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ALGORITHMIC ASPECT OF k-TUPLE DOMINATION IN GRAPHS

Chung-Shou Liao¤ and Gerard J. Chang¤

Abstract. In a graph G, a vertex is said to dominate itself and all of its
neighbors. For a fixed positive integer k , the k-tuple domination problem is
to find a minimum sized vertex subset such that every vertex in the graph
is dominated by at least k vertices in this set. The present paper studies the
k-tuple domination problem in graphs from an algorithmic point of view. In
particular, we give a linear-time algorithm for the 2-tuple domination problem
in trees by employing a labeling method.

1. INTRODUCTION

The concept of domination in graph theory is a good model for many location
problems in operations research. In a graph G, a vertex is said to dominate itself
and all of its neighbors. A dominating set of G= (V;E) is a subset D of V such
that every vertex in V is dominated by some vertex in D. The domination number
°(G) is the minimum size of a dominating set of G. Domination and its variations
have been extensively studied in the literature; see [3, 7, 8].

Among the variations of domination, the k-tuple domination was introduced in
[6]; also see [7, p. 189]. For a fixed positive integer k, a k-tuple dominating set of
G= (V; E) is a subset D of V such that every vertex in V is dominated by at least k
vertices of D. The k-tuple domination number °£ k(G) is the minimum cardinality
of a k-tuple dominating set of G. The special case when k = 1 is the usual
domination. The case when k = 2 was called double domination in [6], where exact
values of the double domination numbers for some special graphs are obtained. The
same paper also gives various bounds of double and k-tuple domination numbers in

Received January 4, 2001; revised June 28, 2001.
Communicated by F. K. Hwang.
2000 Mathematics Subject Classification: 05C69.
Key words and phrases: Domination, k-tuple domination, algorithm, tree, leaf, neighbor.
¤Supported in part by the National Science Council under grant NSC89-2115-M009-037 and by the
Lee and MTI Center for Networking Research at NCTU.

415



416 Chung-Shou Liao and Gerard J. Chang

terms of other parameters. Nordhaus-Gaddum type inequality for double domination
was given in [5].

The purpose of this paper is to study the k-tuple domination problem from an
algorithmic point of view. In particular, we give a linear-time algorithm for the
2-tuple domination problem in trees.

We note that not every graph has a k-tuple dominating set. In fact, a graph
G has a k-tuple dominating set if and only if ±(G) + 1 ¸ k, where ±(G) is the
minimum degree of a vertex in G. As any nontrivial tree has at least two leaves,
we only consider 2-tuple domination for trees.

To establish our algorithm, we employ a labeling method similar to those for
variations of domination in tree-type graphs; see [2, 4, 9, 10, 11, 12, 13]. Sup-
pose G = (V;E) is a graph in which every vertex v is associated with a label
M(v) = (t(v); k(v)), where t(v) 2 fB;Rg and k(v) is a nonnegative integer. The
interpretation of the label is that we want to find a “dominating set” D containing
all vertices u with t(u) = R (called required vertices) such that each vertex v is
dominated by at least k(v) vertices in D. More precisely, an M-dominating set of
G= (V;E) is a subset D of V satisfying the following conditions:

(M1) If t(v) = R, then v 2 D.

(M2) jNG[v]\Dj ¸ k(v) for all vertices v 2 V , where NG[v] = fvg [ fu 2 V :
uv 2 Eg is the closed neighborhood of the vertex v.

The M-domination number °M (G) is the minimum cardinality of an M-dominating
set in G. Notice that 2-tuple domination is M-domination with M(v) = (B; 2) for
all vertices v in V . Also, G has an M-dominating set, i.e., °M (G) is finite, if
and only if jNG[v]j ¸ k(v) for all vertices v in V . For instance, if G contains
exactly one vertex x, then °M(G) = 0 when M(x) = (B; 0), °M (G) = 1 when
M(x) 2 f(B; 1); (R; 0); (R;1)g, and °M (G) =1 otherwise.

2. 2-TUPLE DOMINATION IN TREES

To give an algorithm for the 2-tuple domination problem in trees, we in fact
establish one for the M-domination problem in trees. We believe that the approach
has potential for other classes of graphs. We first give the following theorem which
is the base of the algorithm. Notice that it works for general graphs.

Theorem 2.1. Suppose G= (V;E) is a nontrivial graph in which every vertex
v has a label M(v) = (t(v); k(v)). Let x be a leaf adjacent to y.

