscillation criteria, we can obtain different sufficient conditions for
oscillation of all solutions of Eq.(1.1) by different choices of H(t; s).

Let
H(t; s) = (t¡ s)¸; t ¸ s ¸ t0;

where ¸ > 1 is a constant.
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Corollary 2.1. Assume that (H1)-(H5) hold. Then every solution of Eq. (1.1)
is oscillatory provided that for each l ¸ t0 and for some ¸ > 1; there exists a
function v 2 C1([t0;1); (0;1)) such that the following two inequalities hold :

lim sup
t!1

1

t¸¡1

Z t

l
(s¡ l)¸

"
Kv(s)q(s)

¡ 1

4¹
r(s)v(s)

µ
¸

(s¡ l) ¡
p(s)

r(s)
+
v0(s)
v(s)

¶2
#
ds > 0:

(2.13)

and

lim sup
t!1

1

t¸¡1

Z t

l
(t¡ s)¸

"
Kv(s)q(s)

¡ 1

4¹
r(s)v(s)

µ
¸

(t¡ s) ¡
p(s)

r(s)
+
v0(s)
v(s)

¶2
#
ds > 0:

(2.14)

Define

R(t) =

Z t

l

1

r(s)
ds; t ¸ l ¸ t0;

and let
H(t; s) = [R(t)¡R(s)]¸; t ¸ t0;

where ¸ > 1 is constant.
By Theorem 2.3, we have the following oscillation criterion which extends

Theorem 2.3 (i) of Kong [11] and Theorem 2.5 of Li and Agarwal [15].

Theorme 2.5. Assume that (H1)-(H5) hold and that limt!1R(t) = 1. Then
every solution of Eq. (1.1) is oscillatory provided that for each l ¸ t0 and for some
¸ > 1; the following two inequalities hold :

lim sup
t!1

¹

R¸¡1(t)

Z t

l
[R(s)¡R(l)]¸

µ
Kq(s)¡ p2(s)

4¹r(s)

¶
ds >

¸2

4(¸¡ 1)
(2.15)

and

lim sup
t!1

¹

R¸¡1(t)

Z t

l
[R(t)¡R(s)]¸

µ
Kq(s)¡ p2(s)

4¹r(s)

¶
ds >

¸2

4(¸¡ 1)
:(2.16)

The proof is similar to that of Theorem 2.5 of Li and Agarwal [15], we omit it
here.
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3. OSCILLATION RESULTS FOR f(x) WITHOUT MONOTONICITY

In this section we consider the oscillation of Eq. (1.1) when the function f(y)
is not monotone. In this case we always assume the following condition holds:

(H5’) f(y)=y ¸ ¹0 > 0 for y 6= 0; where ¹0 is a constant:(3.1)

Lemma 3.1. Let assumptions (H1)-(H4) and (H5’) hold. If y is a solution of
Eq. (1.1) such that y(t) > 0 on [c; b). For any v 2 C1([t0;1); (0;1)); let

w(t) = v(t)
r(t)y0(t)
y(t)

(3.2)

on [c; b). Then for any H 2 X ,

Z b

c
H(b; s)K¹0v(s)q(s)ds · H(b; c)w(c)

+
1

4

Z b

c
r(s)v(s)

·
h2(b; s) +

µ
p(s)

r(s)
¡ v0(s)
v(s)

¶p
H(b; s)

¸2

ds:

(3.3)

Proof. From (1.1) and (3.2) we have for s 2 [c; b)

w0(t) =¡v(t)q(t)f(y(t))

y(t)
g(y0(t))¡ 1

r(t)v(t)
w2(t)

¡p(t)
r(t)

w(t) +
v0(t)
v(t)

w(t):

(3.4)

In view of f(y)=y ¸ ¹0 > 0 and g(y0) ¸ K > 0, we obtain by the above equality

w0(t) +K¹0v(t)q(t) +
1

r(t)v(t)
w2(t) +

p(t)

r(t)
w(t)¡ v0(t)

v(t)
w(t) · 0:(3.5)

The rest of the proof is similar to that of Lemma 2.1. The proof is complete.

Lemma 3.2. Let assumptions (H1)-(H4) and (H5’) hold and suppose that y is a
solution of Eq. (1.1) such that y(t) > 0 on (a; c]. For any v 2 C1([t0;1); (0;1));
let w(t) be difined by (3.2) on (a; c]. Then for any H 2 X;

Z c

a
H(s; a)K¹0v(s)q(s)ds · ¡H(c; a)w(c)

+
1

4

Z c

a
r(t)v(s)

·
h1(s; a)¡

µ
p(s)

r(s)
¡ v0(s)
v(s)

¶p
H(s; a)

¸2

ds:
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The following theorem is an immediate result from Lemma 3.1 and Lemma 3.2.

