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ON AVERAGE CONVERGENCE OF THE ITERATIVE
PROJECTION METHODS

Ya. |. Alber

Abstract. We study the iterative subgradient methods for nonsmoocth con-
vex constrained optimization problems in a uniformly convex and uniformly
smooth Banach space followed by metric and generalized projections onto
the feasible sets. The normalized stepsizes «,, are chosen apriori, saisfying
the conditions }_° ) o, = oo, o, — 0. We prove that the every sequence
generated in this way is weakly convergent to aminimizer in the average if the
problem has solutions. In addition, we show that the perturbed ¢,,-subgradient
method is stable when ¢, — 0. More general case of variational inegualities
with monotone (possibly) nonpotential operatorsis also considered.

1. INTRODUCTION
We investigate the following optimization problem:
(1.2 f(x) — min,
1.2 st. z €Q,

where f(x) : B — R isa convex in general, nondifferential functional, and €2 isa
nonempty convex closed subset of Banach space B. Denote 0 f(z) the subdifferen-
tid of f(x) & « € B, tha is,

Of(z) ={ue B*: f(y) — f(z) > (u,y—z) foral ye B.}
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andu € 0f(x) an arbitrary subgradient of f(x) a& = € B. Here, (¢, x) denotes the
dual product (the bilinear functiond of dudity) between = € B and ¢ € B*, where
B* isthe dual gace of B.
Let dp(e) and pp(7) be the modulus of convexity and modulus of smoothness
of the Banach space B, respectivey (see, for instance, [2, 15]). Suppose that
(i) B isauniformly convex and uniformly smooth (reflexive) Banach gace;

(ii) 0f(x) isabounded operator from B to B*, i.e. it carries bounded sets from
B into bounded sets of B*,

(iii) the set M of solutions of the problem (1.1) and (1.2) is not empty.

Let us notethat B* isalso auniformly convex and uniformly smooth (reflexive)
Banach space [12].
In this paper, the normdized iterative method

(1.3 " =g Ja" —anH:jTH} , uteaf(e"), n=12,...,

is studied, where mq, is a generalized projection operator, J is a dudity mapping
(see Section 2) and the stepsizes {«,, } are chosen according to the rule of divergent
eries:

(1.4) Y an=00, @y >0, ap—0,

n=0
In Hilbert spaces this method is trandormed into:

un

(1.5 " =Py 2" — Q7
[u|| g

] , u'e€df(z™), n=12,..,
where P, is a metric projection operator.

A convergence nature and asymptotica behaviour of the approximations {z" }
are defined, basically, by a structure of the functional f(x). Its smoothness has an
influence, mainly, on the estimates of the convergence rate and on the chose rule of
the stepsizes a,,. So, if the functional f(x) is uniformly conve, i.e,

Of (@) — 0f(y), z — y) > ¥(|z —ylB), Vo,y €B,

where ¢(t) is a continuous podtive function and v (0) = 0, then M isa sngleton,
i.e, M = {z*}, and any sequence of iteraes generated by (1.3), (1.4) and Sarted
from any initial point 2! € B converges strongly to {x*} [2].
In the more generd Stuation of arbitrary convex functionds f(x), when the
inequaity
(0f(x) — 0f (y),z —y) >0, Va,y € B,
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takes place, M is not necessarily a singleton and the strong convergence of {z"}
can not be ensured. However, wesk convergence is supported by the following
important inequdliity:

(Of (z),x —a*) > f(z) — f*, Yx € B, Vz* € M.

First the wesk convergence in Hilbert space (= strong convergence in R™) of
the sequence {z"} generated by

16) z"™ =2"—a,f' ("), @ an a2, a,ax=oconst., n=1,2, ..,

has been proved in [3] for the convex functionals of the dass C'! (the gradient
f'(x) of the functiond f(z) sdisfies the Lipschitz condition). For the functionds
of thedass C1#, 0 < u < 1 (the gradient f/(x) satisfies the Holder condition), it
was conddered the modification of (1.6) in the form

" =2 — o | f (@) (@), 0< e an
ai, a2 =const., n=1,2,....