(1) If k(x) > 2 or k(y) > jNG[y]j; then G has no M-dominating set.
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(2) If k(x) = 2 or k(y) = jNG[y]j; then °M (G) = °M0(G0) + 1; where G0 is
obtained from G by deleting x and M0 is obtained from M by relabeling y
with t0(y) = R and k0(y) = maxfk(y) ¡ 1;0g.

(3) If t(x) = R and k(x) < 2 and k(y) < jNG[y]j; then °M(G) = °M0(G0) +1;
where G0 is obtained from G by deleting x and M 0 is obtained from M by
relabeling y with k0(y) = maxfk(y) ¡ 1;0g.

(4) If M(x) = (B; 1) and k(y) < jNG[y]j; then °M (G) = °M0 (G0); where G0 is
obtained from G by deleting x and M0 is obtained from M by relabeling y
with t0(y) = R.

(5) If M(x) = (B; 0) and k(y)< jNG[y]j; then °M(G) = °M (G ¡ x).

Proof. (1) This follows from the definition of M-domination.

(2) Suppose D0 is a minimum M 0-dominating set of G0. Then y 2 D0, since
t0(y) = R. Hence, D = D0[fxg is an M-dominating set of G, since jNG[x]\Dj ¸
2 ¸ k(x). Thus, °M0(G0) + 1 = jD0j+1 = jDj ¸ °M(G).

On the other hand, suppose D is a minimum M-dominating set of G. Then
x;y 2 D, since k(x) = 2 or k(y) = jNG[y]j. Hence, D0 = Dnfxg is an M0-
dominating set of G0, since y 2 D0 and jNG0 [y] \ D0j = jNG[y] \ Dj ¡ 1 ¸
maxfk(y) ¡ 1;0g = k0(y). So, °M (G) = jDj = jD0j+ 1 ¸ °M0(G0) + 1.

These complete the proof of °M(G) = °M0(G0) +1.

(3) Suppose D0 is an M 0-dominating set of G0. Then D = D0 [ fxg is an
M-dominating set of G, since jNG[x] \Dj ¸ 1 ¸ k(x). Thus, °M0(G0) + 1 =
jD0j+ 1 = jDj ¸ °M(G).

On the other hand, suppose D is a minimum M-dominating set of G. Then
Then x 2 D, since t(x) = R. Hence, D0 = Dnfxg is an M 0-dominating set of
G0, since jNG0 [y] \ D0j = jNG[y] \Dj ¡ 1 ¸ maxfk(y) ¡ 1; 0g = k0(y). So,
°M (G) = jDj = jD0j+ 1 ¸ °M0(G0) +1.

These complete the proof of °M(G) = °M0(G0) +1.

(4) Suppose D0 is a minimum M 0-dominating set of G0. Then y 2 D0, since
t0(y) = R. Consequently, D0 is an M-dominating set of G as M(x) = (B;1).
Thus, °M0(G0) = jD0j ¸ °M (G).

On the other hand, suppose that D is a minimum M-dominating set of G. If
x =2 D, then y 2 D, since k(x) = 1. And so, D is an M 0-dominating set of
G0. Therefore, °M (G) = jDj ¸ °M0(G0). We may now assume that x 2 D.
Let D0 = Dnfxg. If y 2 D0 and jNG0[y] \ D0j ¸ k(y), then D0 is an M0-
dominating set of G0 and so °M (G) = jDj > jD0j ¸ °M0(G0). So now y 62 D0

or jNG0[y] \D0j < k(y) · jNG[y]j ¡ 1 = jNG0[y]j. For the case when y 62 D0,
let z = y; for the case when y 2 D0, choose a vertex z 2 NG0[y]nD0. Then, in
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any case, y 2 D0 [ fzg and so D0 [ fzg is an M 0-dominating set of G0. Hence,
°M (G) = jDj = jD0[ fzgj ¸ °M0 (G0).

These complete the proof of °M(G) = °M0(G0).

(5) Suppose D0 is a minimum M-dominating set of G¡ x. Then D0 is also an
M-dominating set of G, since t(x) = B and k(x) = 0. Therefore, °M (G ¡ x) =
jD0j ¸ °M (G).

On the other hand, suppose that D is a minimumM-dominating set of G. If x =2
D, then D is also anM-dominating set of G¡ x. Thus, °M(G) = jDj ¸ °M (G¡ x).
We may now assume that x 2D. Let D0 = Dnfxg. If jNG¡ x[y]\D0j ¸ k(y), then
D0 is an M-dominating set of G ¡ x and so °M (G) = jDj > jD0j ¸ °M(G ¡ x).
So now jNG¡ x[y] \ D0j < k(y) · jNG[y]j ¡ 1 = jNG¡ x[y]j. Choose a vertex
z 2 NG¡ x[y]nD0. Then D0 [ fzg is an M-dominating set of G ¡ x. Hence,
°M (G) = jDj = jD0[ fzgj ¸ °M (G¡ x).

