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ON AVERAGE CONVERGENCE OF THE ITERATIVE
PROJECTION METHODS

Ya. I. Alber

Abstract. We study the iterative subgradient methods for nonsmooth con-
vex constrained optimization problems in a uniformly convex and uniformly
smooth Banach space, followed by metric and generalized projections onto
the feasible sets. The normalized stepsizes ® n are chosen apriori, satisfying
the conditions

P1
n=0 ®n = 1, ® n ! 0: We prove that the every sequence

generated in this way is weakly convergent to a minimizer in the average if the
problem has solutions. In addition, we show that the perturbed ²n-subgradient
method is stable when ²n ! 0: More general case of variational inequalities
with monotone (possibly) nonpotential operators is also considered.

1. INTRODUCTION

We investigate the following optimization problem:

f(x) !min;(1.1)

s.t. x 2 ­ ;(1.2)

where f(x) : B !R is a convex in general, nondifferential functional, and ­ is a
nonempty convex closed subset of Banach space B. Denote @f(x) the subdifferen-
tial of f(x) at x 2B, that is,

@f(x) = fu 2 B¤ : f(y) ¡ f(x) ¸ hu; y ¡ xi for all y 2 B:g
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and u 2 @f(x) an arbitrary subgradient of f(x) at x 2 B. Here, hÁ; xi denotes the
dual product (the bilinear functional of duality) between x 2 B and Á 2B¤; where
B¤ is the dual space of B.

Let ±B(²) and ½B(¿) be the modulus of convexity and modulus of smoothness
of the Banach space B, respectively (see, for instance, [2, 15]). Suppose that
( i ) B is a uniformly convex and uniformly smooth (reflexive) Banach space;
( ii ) @f(x) is a bounded operator from B to B¤ , i.e. it carries bounded sets from

B into bounded sets of B¤;
(iii) the set M of solutions of the problem (1.1) and (1.2) is not empty.

Let us note that B¤ is also a uniformly convex and uniformly smooth (reflexive)
Banach space [12].

In this paper, the normalized iterative method

xn+1 = ¼­

·
Jxn ¡ ® n

un

kunk¤

¸
; un 2 @f(xn); n= 1;2; : : : ;(1.3)

is studied, where ¼­ is a generalized projection operator, J is a duality mapping
(see Section 2) and the stepsizes f®ng are chosen according to the rule of divergent
series:

1X

n=0

® n =1; ®n > 0; ®n ! 0:(1.4)

In Hilbert spaces, this method is transformed into:

xn+1 = P­

·
xn ¡ ®n

un

kunkH

¸
; un 2 @f(xn); n= 1;2; :::;(1.5)

where P­ is a metric projection operator.
A convergence nature and asymptotical behaviour of the approximations fxng

are defined, basically, by a structure of the functional f(x): Its smoothness has an
influence, mainly, on the estimates of the convergence rate and on the chose rule of
the stepsizes ® n: So, if the functional f(x) is uniformly convex, i.e.,

h@f(x) ¡ @f(y); x ¡ yi ¸ Ã (kx ¡ ykB); 8x;y 2B;

where Ã (t) is a continuous positive function and Ã (0) = 0; then M is a singleton,
i.e., M = fx¤g; and any sequence of iterates generated by (1.3), (1.4) and started
from any initial point x1 2 B converges strongly to fx¤g [2].

In the more general situation of arbitrary convex functionals f(x); when the
inequality

h@f(x) ¡ @f(y);x ¡ yi ¸ 0; 8x;y 2 B;
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takes place, M is not necessarily a singleton and the strong convergence of fxng
can not be ensured. However, weak convergence is supported by the following
important inequality:

h@f(x);x ¡ x¤i ¸ f(x) ¡ f ¤; 8x 2 B; 8x¤ 2M:

First the weak convergence in Hilbert space (= strong convergence in Rn) of
the sequence fxng generated by

xn+1 = xn ¡ ®nf
0(xn); a1 · ®n · a2; a1; a2 = const:; n= 1; 2; :::;(1.6)

has been proved in [3] for the convex functionals of the class C1;1 (the gradient
f0(x) of the functional f(x) satisfies the Lipschitz condition). For the functionals
of the class C1;¹ ; 0 < ¹ < 1 (the gradient f0(x) satisfies the Hölder condition), it
was considered the modification of (1.6) in the form

xn+1 =xn ¡ ®nkf 0(xn)k¹=(¹+1)f 0(xn); 0 < a1 · ®n · a2;

a1; a2 = const:; n = 1; 2; ::: :

