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ON SOME SUFFICIENT CONDITIONS FOR STARLIKENESS OF
ORDER α IN Cn

Ming-Sheng Liu and Yu-Can Zhu

Abstract. In this paper, we obtain some new sufficient conditions for star-
likeness of order α of biholomorphic mappings on the unit ball in Cn or a
complex Hilbert space X by using differential inequalities. We also obtain a
distortion theorem and a covering theorem. As their special case, we obtain
some sufficient conditions for starlikeness of order α of analytic functions on
the unit disc in the complex plane C , which generalize some results of P. T.
Mocanu and G. Oros.

1. INTRODUCTION

Let H be the class of functions of the form

f(z) = z +
+∞∑
k=2

akz
k

which are analytic on the unit disk U = {z ∈ C; |z| < 1}. By S∗(α) we denote
the class of starlike functions of order α in U , where 0 ≤ α < 1. It is obvious that
f ∈ S∗(α) if and only if f(z) ∈ H satisfies

Re
zf ′(z)
f(z)

> α, for all z ∈ U.

Suppose that n,m, j, k and l are positive integers, and let Cn be the space of
n complex variables z = (z1, z2, · · · , zn) with the usual inner product 〈z, w〉 =
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∑n
j=1 zjwj and Euclidian norm ‖z‖ =

√〈z, z〉. Let N (Bn) be the class of map-
pings f(z) = (f1(z), · · · , fn(z)), z = (z1, · · · , zn) ∈ Cn, which are holomorphic
on the unit ball Bn = {z ∈ Cn : ‖z‖ < 1} with values in Cn. A mapping
f ∈ N (Bn) is said to be locally biholomorphic on Bn if f has a locally inverse at
each point z ∈ Bn or, equivalently, if the first Fréchet derivative

Df(z) =
(
∂fj(z)
∂zk

)
1≤j,k≤n

is nonsingular at each point in Bn .
The second Fréchet derivative of a mapping f ∈ N (Bn) is a symmetric bilinear

operator D2f(z)(·, ·) on Cn ×Cn, and D2f(z)(z, ·) is the linear operator obtained
by restricting D2f(z) to {z} ×Cn. The matrix representation of D2f(z)(b, ·) is

D2f(z)(b, ·) =
( n∑

l=1

∂2fj(z)
∂zk∂zl

bl

)
1≤j,k≤n

,

where f(z) = (f1(z), · · · , fn(z)), b = (b1, · · · , bn) ∈ Cn. The norm of n × n

complex matrix A is defined by

‖A‖ = sup
‖z‖≤1

‖Az‖.

If f ∈ N (Bn), then for every k = 1, 2, · · · , there exists a bounded sym-
metric k-linear map Dkf(0) : Cn × Cn × · · · × Cn → Cn such that f(z) =∑∞

k=0
1
k!D

kf(0)(zk) for z ∈ Bn, where D0f(0)(z0) = f(0) and Dkf(0)(zk) =
Dkf(0)(z, z, · · · , z).

LetHm(Bn) denote the subclass of N (Bn) consisting of mappings f , which are
local biholomorphic and f(z) = z +

∑∞
k=m+1

1
k!D

kf(0)(zk). Hm(B1) is denoted
by Hm(∆).

The class of biholomorphic starlike mappings f on Bn with f(0) = 0 is denoted
by S∗(Bn). Then f ∈ S∗(Bn) if and only if f is local biholomorphic such that

Re〈Df(z)−1f(z), z〉 > 0

for all z ∈ Bn − {0}(see [8, Theorem 1]).
We now define

S∗(α, Bn) =
{
f ∈ H1(Bn) :

∣∣∣∣ 1
‖z‖2 〈Df(z)−1f(z), z〉 − 1

2α

∣∣∣∣ < 1
2α for all

z ∈ Bn − {0}
}

for 0 < α < 1 and S∗(0, Bn) ≡ S∗(Bn). P. Curt [1] and G. Kohr [2] called
the biholomorphic mapping f ∈ S∗(α, Bn) starlike of order α. Let S∗

m(α, Bn) ≡
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S∗(α, Bn) ∩Hm(Bn) for 0 ≤ α < 1. It is obvious that S∗(α, B1) ≡ S∗(α) and
S∗

m(α, Bn) ⊂ S∗(α, Bn) ≡ S∗
1(α, Bn) ⊂ S∗(Bn) for 0 ≤ α < 1.