These complete the proof of °M(G) = °M (G ¡ x).

Based on the theorem above, we have the following linear-time algorithm for
the M-domination problem in trees.

Algorithm. Find an M-dominating set of a tree.
Input. A tree T = (V;E) in which each vertex v is labeled by M(v) = (t(v); k(v)).
Output. A minimum M-dominating set D of T .
Method.

D Ã ;;
T 0 Ã T ;
while (T 0 has at least two vertices) do

choose a leaf x adjacent to y in T 0;
if (k(x) > 2 or k(y) > jNT 0[y]j) then

stop since there is no M-dominating set;
elseif (k(x) = 2 or k(y) = jNT 0[y]j) then

t(y) = R and k(y) = maxfk(y)¡ 1;0g and D Ã D[fxg;
elseif f¤ now k(x)< 2 and k(y) < jNT 0[y]j ¤g (t(x) = R) then

k(y) = maxfk(y) ¡ 1;0g and D Ã D [ fxg;
elseif f¤ now t(x) = B, k(x)< 2, k(y) < jNT 0 [y]j ¤g (k(x) = 1)
then t(y) = R;
T 0 Ã T 0 ¡ x f¤ delete x from T 0 ¤g;

end while;
suppose the only vertex of T 0 is x;
if (k(x) > 1) then STOP as there is no M-dominating set;
elseif (t(x) = R or k(x) = 1) then D Ã D[ fxg.



Algorithmic Aspect of k-Tuple Domination in Graphs 419

ACKNOWLEDGMENTS

We thank the referee for many useful comments.

REFERENCES

1. S. Arumugam and S. Velammal, Edge domination in graphs, Taiwanese J. Math. 2
(1998), 173-179.

2. G. J. Chang, Labeling algorithms for domination problems in sun-free chordal graphs,
Discrete Appl. Math. 22 (1988/89), 21-34.

3. G. J. Chang, Algorithmic aspects of domination in graphs, in: Handbook of Combi-
natorial Optimization, D.-Z. Du and P. M. Pardalos, eds., Vol. 3, 1998, pp. 339-405.

4. E. J. Cockayne, S. E. Goodman and S. T. Hedetniemi, A linear algorithm for the
domination number of a tree, Inform. Process. Lett. 4 (1975), 41-44.

5. F. Harary and T. W. Haynes, Nordhaus-Gaddum inequalities for domination in graphs,
Discrete Math. 155 (1996), 99-105.

6. F. Harary and T. W. Haynes, Double domination in graphs, Ars Combin. 55 (2000),
201-213.

7. T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs: the Theory,
Marcel Dekker, New York, 1998.

8. T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs: Selected
Topics, Marcel Dekker, New York, 1998.

9. S. F. Hwang and G. J. Chang, The edge domination problem, Discuss. Math. – Graph
Theory 15 (1995), 51-57.

10. R. Laskar, J. Pfaff, S. M. Hedetniemi and S. T. Hedetniemi, On the algorithm com-
plexity of total domination, SIAM J. Alg. Discrete Methods 5 (1984), 420-425.

11. S. L. Mitchell and S. T. Hedetniemi, Edge domination in trees, in: Proceedings
Eighth S. E. Conference on Combinatorics, Graph Theory and Computing, Utilitas
Math., Winnipeg, 1977, pp. 489-509.

12. P. J. Slater, R-Domination in graphs, J. Assoc. Comput. Mach. 23 (1976), 446-450.

13. M. Yannakakis and F. Gavril, Edge dominating sets in graphs, SIAM J. Appl. Math.
38 (1980), 364-372.

14. H. G. Yeh and G. J. Chang, Algorithmic aspects of majority domination, Taiwanese
J. Math. 1 (1997), 343-350.

15. H. G. Yeh and G. J. Chang, Weighted connected domination and Steiner trees in
distance-hereditary graphs, Discrete Appl. Math. 87 (1998), 245-253.

16. H. G. Yeh and G. J. Chang, Weighted k-domination and weighted k-dominating
clique in distance-hereditary graphs, Theoret. Comput. Sci. 263 (2001), 3-8.



420 Chung-Shou Liao and Gerard J. Chang

Chung-Shou Liao and Gerard J. Chang
Department of Applied Mathematics
National Chiao Tung University
Hsinchu 30050, Taiwan
E-mail: gjchang@math.ntu.edu.tw