Recently in [6] and [7], wesk convergence of the iterations (1.3), (1.4) was
investigated for nonsmoath convex functionals in Hilbert spaces and Banach spaces
with modulus of convexity dg(e) > Dé, D = cong. > 0. In addition to divergence
condition of the series (1.4), we suggested that

[eS)
2

E a,, < 00.

n=0

Besides we have obtained in [7] the smilar result in arbitrary uniformly convex
and uniformly smooth Banach spaces for the Cesaro averages {v™} of {z"} which
are defined by the formula

m —1 m
"= ( E an) E apz”,
n=0

n=0

under the condition
(L.7) > pp(an) < oo.
n=0

The aim of this paper is to get rid of the condition (1.7), i.e, to consider a
convergence of the Cesaro average for the method (1.3), (1.4). We also establish
convergence of this kind for the iterative method with the metric projection Pq in
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a Banach gpace. This dgorithm is of the following form: having ™, a current
goproximation to the solution of (1.1), (1.2), compute

i J(CL‘n _ jn)
18) 2+l = Joyn, yn = Jan — “ 2 =1,2,..
( ) z y I y x Qn ||'an||B* + “$n —:I_:nHB Y n y < Y

where
" = Polz"], u" € of(z"),
and J isa normalized dud ity mapping. If B isthe Hilbert pace H, then

g W g T T = 1,2
v “”(Hanuf e =2 ) TS

if Q= H, then

un
2 =g g, — WO, n=12,....

Wealso study a stability of the weak convergence for the iterations (1.3) and (1.8)
under perturbations of the functional and its subgradient. The methods constructed
in this paper are gpplied not only to the problems with potentid (subgradient) maps:
more general case of variational inequalities with arbitrary nonsmooth monotone
operatorsis investigated in Section 4.

2. METRICAND GENERALIZED PROJECTIONS AND T HEIR PROPERTIES

Let J: B — B* bethe normalized dudity mapping determined by the equdities:
(Jz, 2) = |Jalllz] = [|=[?,

where || - || and || - || denote normsin B and B*, respectively. Similarly, J* will
denote the normdized dudity mapping from B* to B. From (i) it follows that
J* = J71, where J~! is the inverse operator to J. Therefore, JJ* = Ip- and
J*J = Ip. In a Hilbert space H, J is the identity operéor, i.e, J = Iy. Other
properties of the mgpping J ae summarized in [2]. In particular, the following
datement holds:

Theorem 2.1. Forall x € Band £ € B,
20%0g(|lz —€[|/2C)  (Jz—JE,x—€)  2C%pp(4l|lz —£||/C),

where

C = /(l=[? +11€]1?) /2.
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fllzll Rand ||§] R, then
(2L)'R*0p(|lx — &ll/2R)  (Jz— J§ 2~ &)

2.1)

where 1 < L < 3.18 is the constant from the Figiel inequalities [13].

Thisisan andytica formulation of the wdl-known fact that a normdized duality
mapping is a uniformly monotone (resp. uniformly continuous) operator on each
bounded set in a uniformly convex (resp. uniformly smooth) Banach space.

The construction of the generalized projection operators 7, in Banach spaces
was introduced in [2] by andog to metric projections in Hilbert space.

Definition 2.2. The operator Pq : B — Q) C B is called a metric projection
operator if it assigns to each x € B its nearest point € 2, i.e., the solution T for
the minimization problem

22 — || = inf ||z — £||.
@2) 2=l = inf o — €]

In our conditions the metric projection operator iswell-defined, i.e, there exi s
aunique projection  for each x € B called the best gpproximetion.
It is obvious that
Po=1, if Q=H.

The following properties make metric projection operator P, essentially effective
in Hilbert gpaces
a) Py isfixed at each point &, i.e, Ph& =¢.
b) P, is monotone (accretive) in H, i.e,
(i‘—gj,x—y) = 0.

c) The point z is the metric projection of x on Q C H if and only if the
following inequality is saisfied:

(z—z,2—-&) >0, VE € Q.