In order to derive our main results, we need the following lemma.

Lemma 1. Suppose that w : Bn(r) → Cn is a holomorphic mapping with
w(z) =

∑∞
k=m+1

1
k!D

kw(0)(zk). If the point z0 ∈ Bn(r)− {0} satisfies

‖w(z0)‖ = max
‖z‖≤‖z0‖<r

‖w(z)‖,

then there exists a real number t ≥ m+ 1 such that

(1.1) 〈Dw(z0)(z0), w(z0)〉 = t‖w(z0)‖2.

Proof. Let ψ(ξ) = 〈w( ξ
‖z0‖z0), w(z0)〉, ξ ∈ C, then ψ(ξ) =

∑∞
k=m+1 akξ

k is
analytic on the disc U = {ξ : |ξ| < r} and

|ψ(‖z0‖)| = max
|ξ|≤‖z0‖

|ψ(ξ)|.

By Lemma A of [5], we obtain that there exists a real number t ≥ m+ 1 such
that

‖z0‖ψ′(‖z0‖) = tψ(‖z0‖).
Since

ψ′(‖z0‖) =
〈
Dw(z0)(

z0
‖z0‖), w(z0)

〉
and ψ(‖z0‖) = ‖w(z0)‖2,

hence (1.1) holds, and the proof is complete.

Remark 1. In the case r = 1 and m = 0, the result of Lemma 1 was obtained
by P. Liczberski [3].

2. MAIN RESULTS

Theorem 1. Suppose that Reλ < m+ 1 or Imλ �= 0 and α ∈ [0, 1), and let

(2.1) R(λ) =

{ |m+ 1 − λ|, Reλ < m+ 1,

|Imλ|, Reλ ≥ m+ 1, Imλ �= 0,

and

(2.2) N = N (λ, α) =




√
1− 2α√

(|λ|+R(λ))2+1−2α
, 0≤α ≤ 1

|λ|+R(λ)+2
,

1 − α

|λ|+R(λ)+α
,

1
|λ|+R(λ)+2

< α<1.
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If f ∈ Hm(Bn) satisfies the inequality

(2.3) ‖‖z‖2(Df(z)(u)− u) − λ〈u, z〉(f(z)− z)‖ ≤M‖z‖2

for all z ∈ Bn and all ||u|| = 1, where M = R(λ)N (λ, α), then f ∈ S∗
m(α, Bn).

Proof. Let q(z) = f(z) − z. Then q(z) =
∑∞

k=m+1
1
k!D

kq(0)(zk) ∈ N (Bn)
and

(2.4) Df(z)(z)− λf(z) + (λ− 1)z = Dq(z)(z)− λq(z).

Setting u = z
||z|| in (2.3) for z ∈ B−{0}, using (2.4) and noting q(0) = 0 , we

have

(2.5) ‖Dq(z)(z)− λq(z)‖ ≤M‖z‖.

for all z ∈ Bn.
Now we prove that ‖q(z)‖ < N for all z ∈ Bn.
If it is not true, then there exists a point z0 ∈ Bn − {0} such that

(2.6) N = ‖q(z0)‖ = max
‖z‖≤‖z0‖<1

‖q(z)‖.

Since

(2.7) 〈Dq(z0)(z0) − λq(z0), q(z0)〉 = 〈Dq(z0)(z0), q(z0)〉 − λ‖q(z0)‖2,

according to Lemma 1 and (2.5)–(2.7), there exists a real number t ≥ m + 1 such
that√

(t− Reλ)2 + (Imλ)2N 2 = |t−λ|N 2 ≤ ‖Dq(z0)(z0)−λq(z0)‖‖q(z0)‖ ≤MN‖z0‖.