Recently in [6] and [7], weak convergence of the iterations (1.3), (1.4) was
investigated for nonsmooth convex functionals in Hilbert spaces and Banach spaces
with modulus of convexity ±B(²) ¸ D²2; D = const. > 0: In addition to divergence
condition of the series (1.4), we suggested that

1X

n=0

®2
n <1:

Besides, we have obtained in [7] the similar result in arbitrary uniformly convex
and uniformly smooth Banach spaces for the Cesàro averages fvmg of fxng which
are defined by the formula

vm :=

µ mX

n=0

®n

¶ ¡ 1 mX

n=0

® nx
n;

under the condition
1X

n=0

½B¤ (®n) <1:(1.7)

The aim of this paper is to get rid of the condition (1.7), i.e., to consider a
convergence of the Cesàro average for the method (1.3), (1.4). We also establish
convergence of this kind for the iterative method with the metric projection P­ in
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a Banach space. This algorithm is of the following form: having xn, a current
approximation to the solution of (1.1), (1.2), compute

(1.8) xn+1 = J¤yn; yn = Jxn ¡ ®n

µ
¹un

k¹unkB¤
+2

J(xn ¡ ¹xn)

kxn ¡ ¹xnkB

¶
; n = 1; 2; :::;

where
¹xn = P­ [xn]; ¹un 2 @f(¹xn);

and J is a normalized duality mapping. If B is the Hilbert space H, then

xn+1 = xn ¡ ®n

µ
¹un

k¹unkH
+ 2

xn ¡ ¹xn

kxn ¡ ¹xnkH

¶
; n= 1; 2; :::;

if ­ = H , then

xn+1 = xn ¡ ®n
un

kunkH
; un 2 @f(xn); n= 1;2; ::: :

We also study a stability of the weak convergence for the iterations (1.3) and (1.8)
under perturbations of the functional and its subgradient. The methods constructed
in this paper are applied not only to the problems with potential (subgradient) maps:
more general case of variational inequalities with arbitrary nonsmooth monotone
operators is investigated in Section 4.

2. METRIC AND GENERALIZED PROJECTIONS AND THEIR PROPERTIES

Let J : B ! B¤ be the normalized duality mapping determined by the equalities:

hJx; xi = kJxk¤kxk = kxk2;

where k ¢k and k ¢k¤ denote norms in B and B¤, respectively. Similarly, J ¤ will
denote the normalized duality mapping from B¤ to B. From (i) it follows that
J¤ = J ¡ 1; where J¡ 1 is the inverse operator to J. Therefore, JJ¤ = IB¤ and
J¤J = IB: In a Hilbert space H, J is the identity operator, i.e., J = IH . Other
properties of the mapping J are summarized in [2]. In particular, the following
statement holds:

Theorem 2.1. For all x 2 B and » 2 B,

2C2±B(kx ¡ »k=2C) · hJx ¡ J»; x ¡ »i · 2C2½B(4kx ¡ »k=C);

where
C =

p
(kxk2 + k»k2)=2:
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If kxk · R and k»k · R; then

(2L)¡ 1R2±B(kx ¡ »k=2R)· hJx ¡ J»; x ¡ »i
· 2LR2½B(4kx ¡ »k=R);

(2.1)

where 1 < L < 3:18 is the constant from the Figiel inequalities [13].

This is an analytical formulation of the well-known fact that a normalized duality
mapping is a uniformly monotone (resp. uniformly continuous) operator on each
bounded set in a uniformly convex (resp. uniformly smooth) Banach space.

The construction of the generalized projection operators ¼­ in Banach spaces
was introduced in [2] by analog to metric projections in Hilbert space.

Definition 2.2. The operator P­ : B ! ­ ½ B is called a metric projection
operator if it assigns to each x 2 B its nearest point ¹x 2 ­ ; i.e.; the solution ¹x for
the minimization problem

kx ¡ ¹xk = inf
»2­

kx ¡ »k:(2.2)

In our conditions, the metric projection operator is well-defined, i.e., there exists
a unique projection ¹x for each x 2B called the best approximation.