We cdl the property C) the basic variational principle for Po in H.
d) The operaor Pq produces an absolutdy best approximation of eech z € H
reldive to the functional Vi (z, &) = ||z — £||%;, in the sense that

1z —&lf Mo —&lE - lle —2lF,  VeeQ

Consequently, Py is the conditionally nonexpansive operaor relative to the func-
tiond Vi(x,€) = ||lz — £||* in Hilbert space, i.e,



328 Ya. |. Alber

& lz—&la  llz—¢&la
In redity, the metric projection operator Pn in Hilbert (and only in Hilbert)
gpaces has a stronger property of nonexpansiveness:

1z =9l e —-yla,  Ve,yeH

It is important to emphasize that the metric projection operator P, has no the
properties b), d) and €) in Banach spaces.
The minimization problem (2.2) is equivaent to

lo—z|* = grelg‘/i(a?, £), Vi(z,€) =|lz—¢|>

Now we notice that Vi(x, £) can be consdered not only as the square of the
distance between points x and £ but also as the Lyapunov functional with respect
to ¢ with fixed z. Therefore, we can rewrite (2.2) in the form

Pox=1m; z:Vi(x,z)= inf Vi(x,§).
e

In Hilbert (and only in Hilbert) spaces,

Vi(z,€) = [|zlff — 2(z, &) + [I€]I7-

We have shown in [2] that one can construct similar functionds in Banach
gpaces usng the Young-Fenchd trangormation.

Let f(&) : B — R be agiven functiond and ¢ € B*. Recall that the Young-
Fenchd transformation is defined by the reation

f(p) = sup{(p,&) — f(E)}-

{eB

Under that the functional f* () is called conjugate to f(£). Obviously,

VI(@,8) = f* (@) = (0, ) + f(§) >0

The functional V' (¢, ¢) : B* x B — R* is nonstandard because it is defined on
both the dements £ from the primary space B and elements ¢ from the dud space
B*.

Let us introduce the functiond V' (¢,£) : B* x B — R by the formula (see [1,
2)):

(2.3) Ve, &) = llgll — 2(p, &) + [I€1I%.

It is easy to see that
V(p,€) > (llell« — lIEID* >0,
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i.e, the functiond V(p,¢) : B* x B — R* is nonnegative. Moreover, setting
¢ = J*p and using the definition of normdized dudity mapping, we obtain the
equality
lell? = 20, T*¢) + |T7*¢]2 = 0.
Thus
s = sup{2(p,€) — lI€17}
¢eB

is the Young-Fenchel transformation and f*(p) = 47| ¢||? is conjugate to f(£) =
I€|?. We describe main properties of the functiond V (i, €):
1 V(p,§) iscontinuous and differentiable with regect to ¢ and &.
2. grad,V(p, &) =2(J* ¢ — §) and grad;V (e, &) = 2(JE — ).
3. V(p,€) isconvex with respect to ¢ (resp. ) when £ (re. ) is fixed.
4 (lell« = lEM? Ve, &) (el + lIElD>.
5 V(p,&) >0, Va,& € B,and V(p, &) = 0 if and only if ¢ = J&.
6. V(p,&) — o if ||| = oo orfand ||¢|| — oo, and vice versa
Now we can present the generdized projection operator in Banach spaces [1,
2.

Definition 2.3. Operator mq : B* — Q) C B is called the generalized projec-
tion operator if it associates to an arbitrary fixed point o € B* the minimum point
of the functional V (p,£), i.e., solution to the minimization problem

=¢; ¢:V(p,¢) =inf V(p,§).
map =& @: V(e @) = inf V(e.£)
@ € Q C B is then called a generalized projection of the point .

Existence and uniqueness of the operaor w, follow from the properties of the
functiond V' (¢, &) and strict monotonicity of the map J.
It is not difficult to prove that

mo=J", if Q=B5B.