When Reλ < m+ 1, we obtain

(2.8)
√

(t− Reλ)2 + (Imλ)2 ≥
√

(m+ 1 − Reλ)2 + (Imλ)2 = |m+ 1 − λ|

for t ≥ m+ 1.
When Reλ ≥ m+ 1 and Imλ �= 0, we obtain

(2.9)
√

(t− Reλ)2 + (Imλ)2 ≥ |Imλ|

for t ≥ m+ 1.
From (2.1), (2.8) and (2.9), we have

(2.10) R(λ)N 2 ≤MN‖z0‖ < MN.
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This leads to M = R(λ)N < M , which is a contradiction. Hence we conclude
that ‖q(z)‖ < N for all z ∈ Bn. According to Schwarz’s Lemma, we have

(2.11) ‖q(z)‖ ≤ N‖z‖m+1 for all z ∈ Bn.

From (2.3), we have

‖‖z‖2Dq(z)(u)− λ〈u, z〉q(z)‖ ≤M ||z||2 for z ∈ Bn, ‖u‖ = 1.

It follows that

(2.12)

‖Dq(z)‖ ≤ sup
‖u‖≤1

{‖Dq(z)(u)‖}

≤ sup
‖u‖≤1

{∥∥∥Dq(z)(u)− λ〈u, z〉 q(z)||z||2
∥∥∥ + |λ| ‖q(z)‖||z||2 |〈u, z〉|

}

≤M + |λ|N ||z||m ≤M + |λ|N = M1,

where M1 = (|λ|+R(λ))N . Let w(z) = Df(z)−1f(z). Then by (2.12), we have

(2.13)
‖q(z) + z −w(z)‖ = ‖Df(z)w(z)−w(z)‖ = ‖Dq(z)w(z)‖

≤ ‖Dq(z)‖‖w(z)‖ ≤M1‖w(z)‖

for all z ∈ B.
In the following, we split into two cases to prove.

Case 1. When α = 0,

(2.14) N = N (λ, 0) =
1√

(|λ|+R(λ))2 + 1
.

Suppose that f is not in S∗(0, Bn) = S∗(Bn), then there exists a point z1 ∈
Bn − {0} such that Re〈w(z1), z1〉 = 0. From (2.13), we have

(2.15) ‖q(z1) + z1 − w(z1)‖ ≤M1‖w(z1)‖.

Claim 1.

(2.16) ‖z1 −w(z1)‖ −N‖z1‖ ≥M1‖w(z1)‖.

It is equivalent to

(2.17) ‖z1‖2 + ‖w(z1)‖2 = ‖z1 − w(z1)‖2 ≥ [N‖z1‖ +M1‖w(z1)‖]2.
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From (2.17), we obtain

(2.18) (1 −N 2)‖z1‖2 + [1−M2
1 ]‖w(z1)‖2 − 2M1N‖z1‖‖w(z1)‖ ≥ 0.

Note that N 2 +M2
1 = 1, the inequality (2.16) is equivalent to

M2
1 ‖z1‖2 +N 2‖w(z1)‖2 − 2M1N‖z1‖‖w(z1)‖ = [M1‖z1‖ −N‖w(z1)‖]2 ≥ 0.

Hence the claim (2.16) is established.
Using (2.16) and (2.11), we obtain

‖q(z1)+z1−w(z1)‖ ≥ ‖z1−w(z1)‖−N‖z1‖m+1 > ‖z1−w(z1)‖−N‖z1‖ ≥M1‖w(z1)‖,
which contradicts (2.15). Hence f ∈ S∗

m(Bn).

Case 2. When 0 < α < 1. Let h(z) = 2αDf(z)−1f(z) − z, We shall prove
that ‖h(z)‖ < ‖z‖ for all z ∈ Bn − {0}. If not, then there exists a point z2 ∈ Bn

such that ‖h(z2)‖ = ‖z2‖, it follows that

(2.19) Re〈w(z2), z2〉 = α‖w(z2)‖2 and ‖w(z2)‖ ≤ 1
α
‖z2‖.