It is obvious that
P­ = I; if ­ = H:

The following properties make metric projection operator P­ essentially effective
in Hilbert spaces.

a) P­ is fixed at each point », i.e., P­ » = »:
b) P­ is monotone (accretive) in H , i.e.,

(¹x ¡ ¹y;x ¡ y) ¸ 0:

c) The point ¹x is the metric projection of x on ­ ½ H if and only if the
following inequality is satisfied:

(x ¡ ¹x; ¹x ¡ ») ¸ 0; 8» 2 ­ :

We call the property c) the basic variational principle for P­ in H.
d) The operator P­ produces an absolutely best approximation of each x 2 H

relative to the functional V1(x; ») = kx ¡ »k2H , in the sense that

k¹x ¡ »k2H · kx ¡ »k2H ¡ kx ¡ ¹xk2H ; 8» 2 ­ :

Consequently, P­ is the conditionally nonexpansive operator relative to the func-
tional V1(x; ») = kx ¡ »k2 in Hilbert space, i.e.,
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e) k¹x ¡ »kH · kx ¡ »kH :
In reality, the metric projection operator P­ in Hilbert (and only in Hilbert)

spaces has a stronger property of nonexpansiveness:

k¹x ¡ ¹ykH · kx ¡ ykH ; 8x;y 2 H:

It is important to emphasize that the metric projection operator P­ has no the
properties b), d) and e) in Banach spaces.

The minimization problem (2.2) is equivalent to

kx ¡ ¹xk2 = inf
»2­

V1(x; »); V1(x;») = kx ¡ »k2:

Now we notice that V1(x; ») can be considered not only as the square of the
distance between points x and » but also as the Lyapunov functional with respect
to » with fixed x. Therefore, we can rewrite (2.2) in the form

P­ x = ¹x; ¹x : V1(x; ¹x) = inf
»2­

V1(x; »):

In Hilbert (and only in Hilbert) spaces,

V1(x;») = kxk2H ¡ 2(x;») + k»k2H :

We have shown in [2] that one can construct similar functionals in Banach
spaces using the Young-Fenchel transformation.

Let f(») : B ! R be a given functional and ' 2 B¤ : Recall that the Young-
Fenchel transformation is defined by the relation

f ¤(') = sup
»2B

fh';»i ¡ f(»)g:

Under that the functional f¤(') is called conjugate to f(»). Obviously,

V f(';») = f ¤(') ¡ h';»i+ f(») ¸ 0

The functional V f('; ») : B¤ £ B ! R+ is nonstandard because it is defined on
both the elements » from the primary space B and elements ' from the dual space
B¤.

Let us introduce the functional V (';») : B¤ £ B !R by the formula (see [1,
2]):

V (';») = k'k2
¤ ¡ 2h'; »i+ k»k2:(2.3)

It is easy to see that
V (';») ¸ (k'k¤ ¡ k»k)2 ¸ 0;
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i.e., the functional V (';») : B¤ £ B ! R+ is nonnegative. Moreover, setting
» = J ¤' and using the definition of normalized duality mapping, we obtain the
equality

k'k2¤ ¡ 2h'; J¤'i+ kJ¤'k2¤ = 0:

Thus
k'k2¤ = sup

»2B
f2h';»i ¡ k»k2g

is the Young-Fenchel transformation and f¤(') = 4¡ 1k'k2¤ is conjugate to f(») =
k»k2. We describe main properties of the functional V (';»):
1. V (';») is continuous and differentiable with respect to ' and ».
2. grad'V ('; ») = 2(J¤'¡ ») and grad»V (';») = 2(J» ¡ '):
3. V (';») is convex with respect to ' (resp. ») when » (resp. ') is fixed.
4. (k'k¤ ¡ k»k)2 · V (';») · (k'k¤ + k»k)2:
5. V (';») ¸ 0; 8x;» 2 B; and V ('; ») = 0 if and only if ' = J»:
6. V (';») !1 if k»k ! 1 or/and k'k ! 1; and vice versa.

Now we can present the generalized projection operator in Banach spaces [1,
2].

Definition 2.3. Operator ¼­ : B¤ ! ­ ½ B is called the generalized projec-
tion operator if it associates to an arbitrary fixed point ' 2 B¤ the minimum point
of the functional V (';»); i.e.; solution to the minimization problem

¼­' = ~'; ~' : V ('; ~') = inf
»2­

V (';»):

~' 2 ­ ½ B is then called a generalized projection of the point '.

Existence and uniqueness of the operator ¼­ follow from the properties of the
functional V (';») and strict monotonicity of the map J:

It is not difficult to prove that

¼­ = J¤; if ­ = B:

Denote ~'1 = ¼­ '1; ~'2 = ¼­ '2 and let » be any point in the set ­ ½ B. Next,
we describe the properties of the operator ¼­ similar to a)-e) in a uniformly convex
and uniformly smooth Banach space.