Denote o1 = map1, @2 = mawe and et & be any point intheset 2 C B. Next,
we describe the properties of the operator g similar to @)-€) in a uniformly convex
and uniformly smooth Banach space.

f) The operaor 7 is J-fixed in each point £ € €, i.e, moJ¢ = &.

g) mq ismonctone in B*, i.e, for dl 1,2 € B*,

(p1 — 2,1 — ¢2) > 0.

h) The point @ € 2 is ageneralized projection of ¢ on 2 C B if and only if
the following inequdity is satisfied:

(p—Jp,p—E& >0, Ve
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The property h) isthe basic variational principle for mq inthedud couple (B, B*).
j) The operator 7o, produces an absolutely best gpproximation of ¢ € B* rdative
to functiond V' (¢, £), that is

Consequently, 7o is the conditionally nonexpansive operaor reative to the func-
tional V (¢, £) in Banach spaces, i.e,

K)V(Jg,&) V(e &)
Namely, these properties make generalized projection operators essentidly ef-
fective in uniformly convex and uniformly smooth Banach spaces.

3. CONVERGENCE AND STABILITY ANALYSISFOR OPTIMIZATION PROBLEMS

First of dl, we consider the case when the modulus of convexity of the space
B is such tha

(3.2) dp(€) > De?
for some constant D > 0, and the modulus of amoothness pp(7) is arbitrary. This
assumption holds, for example, if B are Lebegue spaces [P, LP and Sobolev spaces

Wh, for p e (1,2].
We need the following lemma

Lemma 3.1. Let {un}, {an}, {6}, {7}, n = 0,1, ..., be nonnegative real
numbers satisfying the recurrvent inequality

(32 Hnt1l  Pn — OB +n.

Assume that o, > 0, Y 075 ap, = 00 and

(3.3 lim 2% = 0.
n—00 Qu,
Then
neg O On

Wm = —0, &8 m— oo

> o On

Proof. By iterdions, we have from (3.2)

3.4 an:o anfn  p1+ Zgzo Yn
(34) ™ m :
Zn:O Qn Zn:O Qn
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We claim that

(35) 2ot
ZnZO Qn

Indeed, given an arbitrary € > 0, by virtue of (3.3), there exists N > 0 such that
forall n> N,

as m — 00.

Yn
(070

6?

and for any m > N,
S €Y an
n=N n=N

It follows from the lag inequality that

N
Z:?:o Tn an) Vn + Z?:N—i-l n
n=0n _ 2
2n=00n SN jan+ 5T oL o

N
Y on=0Tn T Do N1 T
Z?:NH On

N
Zn:O Tn +e Z;,nzl\_f—i-l Qn
D oneN+1 O

N
_ Zn:O n
- m
Zn:N +1 Qn,

It is dear that there exists sufficiently large N > 0 such that for all m > N,

+ €.

N
ano Tn

m _ 67
Zn:N+1 Qn

and then m
—Z,’,LL:O Tn 2€.
anO Qn

This proves the daim. The whole satement is obtained from (3.4). [ ]
We goply this lemma in order to prove the following statement.

Theorem 3.2. Let f : B — R be a convex functional, 2 be a convex closed
set. Suppose that the conditions (i)-(iii) hold, and (V) the intersection of 2 with
any level set of f bounded. Let {x™} be any sequence of iterates generated by
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(1.3), (1.4) and let {v™} be the sequence of its Cesaro averages. It follows that
limy, 00 f(v™) = f* and all weak accumulation points of {v™} belong to the
solution set M. In particular, if M is a singleton, i.e., M = {x*}, then {v"™}
converges weakly to x*.

Proof. Firg of al, let us observe that the boundedness of the sequence {z"}
follows from [5] by reason of (iii), (iv) and (3.1). Then it is clear tha the Cesaro
averages are alo bounded, i.e,

(3.6) lv™] Ci = const.

Denote ¢ = Ja™ — apu™/||[u™||«. With this definition, we have 2"+ = mq[p"]
and
lp™ = Ja"|[« = an.