Theorme 3.1. Assume that (H1)-(H4) and (H5’) hold and that for some c 2
(a; b) and for some H 2 X; v 2 C1([t0; 1); (0;1));

1

H(c; a)

Z c

a
H(s; a)K¹0v(s)q(s)ds+

1

H(b; c)

Z b

c
H(b; s)K¹0v(s)q(s)ds

>
1

4H(c; a)

Z c

a
r(s)v(s)

·
h1(s; a)¡

µ
p(s)

r(s)
¡ v0(s)
v(s)

¶p
H(s; a)

¸2
ds

+
1

4H(b; c)

Z b

c
r(s)v(s)

·
h2(b; s)¡

v0(s)
v(s)

p
H(b; s)

¸2

ds:

(3.6)

Then every solution of Eq. (1.1) has at least one zero in (a; b).

Theorem 3.2. Assume that (H1)-(H4) and (H5’) holds. If, for each T ¸ t0;
there exist H 2 X; v 2 C1([t0;1); (0;1)) and a; b; c 2 R such that T · a <
c < b and (3.6) holds; then every solution of Eq. (1.1) is oscillatory.

Theorem 3.3. Assume that (H1)-(H4) and (H5’) hold. If

lim sup
t!1

Z t

l

"
H(s; l)K¹0v(s)q(s)

¡1

4
r(s)v(s)

µ
h1(s; l)¡

µ
p(s)

r(s)
¡ v0(s)
v(s)

¶p
H(s; l)

¶2
#
ds > 0;

and

lim sup
t!1

Z t

l

"
H(t; s)K¹0v(s)q(s)

¡1

4
r(s)v(s)

µ
h2(t; s) +

µ
p(s)

r(s)
¡ v0(s)
v(s)

¶p
H(t; s)

¶2
#
ds > 0;

for some H 2 X; v 2 C1([t0;1); (0;1)) and for each l ¸ t0; then every solution
of Eq. (1.1) is oscillatory.

Theorem 3.4. Assume that (H1)-(H4) and (H5’) hold. If for each T ¸ t0;
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there exist H 2 X0; v 2 C1([t01); (0;1)) and a; c 2 R such that T · a < c and

Z c

a
H(s¡ a)K¹0 [v(s)q(s) + v(2c¡ s)q(2c¡ s)] ds

>
1

4

Z c

a
[r(s)v(s) + r(2c¡ s)v(2c¡ s)] h2(s¡ a)ds

+
1

2

Z c

a

£
r(2c¡ s)v0(2c¡ s)¡ p(2c¡ s)v(2c¡ s)

¡ r(s)v0(s) + p(s)r(s)] h(s¡ a)
p
H(s¡ a)ds

+
1

4

Z c

a

"
r(s)v(s)

µ
p(s)

r(s)
¡ v0(s)
v(s)

¶2

+r(2c¡ s)v(2c¡ s)
µ
p(2c¡ s)
r(2c¡ s) ¡

v0(2c¡ s)
v(2c¡ s)

¶2
#
H(s¡ a)ds;

then every solution of Eq. (1.1) is oscillatory.

Corollary 3.1. Assume that (H1)-(H4) and (H5’) hold. Then every solution of
Eq. (1.1) is oscillatory provided that for each l ¸ t0 and for some ¸ > 1; there
exists a function v 2 C1([t0;1); (0;1)) such that the following two inequalities
hold :

lim sup
t!1

1

t¸¡1

Z t

l
(s¡ l)¸

"
K¹0v(s)q(s)

¡1

4
r(s)v(s)

µ
¸

(s¡ l) +
p(s)

r(s)
¡ v0(s)
v(s)

¶2
#
ds > 0;

and

lim sup
t!1

1

t¸¡1

Z t

l
(t¡ s)¸

"
K¹0v(s)q(s)

¡1

4
r(s)v(s)

µ
¸

(t¡ s) ¡
p(s)

r(s)
+
v0(s)
v(s)

¶2
#
ds > 0:

Theorem 3.5. Assume that (H1)-(H4) and (H5’) hold and that limt!1R(t) =
1. Then every solution of Eq. (1.1) is oscillatory provided that for each l ¸ t0
and for some ¸ > 1; the following two inequalities hold :

lim sup
t!1

1

R¸¡1(t)

Z t

l
[R(s)¡R(l)]¸

µ
K¹0q(s)¡

p2(s)

4r(s)

¶
ds >

¸2

4(¸¡ 1)
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and

lim sup
t!1

1

R¸¡1(t)

Z t

l
[R(t)¡R(s)]¸

µ
K¹0q(s)¡

p2(s)

4r(s)

¶
ds >

¸2

4(¸¡ 1)
:

4. EXAMPLES

In this section we will show the applications of our oscillation criteria by two
examples. We will see that the equations in the examples are oscillatory based on
the results in Sections 2 and 3, though the oscillation cannot be demonstrated by
the results of Huang [9], Kong [11] and Li and Agarwal [15].