f) The operator ¼­ is J -fixed in each point » 2 ­ , i.e., ¼­ J» = »:
g) ¼­ is monotone in B¤ , i.e., for all '1;'2 2 B¤,

h'1 ¡ '2; ~'1 ¡ ~'2i ¸ 0:

h) The point ~' 2 ­ is a generalized projection of ' on ­ ½ B if and only if
the following inequality is satisfied:

h' ¡ J ~'; ~'¡ »i ¸ 0; 8» 2 ­ :
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The property h) is the basic variational principle for ¼­ in the dual couple (B;B¤):
j) The operator ¼­ produces an absolutely best approximation of ' 2B¤ relative

to functional V ('; »), that is,

V (J ~'; ») · V (';») ¡ V ('; ~'):

Consequently, ¼­ is the conditionally nonexpansive operator relative to the func-
tional V ('; ») in Banach spaces, i.e.,

k) V (J ~';») · V ('; »):
Namely, these properties make generalized projection operators essentially ef-

fective in uniformly convex and uniformly smooth Banach spaces.

3. CONVERGENCE AND STABILITY ANALYSIS FOR OPTIMIZATION PROBLEMS

First of all, we consider the case when the modulus of convexity of the space
B is such that

±B(²) ¸ D²2(3.1)

for some constant D> 0, and the modulus of smoothness ½B(¿) is arbitrary. This
assumption holds, for example, if B are Lebegue spaces lp, Lp and Sobolev spaces
W

p
m for p 2 (1,2].

We need the following lemma.

Lemma 3.1. Let f¹ng; f® ng; f¯ng; f°ng; n = 0;1; :::; be nonnegative real
numbers satisfying the recurrent inequality

¹n+1 · ¹n ¡ ®n¯n + °n:(3.2)

Assume that ®n > 0;
P1

n=0 ®n =1 and

lim
n!1

°n
®n

= 0:(3.3)

Then

!m =

Pm
n=0 ®n¯nPm
n=0 ®n

! 0; as m!1:

Proof. By iterations, we have from (3.2)
Pm

n=0 ®n¯nPm
n=0 ®n

· ¹1 +
Pm

n=0 °nPm
n=0® n

:(3.4)
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We claim that
Pm

n=0 °nPm
n=0 ®n

! 0; as m!1:(3.5)

Indeed, given an arbitrary ² > 0; by virtue of (3.3), there exists ¹N > 0 such that
for all n ¸ ¹N;

°n
®n

· ²;

and for any m ¸ ¹N,
mX

n= ¹N

°n · ²

mX

n= ¹N

® n:

It follows from the last inequality that

Pm
n=0 °nPm
n=0 ® n

=

P ¹N
n=0 °n +

Pm
n= ¹N+1 °nP ¹N

n=0® n +
Pm

n= ¹N+1 ®n

·
P ¹N

n=0°n +
Pm

n= ¹N+1 °nPm
n= ¹N+1 ®n

·
P ¹N

n=0°n + ²
Pm

n= ¹N+1 ®nPm
n= ¹N+1 ®n

=

P ¹N
n=0 °nPm

n= ¹N+1 ® n
+ ²:

It is clear that there exists sufficiently large N > 0 such that for all m >N,
P ¹N

n=0 °nPm
n= ¹N+1® n

· ²;

and then Pm
n=0 °nPm
n=0® n

· 2²:

This proves the claim. The whole statement is obtained from (3.4).

We apply this lemma in order to prove the following statement.

Theorem 3.2. Let f : B ! R be a convex functional; ­ be a convex closed
set. Suppose that the conditions (i)-(iii) hold; and (iv) the intersection of ­ with
any level set of f bounded. Let fxng be any sequence of iterates generated by
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(1.3), (1.4) and let fvmg be the sequence of its Cesàro averages. It follows that
limm!1 f(vm) = f ¤ and all weak accumulation points of fvmg belong to the
solution set M . In particular; if M is a singleton; i.e.; M = fx¤g; then fvmg
converges weakly to x¤.

Proof. First of all, let us observe that the boundedness of the sequence fxng
follows from [5] by reason of (iii), (iv) and (3.1). Then it is clear that the Cesàro
averages are also bounded, i.e.,

kvmk · C1 = const:(3.6)

Denote 'n = Jxn ¡ ®nun=kunk¤. With this definition, we have xn+1 = ¼­ ['n]
and

k'n ¡ Jxnk¤ = ® n:

Take any x¤ 2M: By the properties of the functional V ('; x¤) (see (2.3)), one gets

V ('n;x¤) · V (Jxn;x¤) +2h'n ¡ Jxn; J¤'n ¡ x¤i:

Further from the property j) of the generalized projections ¼­ ; we conclude that

V (Jxn+1; x¤) · V ('n;x¤):

Hence

V (Jxn+1; x¤) · V (Jxn;x¤) +2h'n ¡ Jxn;J¤'n ¡ x¤i:(3.7)