Tekeany z* € M. By the properties of the functiond V' (¢, z*) (see (2.3)), one gets
V(g™ x*) V(Jx",z") +2(e" — Ja™, J'e" — ™).
Further from the property j) of the generdized projections wq, we conclude that
V(Jz" 2N V().
Hence
(3.7 V(Jz" T 2Y)  V(Ja",x¥) +2(p" — Ja, T " — ).
We now use the convexity condition of f(x) and Theorem 2.1:
(o™ — Ja™, J5gh — z*)
= (p" = Jax™ ™ — x*) + (p" — Ja, J " — z™)

On n .n * n n o pk,.n * n
:_W<u y L _m>+<90 —Jz >J90 —JJx >
- Hun”H* (f(z") = %)+ C*(|T*o" ||, [|7* Tz o= (4lle™ — Tz"|./C)

where

C = C([l"llw [l 1) = /(™12 + llz[12) /2.
Thus, (3.7) yidds

(38 V(Ja" 2" V(Ja",2") =2t (f(a") = f*)+ 2C2pp. (40, /C).

([
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Since dp(e) > De?, D > 0, then pp+(t) D172, Dy > 0 [13]. Combining the
last relation with (3.8), we obtain

(070

V(Jz" T 2 V(Ja",2*) -2 (fz™) — f*)+ 32D102.

[ |«
Obvioudy, from the property (ii) and boundedness of the sequence {z"}, it follows
|u"]]  C2, and then
3.9) V(") V(JZ,z*) — 20, o (f(2) — f*) + 32D12.
It is not difficult to see that (3.9) is the inequdity of type (3.2), where u,, =
V(Jz™, x*), and
lim In _ hm 16CoD1 vy, = 0.

n—00 (y,

In this case, Lemma 3.11 gives
b ol fE) = 1)
Zn 0%n
Provided tha f(z) is a convex functional, we estimate eesily
(zn 0O ) S g0 (a")
Dm0 O > 0 On

We have now for the Cesaro averages v™:

om) - o= (oo _pe Zaggoel&)_

a8 m — oQ.

Zn—o Qn n=0 on
m n) _ f£x
= Znogc}gq'f(xa) f ) :wm_>07 & m— Q.
n=0 “n

It follows thet lim,, ., f(v™) = f*. Let v be any wesk accumul&ion point
of {v™} (it existsin view of (3.6), and {v™*} be any subsequence which weakly
converges to v. Findly, the wesk lower semicontinuity of convex functionds gives

f(o)  Timinf f(u™) = T ") = /"

Thus, the set of weak accumulation points of {v"} iscontanedin M. Itisobviously
thet if M is a singleton then the whole sequence {v™} converges weskly to z*.
The theorem is accomplished. [ ]

It is well-known that a Hilbert space H is uniformly convex and uniformly
gmooth, and that [4]

2
o 6H (6) %7
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i.e, (3.1) issaisfied. Therefore the following cordllary is valid.

Corollary 3.3. Let H be a Hilbert space, f : B — R be a convex functional,
Q be a convex closed set. Suppose that the conditions (i1)-(V) hold (see Theorem
3.2). Let {z™} be any sequence of iterates generated by (1.5), (1.4) and let {v™}
be the sequence of its Cesaro averages. It follows that lim,, ... f(v"™) = f* and
all weak accumulation points of {v™} belong to the solution set M. In particular,
if M is a singleton, i.e., M = {x*}, then {v"™} converges weakly to x*.

Remark 3.4. If in addition to the conditions of this corallary > >° a2 < oo,
then {v™} converges weakly to some z* € M.

Further we omit the condition §(e) > De?, D > 0, i.e, assumetha B isan
arbitrary uniformly convex and uniformly smooth Banach space. At the same time,
we raise the stronger daimsto the set Q.

Theorem 3.5. Let f: B — R be a convex functional, €} be a convex closed
bounded set. Suppose that the conditions (1)-(ii) hold. Let {z'} be any sequence
of iterates generated by (1.3), (1.4) and let {v"™} be the sequence of its Cesaro
averages. Then all the conclusions of Theorem 3.2 are valid.