Claim 2.

(2.20) ‖z2 −w(z2)‖ −N‖z2‖ ≥M1‖w(z2)‖.
This inequality is equivalent to

(2.21) (1 −N 2)‖z2‖2 + [1− 2α−M2
1 ]‖w(z2)‖2 − 2M1N‖z2‖‖w(z2)‖ ≥ 0.

If ‖w(z2)‖ = 0, then the inequality holds. If ‖w(z2)‖ > 0, then from (2.19), we
have ‖z2‖

‖w(z2)‖ ≥ α. According to (2.21), we have

x2 + 1 − 2α ≥ [M1 +Nx]2,

where x = ‖z2‖
‖w(z2)‖ . Hence the inequality (2.20) is equivalent to

(2.22) N ≤
√
x2 + 1 − 2α

|λ|+R(λ) + x
.

for x ≥ α.
Let ϕ(x) =

√
x2+1−2α

|λ|+R(λ)+x for x ≥ α. Then

(2.23) ϕ′(x) =
(|λ|+ R(λ))x− 1 + 2α√

x2 + 1 − 2α(|λ|+ R(λ) + x)2
.
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Taking ϕ′(x) = 0, we conclude that x0 = 1−2α
|λ|+R(λ)

.
If 0 ≤ α ≤ 1

|λ|+R(λ)+2
, then x0 ≥ α. Therefore

(2.24) min
x≥α

ϕ(x) = ϕ(x0) =
√

1 − 2α√
(|λ|+R(λ))2 + 1 − 2α

= N (λ, α).

If 1
|λ|+R(λ)+2 < α < 1, then x0 < α. Therefore

(2.25) min
x≥α

ϕ(x) = ϕ(α) =
1 − α

|λ|+ R(λ) + α
= N (λ, α).

Hence the claim (2.20) is established.
Using (2.20) and (2.11), we obtain

‖q(z2) + z2 −w(z2)‖ ≥ ‖z2 − w(z2)‖ −N‖z2‖m+1

> ‖z2 −w(z2)‖ −N‖z2‖ ≥M1‖w(z2)‖,

which contradicts (2.13). Hence ‖2αDf(z)−1f(z)−z‖ < ‖z‖ for all z ∈ Bn−{0}.
Thus we conclude that∣∣∣∣ 1

‖z‖2
〈Df(z)−1f(z), z〉 − 1

2α

∣∣∣∣ =
1

2α‖z‖2

∣∣∣∣〈2αDf(z)−1f(z) − z, z〉
∣∣∣∣

≤ 1
2α‖z‖2

‖2αDf(z)−1f(z) − z‖ · ‖z‖ < 1
2α

for all z ∈ Bn − {0}. Hence we obtain that f(z) ∈ S∗
m(α, Bn), and the proof is

complete.
Setting n = 1 in Theorem 1, we obtain the following corollary.

Corollary 1. Suppose that Reλ < m + 1 or Imλ �= 0, α ∈ [0, 1) and
M = R(λ)N (λ, α), where R(λ) and N = N (λ, α) are defined by (2.1) and (2.2),
respectively. If f ∈ Hm(∆) satisfies the inequality∣∣∣∣f ′(z) − λ

f(z)
z

+ λ− 1
∣∣∣∣ ≤M

for all z ∈ U , then f ∈ S ∗(α).

Remark 2. Corollary 1 generalizes Theorem 2.1 in [7] and Theorem 2.2 in
[4], where λ is a real number in Theorem 2.1 of [7] and Theorem 2.2 of [4].

Setting λ = 0 in Theorem 1, we have the following corollary.
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Corollary 2. Let α ∈ [0, 1) and

Nm(α) =




√
1 − 2α√

(m+ 1)2 + 1 − 2α
, 0 ≤ α ≤ 1

m+ 3
,

1 − α

m+ 1 + α
,

1
m+ 3

< α < 1.