We now use the convexity condition of f(x) and Theorem 2.1:

h'n ¡ Jxn; J¤'n ¡ x¤i
= h'n ¡ Jxn;xn ¡ x¤i+ h'n ¡ Jxn; J¤'n ¡ xni

= ¡ ®n
kunk¤

hun;xn ¡ x¤i+ h'n ¡ Jxn; J¤'n ¡ J ¤Jxni

· ¡ ®n
kunk¤

(f(xn) ¡ f ¤) + C2(kJ ¤'nk; kJ ¤Jxnk)½B¤ (4k'n ¡ Jxnk¤=C)

= ¡ ®n
kunk¤

(f(xn) ¡ f ¤) + C2½B¤ (4® n=C);

where
C = C(k'nk¤;kxnk) =

p
(k'nk2¤ + kxnk2)=2:

Thus, (3.7) yields

V (Jxn+1;x¤) · V (Jxn;x¤) ¡ 2
®n

kunk¤
(f(xn) ¡ f¤)+ 2C2½B¤ (4®n=C):(3.8)
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Since ±B(²) ¸ D²2;D > 0; then ½B¤ (¿) · D1¿
2; D1 > 0 [13]. Combining the

last relation with (3.8), we obtain

V (Jxn+1;x¤) · V (Jxn;x¤) ¡ 2
®n

kunk¤
(f(xn) ¡ f¤)+ 32D1®

2
n:

Obviously, from the property (ii) and boundedness of the sequence fxng; it follows
kunk · C2; and then

V (Jxn+1;x¤) · V (Jxn;x¤) ¡ 2C¡ 1
2 ®n(f(xn) ¡ f ¤) + 32D1®

2
n:(3.9)

It is not difficult to see that (3.9) is the inequality of type (3.2), where ¹n =
V (Jxn; x¤); and

lim
n!1

°n
®n

= lim
n!1 16C2D1® n = 0:

In this case, Lemma 3.11 gives

!m =

Pm
n=0® n(f(xn) ¡ f¤)Pm

n=0® n
! 0; as m!1:

Provided that f(x) is a convex functional, we estimate easily

f

µ Pm
n=0 ®nx

n

Pm
n=0 ®n

¶
·
Pm

n=0® nf(xn)Pm
n=0® n

:

We have now for the Cesàro averages vm:

f(vm) ¡ f ¤ = f

µ Pm
n=0® nxnPm
n=0® n

¶
¡ f ¤ ·

Pm
n=0 ®nf(x

n)Pm
n=0 ®n

¡ f ¤

=

Pm
n=0 ®n(f(xn) ¡ f¤)Pm

n=0 ®n
= !m ! 0; as m!1:

It follows that limm!1 f(vm) = f¤ . Let v be any weak accumulation point
of fvmg (it exists in view of (3.6), and fvmkg be any subsequence which weakly
converges to v. Finally, the weak lower semicontinuity of convex functionals gives

f(v) · liminf
k!1

f(vmk) = lim
m!1

f(vm) = f¤ :

Thus, the set of weak accumulation points of fvmg is contained in M . It is obviously
that if M is a singleton then the whole sequence fvmg converges weakly to x¤.
The theorem is accomplished.

It is well-known that a Hilbert space H is uniformly convex and uniformly
smooth, and that [4]

²2

8
· ±H(") · ²2

4
;
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i.e., (3.1) is satisfied. Therefore, the following corollary is valid.

Corollary 3.3. Let H be a Hilbert space; f : B ! R be a convex functional,
­ be a convex closed set. Suppose that the conditions (ii)-(iv) hold (see Theorem
3.2). Let fxng be any sequence of iterates generated by (1.5), (1.4) and let fvmg
be the sequence of its Cesàro averages. It follows that limm!1 f(vm) = f ¤ and
all weak accumulation points of fvmg belong to the solution set M. In particular;
if M is a singleton; i.e.; M = fx¤g; then fvmg converges weakly to x¤ .

Remark 3.4. If in addition to the conditions of this corollary
P1

n=0®
2
n < 1,

then fvmg converges weakly to some x¤ 2M .

Further we omit the condition ±B(²) ¸ D²2; D > 0; i.e., assume that B is an
arbitrary uniformly convex and uniformly smooth Banach space. At the same time,
we raise the stronger claims to the set ­ :

Theorem 3.5. Let f : B ! R be a convex functional; ­ be a convex closed
bounded set. Suppose that the conditions (i)-(ii) hold. Let fxig be any sequence
of iterates generated by (1.3), (1.4) and let fvmg be the sequence of its Cesàro
averages. Then all the conclusions of Theorem 3.2 are valid.