Proof. It follows from the assumptions of this theorem tha M = (). Since
2™ € Qfor al n > 1, ™ are bounded, say, by R;. Without lost of generdity, we
can condder oy, @. In this case we obtain

l™ls [Tz« +an  Rit+a |2"|+an Rit+a=R

and
C=C(lle"[l+ |z")  max {R1, R} = R.

From the property (ii), we get again that |[u"||«  Ca. Findly, usng the edimate
(2.2) one can write analogous to (3.9):

(310) V(Jaztl z*)  V(Ja" z*)—205  an(f(x™) — f*) +2LR?pp- (4an/R).
Recall that the pace B is uniformly smooth if and only if

'OBT(T)—W as 7—0.

This dlows us to apply Lemma 3.1 because (up to constants):

(3.11) o pBOn) 0 s s e
[07% Qp,

The rest of the proof follows the pattern of Theorem 3.2, [ ]
We recdl that {z™} will be a bounded sequence of the iterates above if
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1) Qis abounded st (consequently, M is not empty);
2) > ol pB+(an) < oo and M isnot empty;

3) dp(€) > De?, D = const. > 0 and the intersection of Q with any level set of
f s bounded.

Therefore in the sequd, for more generdity, we prefer to suppose that {z"} is
apriori abounded sequence. The following theorem holds for the method (1.8).

Theorem 3.6. Let B be a uniformly smooth and uniformly convex Banach
space f : B — R be a convex functional, and §) be a convex closed set. Let {x"}
be any bounded sequence of the iterates generated by (1.8), (1.4) and let {v™} be
the sequence of {Z"} Cesaro averages. It follows that lim,, ... f(v"™) = f* and
all weak accumulation points of {v™} belong to the solution set M. In particular,
if M = {z*} then {v"™} converges weakly to z*.

We omit the proof of thistheorem, and note only that the inequality of type (3.8)
is obtained from the reations (see [7]):

V(J2 " 2*)  V(Jz",x*) + (Je — g2 e — o)
=V(J2" z*) + (Jx" T — Ja" 2™ — 7)
+ (Ja T — Ja 7" — o) + (J2 T — Ja 2T - ),

To invedigate the stability of the iterations (1.3), (1.4), let us denote by o, f(x)
an e-subdifferentid of f(z) & = € B, that is,

Ocf(x) ={w e B*: fly)— f(z) > (w,y —z) — ¢, for dl y € B}.

Condder the perturbed iterative method

n

(3.12 M =rq J2"— ap——

=12,..
Hw"H* 7” » < )

where w" € 0, f(2") is an arbitrary e,-subgradient of f(z) at 2" € B.

Theorem 3.7. Let B be a uniformly convex and uniformly smooth Banach
space, f : B — R be a convex functional, and ) be a convex closed set. Let
{z"} be any bounded sequence of the iterates 2" generated by (3.12), (1.4) and
let {v™} be the sequence of its Cesdaro averages. If €, — 0, it follows that
limy, o0 (V™) = f* and all weak accumulation points of {v™} belong to the
solution set M. In particular, if M is a singleton then {v™} converges weakly to

T*.
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Proof. Instead of the inequdity (3.10), we get
V(J2"Ta*) V(I a%) — 205 Lo (F(2") — ) + 205 tanen,
+2LR?pp-(4an /R).
Now in Lemma 3.1,

Yo = 2C5  anen + 2LR?pp+ (4an/R).

It is dear that
%—m, & ¢,—0 and o, —0.
Together with (3.11) this is enough for the condudon of the theorem. [ |

The condition €, — 0 in Theorem 3.7 is the weskest requirement among those
that guarantee stability of thewesk convergencein optimization problems. Notefor a
comparison that in the corregponding theorems of [6, 7], for weak convergence of x™
to x*, we have needed one additiond condition, namdy, €,,  ua,, for some p > 0.
We cdl readers' dtention to the fact tha ¢,, in (3.12) describe perturbations of the
functional f(x) in the points z™. Bdow in Section 4, we invedigate another variant
— perturbaions of subgradients in the points z", and more generd perturbations of
the monotone operators in variational inequdlities.