If f ∈ Hm(Bn) satisfies the following inequality

‖Df(z) − I‖ ≤M ≡ (m+ 1)Nm(α)

for all z ∈ Bn, then f ∈ S∗
m(α, Bn).

Remark 3. Setting n = 1, α = 0 in Corollary 2, we get the result obtained
by Mocanu [6]. Setting n = 1 in Corollary 2, we get a result, which is better than
Corollary 2.2 in [7].

Example 1. Suppose that A is a bounded symmetric (m+ 1)−linear operator
from Cn×Cn ×· · ·×Cn to Cn with ‖A‖ ≤ M

m+1+|λ| , where M = R(λ)N (λ, α) is
defined in Theorem 1. Let f(z) = z+A(zm+1), z ∈ Cn. Then f ∈ S∗

m(α, Bn).

Proof. Some direct computations yield the relations

Df(z) = I + (m+ 1)A(zm, ·)
for z ∈ Bn . It implies that

‖‖z‖2(Df(z)(u)−u)−λ〈u, z〉(f(z)−z)‖ =‖A(zm, (m+1)‖z‖2u+λ〈u, z〉z)‖
≤ ‖A‖‖z‖m‖(m+1)‖z‖2u+λ〈u, z〉z‖
≤ (m+ 1 + |λ|)‖A‖‖z‖2 ≤M‖z‖2

for all z ∈ Bn and all u ∈ Cn with ‖|u|| = 1. Hence by Theorem 1, we obtain that
f ∈ S∗

m(α, Bn).
In particular, let

A(z1, z2, · · · , zm+1) = a < z1, u >< z2, u > · · · < zm+1, u > v,

wherwe u, v ∈ Cn with ‖u‖ = ‖v‖ = 1 and a ∈ C. ThenA is a bounded symmetric
(m+ 1)−linear operator from Cn × Cn × · · · ×Cn to Cn with ‖A‖ = |a|. If

f(z) = z + a[< z, u >]m+1v

and |a| ≤ m
m+1+|λ| , where M = R(λ)N (λ, α) is defined in Theorem 1, then

f ∈ S∗
m(α, Bn).
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Theorem 2. Suppose that Reλ < m + 1 or Imλ �= 0 and 0 < R ≤
R(λ)√

(|λ|+R(λ))2+1
, where R(λ) is defined by (2.1). If f ∈ Hm(Bn) satisfies the

inequality

(2.26) ‖‖z‖2(Df(z)(u)− u) − λ〈u, z〉(f(z)− z)‖ ≤ R‖z‖2

for all z ∈ Bn and all ‖u‖ = 1, then f ∈ S ∗
m(β, Bn), where

(2.27) β =




R(λ)(1− R)− |λ|R
R+ R(λ)

, 0 < R <
R(λ)

|λ|+R(λ) + 1
,

1
2
+
R2(|λ|+R(λ))2

2(R2 − R(λ)2)
,

R(λ)
|λ|+R(λ)+1

≤R≤ R(λ)√
(|λ|+R(λ))2 + 1

.

Proof.
Case 1. When 0 < R < R(λ)

|λ|+R(λ)+1, we have

1
|λ|+ R(λ) + 2

< β =
R(λ)(1− R) − |λ|R

R+ R(λ)
< 1,

it is equivalent to

0 < R =
R(λ)(1− β)

|λ|+R(λ) + β
<

R(λ)
|λ|+R(λ) + 1

.

Hence by Theorem 1, we have f ∈ S∗m(β, Bn).

Case 2. When R(λ)
|λ|+R(λ)+1 ≤ R ≤ R(λ)√

(|λ|+R(λ))2+1
, we have

0 ≤ β =
1
2

+
R2(|λ|+R(λ))2

2(R2 − R(λ)2)
≤ 1

|λ|+R(λ) + 2
,

it is equivalent to

R(λ)
|λ|+ R(λ) + 1

≤ R =
R(λ)

√
1 − 2β√

(|λ|+R(λ))2 + 1 − 2β
≤ R(λ)√

(|λ|+ R(λ))2 + 1
.