Proof. It follows from the assumptions of this theorem that M 6= ;. Since
xn 2 ­ for all n ¸ 1, xn are bounded, say, by R1. Without lost of generality, we
can consider ®n · ¹®: In this case we obtain

k'nk¤ · kJxnk¤ + ® n · R1 + ¹® · kxnk+ ®n · R1 + ¹® = R

and
C = C(k'nk¤;kxnk) · max fR1; Rg = R:

From the property (ii), we get again that kunk¤ · C2: Finally, using the estimate
(2.1) one can write analogous to (3.9):

(3.10) V (Jxn+1;x¤) · V (Jxn; x¤)¡ 2C¡ 1
2 ®n(f(xn)¡ f ¤)+2LR2½B¤ (4®n=R):

Recall that the space B is uniformly smooth if and only if

½B(¿)

¿
! 0 as ¿ ! 0:

This allows us to apply Lemma 3.1 because (up to constants):

°n
®n

=
½B¤ (®n)

® n
! 0 as n!1:(3.11)

The rest of the proof follows the pattern of Theorem 3.2.

We recall that fxng will be a bounded sequence of the iterates above if
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1) ­ is a bounded set (consequently, M is not empty);
2)

P1
n=0 ½B¤ (® n) <1 and M is not empty;

3) ±B(²) ¸ D²2, D = const. > 0 and the intersection of ­ with any level set of
f is bounded.

Therefore in the sequel, for more generality, we prefer to suppose that fxng is
apriori a bounded sequence. The following theorem holds for the method (1.8).

Theorem 3.6. Let B be a uniformly smooth and uniformly convex Banach
space f : B ! R be a convex functional; and ­ be a convex closed set. Let fxng
be any bounded sequence of the iterates generated by (1.8), (1.4) and let fvmg be
the sequence of f¹xng Cesàro averages. It follows that limm!1 f(vm) = f¤ and
all weak accumulation points of fvmg belong to the solution set M . In particular;
if M = fx¤g then fvmg converges weakly to x¤.

We omit the proof of this theorem, and note only that the inequality of type (3.8)
is obtained from the relations (see [7]):

V (Jxn+1;x¤) · V (Jxn;x¤) + hJxn+1 ¡ Jxn;xn+1 ¡ x¤i

= V (Jxn;x¤) + hJxn+1 ¡ Jxn;xn ¡ ¹xni

+ hJxn+1 ¡ Jxn; ¹xn ¡ x¤i+ hJxn+1 ¡ Jxn; xn+1 ¡ xni:

To investigate the stability of the iterations (1.3), (1.4), let us denote by @²f(x)
an ²-subdifferential of f(x) at x 2B, that is,

@²f(x) = fw 2B¤ : f(y)¡ f(x) ¸ hw; y ¡ xi ¡ ²; for all y 2Bg:

Consider the perturbed iterative method

zn+1 = ¼­

·
Jzn ¡ ®n

wn

kwnk¤

¸
; n = 1;2; :::;(3.12)

where wn 2 @²nf(zn) is an arbitrary ²n-subgradient of f(x) at zn 2B.

Theorem 3.7. Let B be a uniformly convex and uniformly smooth Banach
space; f : B ! R be a convex functional; and ­ be a convex closed set. Let
fzng be any bounded sequence of the iterates zn generated by (3.12), (1.4) and
let fvmg be the sequence of its Cesàro averages. If ²n ! 0; it follows that
limm!1 f(vm) = f ¤ and all weak accumulation points of fvmg belong to the
solution set M. In particular; if M is a singleton then fvmg converges weakly to
x¤.
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Proof. Instead of the inequality (3.10), we get

V (Jzn+1;x¤) · V (Jzn;x¤)¡ 2C¡ 1
2 ®n(f(zn)¡ f ¤) +2C¡ 1

2 ® n²n

+2LR2½B¤ (4®n=R):

Now in Lemma 3.1,

°n = 2C¡ 1
2 ®n²n + 2LR2½B¤ (4® n=R):

It is clear that
°n
®n

! 0; as ²n ! 0 and ®n ! 0:

Together with (3.11) this is enough for the conclusion of the theorem.

The condition ²n ! 0 in Theorem 3.7 is the weakest requirement among those
that guarantee stability of the weak convergence in optimization problems. Note for a
comparison that in the corresponding theorems of [6, 7], for weak convergence of xn
to x¤ ; we have needed one additional condition, namely, ²n · ¹®n for some ¹ > 0.
We call readers’ attention to the fact that ²n in (3.12) describe perturbations of the
functional f(x) in the points xn: Below in Section 4, we investigate another variant
– perturbations of subgradients in the points xn; and more general perturbations of
the monotone operators in variational inequalities.