Remark 3.8. Smilarly to Lemma 3.1, one can obtain the assertion that if

then

Let lim,,— o €, = €. Then Theorem 3.7 givesin this case the following limit-relation:

lim f(v™) f*+e

m—0o0

4. CONVERGENCE AND STABILITY ANALYSISFOR VARIATIONAL INEQUALITIES

Up to now, we dedt just with potential operators which were the subgradients
of convex functionals We next consder the more generd problem of solving the
vaiational inequdities

4.1 (Az,x —2*) >0, 5 €Q, Ve,
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with nonsmooth and monotone (not necessary potential) operators A. Variational
inequdities allow usto investigate, in the framework of a sngle scheme, such prob-
lems as constrained and uncongrained minimization problems, operator equations,
convex-concave minimax problems, evolution equations, etc.

Definition 4.1. The element x* € 2 such that for all x € Q) and for all z € Ax,
(z,x —2*) >0
will be called the solution of the variational inequality (4.1).

We gudy the iterative process

n
4.2 " =nq J2" - anH;LTH} , uteAx™, n=1,2,..,
where
4.3 Zan =00, ap >0, a, —0.
n=0

Theorem 4.2. Suppose that B is a uniformly convex and uniformly smooth
Banach space, A : D(A) C B — B* is a monotone and bounded operator (i.e.,
it carries bounded sets from D(A) into bounded sets of B*), Q) is a convex closed
set, 0 C [ D(A) [8]. Let {x"} be any bounded sequence of iterates generated by
4.2), (4.3) and let {v™} be the sequence of its Cesaro averages. It follows that
1) a solution x* of the variational inequality (4.1) exists, possible nonunique;

2) all weak accumulation points of {v™} belong to the solution set M. If M is a
singleton, then {v™} converges weakly to x*.

Proof. Firg of dl, let us observe that the sequence {«"} is bounded, for
example, if  is bounded or Y77 pp+(ay) < oo ad M is nonempty. Denote
¢" = Jaz" — auu”/||u"||x. Then similarly to Theorem 3.5, we have for all y €
Qu" e Ax" :

V(Jz" Tt y)  V(J2" y) — 20ty (w”, 2" —y) +2LR?pp+ (40, /R),
where ||z"|] R and |[u"|| C.And now we can write
@4) an(u™,y —2") > 2710V (Jx" T y) — V(Jx",y)) — CLR? pp+ (4ow /R).
Let z € Ay. Then by the monotonicity of the operator A, (4.4) gives

an(z,y — ™) > 271 C(V(Jz" L, y) — V(J2™, y)) — CLR?pp-(4an/R).
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Snce V(Jz",y) > 0 for dl y € €, one can obtain the following esimate for the
Cesiro averages:

L1V (T2t y) 221 pB-(4an/R)
(z,y —v™) > —27'C—5~"" —CLR ™ -
21 QG 21 (679

If {v™} has awesk limit, then (3.5), (3.11) and (4.3) imply

Jim (5, =0™) = 2y = Jim o) > 0
Thesequence {v™} isbounded because {z™} isbounded. Therefore, thereexids
a subseguence {v"% } which converges weskly to z. By virtue of the convexity and
cdoseness of €2, all v™ bedong to 2 and the limit d ement z dso belongs to 2. In
this case,
(z,y— lim v"™) = (z,y—%) >0, Vy € Q.

mj—>oo
This means that z is the solution of (4.1), i.e, £ = z*. If 2™ is unique, then the
whole sequence {v™} converges weakly to z*. The theorem is proved. [ |

Remark 4.3. We showed that if the iterative sequence (4.2) is bounded then
the variational inequdity (4.1) has a solution. The contrary assertion is unknown
in general. However, the boundedness of eech iterative sequence in [3, 5, 6, 7]
was obtained provided that a solution of the corresponding problem exists (see dso
Section 3).

Remark 4.4. In Theorem 4.2, in redlity, it is sufficent to demand for the
operator A to be bounded only on the bounded sequence {z"}.