Example 1. Consider the nonlinear differential equation
¡
(1 + sin2t)y0(t)

¢0 ¡ 3 sin t cos ty0(t)

+
1

(1 + cos4 t)(1 + sin2 t)
y(t)

£
1 + y4(t)

¤ £
1 + (y0(t))2

¤
= 0;

(4.1)

where t ¸ 1. Clearly,

f 0(y) = 1 + 5y4 ¸ 1 = ¹ > 0 and g(y) = 1 + y2 ¸ 1 = K for all y 2 R:
Let us apply Corollary 2.1 with ¸ = 2 and v(t) = 1. A straightforward computation
yields

lim sup
t!1

1

t¸¡1

Z t

l
(s¡ l)¸

(
q(s)¡ 1

4¹
r(s)

·
¸

(s¡ l) ¡
p(s)

r(s)

¸2
)
ds

= lim sup
t!1

1

t

Z t

l
(s¡ l)2

·
1

(1 + cos4 s)(1 + sin2 s)
+

3 sin s cos s

s¡ l

¡ 1 + sin2 s

(s¡ l)2 ¡ 9 sin2 s cos2 s

4(1 + sin2 s)

¸
ds

= lim sup
t!1

1

t

Z t

l

½
(s¡ l)2

·
1

(1 + cos4 s)(1 + sin2 s)
¡ 9 sin2 s cos2 s

4(1 + sin2 s)

¸

+
£
3(s¡ l) sin s cos s¡ (1 + sin2 s)

¤ª
ds

= 1;
and

lim sup
t!1

1

t¸¡1

Z t

l
(t¡ s)¸

(
q(s)¡ 1

4¹
r(s)

·
¸

(s¡ l) ¡
p(s)

r(s)

¸2
)
ds
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= lim sup
t!1

1

t

Z t

l
(t¡ s)2

·
1

(1 + cos4 s)(1 + sin2 s)
+

3 sin s cos s

t¡ s

¡1 + sin2 s

(t¡ s)2 ¡ 9 sin2 s cos2 s

4(1 + sin2 s)

¸
ds

= lim sup
t!1

1

t

Z t

l

½
(t¡ s)2

·
1

(1 + cos4 s)(1 + sin2 s)
¡ 9 sin2 s cos2 s

4(1 + sin2 s)

¸

+
£
3(t¡ s) sin s cos s¡ (1 + sin2 s)

¤¾
ds

= 1;

since
1

(1 + cos4 t)(1 + sin2 t)
¡ 9 sin2 t cos2 t

4(1 + sin2 t)

=
4¡ 9 sin2 t cos2 t

(1 + cos4 t)(1 + sin2 t)
=

4¡ 9 sin2 t+ 9 sin4 t

(1 + cos4 t)(1 + sin2 t)
> 0

for any t 2 R. Thus, assumptions (2.13) and (2.14) hold, and we conclude by
Corollary 2.1 that all solutions of Eq.(4.1) are oscillatory. Observe that y(t) = cos t
is such a solution.

Example 2. Consider the nonlinear differential equation

y00(t)¡ sin ty0(t) +
1 + cos t

1 + sin2 t
y(t)

¡
1 + y2(t)

¢
= 0; t ¸ 0:(4.2)

Let r(t) = 1 and f(y) = y(1 + y2). Then

R(t) = t; f 0(y) = 1 + 3y2 ¸ 1 = ¹:

Let us apply Theorem 2.5 with ¸ = 2. Then

lim sup
t!1

1

t

Z t

0
s2
·

1 + cos s

1 + sin2 s
¡ sin2 s

4

¸
ds

= lim sup
t!1

1

t

Z t

0
s2
·
4(1 + cos s)¡ (1 + sin2 s) sin2 s

4(1 + sin2 s)

¸

¸ lim sup
t!1

1

t

Z t

0

s2

4
ds

= 1;
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and

lim sup
t!1

1

t

Z t

0
(t¡ s)2

µ
1 + cos s

1 + sin2 s
¡ sin2 s

4

¶
ds

= lim sup
t!1

1

t

Z t

0
(t¡ s)2

µ
4(1 + cos s)¡ (1 + sin2 s) sin2 s

4(1 + sin2 s)

¶

¸ lim sup
t!1

1

t

Z t

0

(t¡ s)2
4

ds

= 1:
Thus, assumptions (2.15) and (2.16) hold, and we conclude by Theorem 2.5 that all
solutions of Eq. (4.2) are oscillatory. Observe that y(t) = sin t is such a solution.

The important point to note here is that the recent results due to Grace and Lalli
[8, Theorems 1, 2, 4, 5, 6, 7 and Corollary 1] do not apply to Eqs.(4.1) and (4.2)
since p(t) is oscillatory.
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