Remark 3.8. Similarly to Lemma 3.1, one can obtain the assertion that if

lim
n!1

°n
® n

= !;

then
lim
n!1

!m = lim
n!1

Pm
n=0 ®n¯nPm
n=0 ®n

· !:

Let limn!1 ²n = ²: Then Theorem 3.7 gives in this case the following limit-relation:

lim
m!1

f(vm) · f ¤ + ²:

4. CONVERGENCE AND STABILITY ANALYSIS FOR VARIATIONAL INEQUALITIES

Up to now, we dealt just with potential operators which were the subgradients
of convex functionals. We next consider the more general problem of solving the
variational inequalities

hAx;x ¡ x¤i ¸ 0; x¤ 2 ­ ; 8x 2 ­ ;(4.1)
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with nonsmooth and monotone (not necessary potential) operators A: Variational
inequalities allow us to investigate, in the framework of a single scheme, such prob-
lems as: constrained and unconstrained minimization problems, operator equations,
convex-concave minimax problems, evolution equations, etc.

Definition 4.1. The element x¤ 2 ­ such that for all x 2 ­ and for all z 2 Ax;

hz;x ¡ x¤i ¸ 0

will be called the solution of the variational inequality (4.1).

We study the iterative process

xn+1 = ¼­

·
Jxn ¡ ®n

un

kunk¤

¸
; un 2 Axn; n = 1;2; :::;(4.2)

where
1X

n=0

®n =1; ® n > 0; ® n ! 0:(4.3)

Theorem 4.2. Suppose that B is a uniformly convex and uniformly smooth
Banach space; A : D(A) ½ B ! B¤ is a monotone and bounded operator (i.e.;
it carries bounded sets from D(A) into bounded sets of B¤); ­ is a convex closed
set; ­ ½

R
D(A) [8]. Let fxng be any bounded sequence of iterates generated by

(4.2), (4.3) and let fvmg be the sequence of its Cesàro averages. It follows that
1) a solution x¤ of the variational inequality (4.1) exists; possible nonunique;
2) all weak accumulation points of fvmg belong to the solution set M . If M is a
singleton, then fvmg converges weakly to x¤.

Proof. First of all, let us observe that the sequence fxng is bounded, for
example, if ­ is bounded or

P1
n=0 ½B¤ (®n) < 1 and M is nonempty. Denote

'n = Jxn ¡ ®nu
n=kunk¤. Then similarly to Theorem 3.5, we have for all y 2

­ ;un 2 Axn :

V (Jxn+1; y) · V (Jxn; y) ¡ 2C¡ 1®nhun; xn ¡ yi+2LR2½B¤ (4®n=R);

where kxnk · R and kunk · C: And now we can write

®nhun; y ¡ xni ¸ 2¡ 1CV (Jxn+1; y) ¡ V (Jxn; y))¡ CLR2½B¤ (4®n=R):(4.4)

Let z 2 Ay: Then by the monotonicity of the operator A; (4.4) gives

®nhz;y ¡ xni ¸ 2¡ 1C(V (Jxn+1; y) ¡ V (Jxn; y)) ¡ CLR2½B¤ (4® n=R):
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Since V (Jxn; y) ¸ 0 for all y 2 ­ ; one can obtain the following estimate for the
Cesàro averages:

hz; y ¡ vmi ¸ ¡ 2¡ 1C
V (Jx1; y))Pm

1 ® n
¡ CLR2

Pm
1 ½B¤ (4®n=R)Pm

1 ® n
:

If fvmg has a weak limit, then (3.5), (3.11) and (4.3) imply

lim
m!1

hz; y ¡ vmi= hz;y ¡ lim
m!1

vmi ¸ 0:

The sequence fvmg is bounded because fxng is bounded. Therefore, there exists
a subsequence fvmjg which converges weakly to ~x: By virtue of the convexity and
closeness of ­ , all vmj belong to ­ and the limit element ~x also belongs to ­ . In
this case,

hz;y ¡ lim
mj!1

vmj i = hz; y ¡ ~xi ¸ 0; 8y 2 ­ :

This means that ~x is the solution of (4.1), i.e., ~x = x¤ . If x¤ is unique, then the
whole sequence fvmg converges weakly to x¤. The theorem is proved.

Remark 4.3. We showed that if the iterative sequence (4.2) is bounded then
the variational inequality (4.1) has a solution. The contrary assertion is unknown
in general. However, the boundedness of each iterative sequence in [3, 5, 6, 7]
was obtained provided that a solution of the corresponding problem exists (see also
Section 3).