Corollary 4.5. Under the conditions of Theorems 4.2, if M = () then the
sequence {xy} is unbounded.

Consider now the stability of the iterations

n

w
(4.5 2 =g T —ap——
[«

, whe Ahnn o n=1,2, ..,

for the perturbed variationd inequality (4.1), where A™ 2" are perturbed vaues of
the operator A in the points 2", and h,, is perturbation parameter. Suppose for
smplicity tha A and A"~ are maximal monotone (possibly multivalued) operators
[9, 16], and D(Ah") = D(A) forall hy,, > 0. Besides, we assume that the following
proximity estimate is given:

(4.6) Hp(S", 5" (1" Dk, O ha b,
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where Hp- (Q1, Q2) is the Haudorff digance between the sets 1 and @2 in the
space B* (ses, for example, [8]), S and S~ are the ranges of the operators A and
AP in 27 respectively. Let, findly, the function ¢(t) in (4.6) be continuous and
nondecreasng for all ¢ > 0, and bounded on bounded sets. The following result is
proved according to the scheme of the previous Theorems 3.7 and 4.2.

Theorem 4.6. Suppose that all conditions of Theorem 4.2 for the iterative
process (4.5), (4.3) and all assumptions above for the operators A and A are
satisfied. If hy, — 0, then the assertions 1), 2) of this theorem are valid.

Remark 4.7. In the theorems above, the iterations (4.2) can be replaced by
e =7 [J2" — aut], Wt € A2, n=1,2, ...,
provided thet the sequence {z"} is bounded.

So, we proved the week convergence and dability of the average iterations v™
for finding soluti ons of the variaiond inequdity (4.1) with the monotone (possibly)
non-potential operator A. Let us emphasize for comparison thet, in generd, the
origind iteraions x™, generated by (4.2), (4.3) (or (4.2), (4.3) and (1.7)) do not
converge for this problem even weakly.

Remark 4.8. The method (1.8) for the variaiond inequality (4.1) isconsidered
by the same way.

Remark 4.9. All resultsof this Sectionarecarried out for vari ational inequalities
with an arbitrary “right-hand part” f € B*

(Ax — f,x—2*) >0, 2* €, Vxe.

The proof method of Theorem 4.2 can be applied to the problem of finding fixed
points of the nonexpansive operator A : 2 — 2 in Hilbert and Banach spaces [ 14].
The iterative process is given by the formula

@.7 2" = (1 —ap)2"™ + apdz™, n=1,2,...,
where «,, obey therule (4.3) and 0 < «,, 1. Obviously, (4.7) is equivalent to
4.8) " =" — 0, T2", n=12,..,

withT = I — A. Recd | that the fixed point z* is asolution of the equetion T'z* = 0.
Since A is nonexpansive, the operator T': 2 — H is accretive [9], and it sdtisfies
the Lipschitz condition. It is essy to seethat if 2! € Q then dl 2™ € Q and we do
not need any projection operator in (4.8).
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The parameters «;, in Theorems 4.2 tend to 0 because this theorem has been
intended for genera nonsmooth case. Therefore, the weak convergence of v™ to
a fixed point «* is also obtained when a,, — 0. However, the snooth (Lipschitz)
operators dlow to use the constant o, = « in the iterative method (4.8) in order to
get average wesk convergence or even weak convergence of the origina sequence
{z"}, but in the framework of a different approach. Such stronger results were
obtained in [11, 17, 18, 19].

In concluson, let us make several general remarks.

Remark 4.10. We showed above tha every time when M is a sSngleton,
{v™} converges weskly to z*. Otherwise, one asserts the following: if J is a
Sguentidly weakly continuous operator (on some bounded set containing {v™})
and V(Ju™,z*) has alimit a m — oo for any z* € M, then {v"} is weakly
convergent to a point in M.

Remark 4.11. In finite-dimensona Hilbert and Banach spaces the theorems
above asrt a grong convergeence of the Cesaro averaged gpproximations to solu-
tions of the corresponding variational problems
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