Remark 4.4. In Theorem 4.2, in reality, it is sufficient to demand for the
operator A to be bounded only on the bounded sequence fxng:

Corollary 4.5. Under the conditions of Theorems 4.2, if M = ; then the
sequence fxng is unbounded.

Consider now the stability of the iterations

zn+1 = ¼­

·
Jzn ¡ ® n

wn

kwnk¤

¸
; wn 2 Ahnzn; n= 1;2; :::;(4.5)

for the perturbed variational inequality (4.1), where Ahnzn are perturbed values of
the operator A in the points zn; and hn is perturbation parameter. Suppose for
simplicity that A and Ahn are maximal monotone (possibly multivalued) operators
[9, 16], and D(Ahn) = D(A) for all hn ¸ 0: Besides, we assume that the following
proximity estimate is given:

HB¤ (Sn; Shn) · ³(kznk)hn; 0 · hn · ¹h;(4.6)



On Average Convergence of the Iterative Projection Methods 339

where HB¤ (Q1; Q2) is the Hausdorff distance between the sets Q1 and Q2 in the
space B¤ (see, for example, [8]), Sn and Shn are the ranges of the operators A and
Ahn in zn; respectively. Let, finally, the function ³(t) in (4.6) be continuous and
nondecreasing for all t ¸ 0; and bounded on bounded sets. The following result is
proved according to the scheme of the previous Theorems 3.7 and 4.2.

Theorem 4.6. Suppose that all conditions of Theorem 4.2 for the iterative
process (4.5), (4.3) and all assumptions above for the operators A and Ahn are
satisfied. If hn ! 0; then the assertions 1), 2) of this theorem are valid.

Remark 4.7. In the theorems above, the iterations (4.2) can be replaced by

xn+1 = ¼­ [Jxn ¡ ®nu
n] ; un 2 Axn; n = 1; 2; :::;

provided that the sequence fxng is bounded.

So, we proved the weak convergence and stability of the average iterations vm

for finding solutions of the variational inequality (4.1) with the monotone (possibly)
non-potential operator A: Let us emphasize for comparison that, in general, the
original iterations xn; generated by (4.2), (4.3) (or (4.2), (4.3) and (1.7)) do not
converge for this problem even weakly.

Remark 4.8. The method (1.8) for the variational inequality (4.1) is considered
by the same way.

Remark 4.9. All results of this Section are carried out for variational inequalities
with an arbitrary “right-hand part” f 2 B¤

hAx ¡ f; x ¡ x¤i ¸ 0; x¤ 2 ­ ; 8x 2 ­ :

The proof method of Theorem 4.2 can be applied to the problem of finding fixed
points of the nonexpansive operator A : ­ ! ­ in Hilbert and Banach spaces [14].
The iterative process is given by the formula:

xn+1 = (1 ¡ ®n)xn + ® nAx
n; n = 1;2; :::;(4.7)

where ®n obey the rule (4.3) and 0 < ® n · 1. Obviously, (4.7) is equivalent to

xn+1 = xn ¡ ®nTx
n; n= 1;2; :::;(4.8)

with T = I ¡ A: Recall that the fixed point x¤ is a solution of the equation Tx¤ = 0.
Since A is nonexpansive, the operator T : ­ ! H is accretive [9], and it satisfies
the Lipschitz condition. It is easy to see that if x1 2 ­ then all xn 2 ­ and we do
not need any projection operator in (4.8).
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The parameters ®n in Theorems 4.2 tend to 0 because this theorem has been
intended for general nonsmooth case. Therefore, the weak convergence of vm to
a fixed point x¤ is also obtained when ® n ! 0. However, the smooth (Lipschitz)
operators allow to use the constant ®n = ® in the iterative method (4.8) in order to
get average weak convergence or even weak convergence of the original sequence
fxng; but in the framework of a different approach. Such stronger results were
obtained in [11, 17, 18, 19].

In conclusion, let us make several general remarks.

Remark 4.10. We showed above that every time when M is a singleton,
fvmg converges weakly to x¤. Otherwise, one asserts the following: if J is a
sequentially weakly continuous operator (on some bounded set containing fvmg)
and V (Jvm;x¤) has a limit as m ! 1 for any x¤ 2 M , then fvmg is weakly
convergent to a point in M .

Remark 4.11. In finite-dimensional Hilbert and Banach spaces, the theorems
above assert a strong convergeence of the Cesàro averaged approximations to solu-
tions of the corresponding variational problems.
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