Hence by Theorem 1, we have f ∈ S∗m(β, Bn), and the proof is complete.
Setting n = 1 in Theorem 2, we obtain the following corollary.

Corollary 3. Suppose that Reλ < m + 1 or Imλ �= 0 and 0 < R ≤
R(λ)√

(|λ|+R(λ))2+1
, where R(λ) is defined by (2.1). If f ∈ Hm(∆) satisfies the

inequality ∣∣∣∣f ′(z)− λ
f(z)
z

+ λ− 1
∣∣∣∣ ≤ R
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for all z ∈ U , then f ∈ S ∗(β), where β is defined by (2.27).

Theorem 3. Suppose that Reλ < m+ 1 or Imλ �= 0 and α ∈ [0, 1), R(λ) is
defined by (2.1) and N = N (λ, α) is defined by (2.2). If f ∈ Hm(Bn) satisfies
the inequality

‖‖z‖2(Df(z)(u)− u) − λ〈u, z〉(f(z)− z)‖ ≤M‖z‖2

for all z ∈ Bn and all ‖u‖ = 1, where M = R(λ)N (λ, α), then

(2.28) ‖z‖ −N‖z‖m+1 ≤ ‖f(z)‖ ≤ ‖z‖+N‖z‖m+1,

and
1 − (|λ|+R(λ))N‖z‖m ≤ ‖Df(z)‖ ≤ 1 + (|λ|+ R(λ))N‖z‖m

for z ∈ Bn.

Proof. From the proof of Theorem 1, we obtain

‖f(z) − z‖ ≤ N‖z‖m+1.

Hence we have

‖z‖ −N‖z‖m+1 ≤ ‖z‖ − ‖f(z) − z‖ ≤ ‖f(z)‖
= ‖[f(z)− z] + z‖ ≤ ‖f(z)− z‖ + ‖z‖ ≤ ‖z‖ +N‖z‖m+1

for z ∈ Bn . From (2.12) and Dq(z)(u) =
∑∞

m+1
kDkq(0)

k! (zk−1, u), where q(z) =
f(z) − z, by Schwarz’s Lemma, we obtain

‖Dq(z)‖ ≤ (|λ|+R(λ))N‖z‖m

for z ∈ Bn . Hence we have

‖Df(z)− I‖ ≤ (|λ|+R(λ))N‖z‖m

for z ∈ Bn . It follows that

1 − (|λ|+R(λ))N‖z‖m ≤ ‖Df(z)‖ ≤ 1 + (|λ|+ R(λ))N‖z‖m

for z ∈ Bn . Hence the proof is complete.

Corollary 4. [Covering Theorem] Suppose that Reλ < m + 1 or Imλ �= 0
and α ∈ [0, 1), R(λ) is defined by (2.1) and N = N (λ, α) is defined by (2.2). If
f ∈ Hm(Bn) satisfies the inequality

‖‖z‖2(Df(z)(u)− u) − λ〈u, z〉(f(z)− z)‖ ≤M‖z‖2
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for all z ∈ Bn and all ‖u‖ = 1, where M = R(λ)N (λ, α), then

f(Bn) ⊃ (1−N )Bn.

Theorem 4. Suppose that Reµ < m or Imµ �= 0 and α ∈ [0, 1), and let

(2.29) T (µ) =

{ |m− µ|, Reµ < m,

|Imµ|, Reµ ≥ m, Imµ �= 0,

and

(2.30) S = Sm(µ, α) =




T (µ)(m+ 1)
√

1− 2α√
(m+ 1)2 + 1 − 2α

, 0 ≤ α ≤ 1
m+ 3

,

T (µ)(m+ 1)(1− α)
m+ 1 + α

,
1

m+ 3
< α < 1.

If f ∈ Hm(Bn) satisfies the inequality

(2.31) ‖D2f(z)(z, ·)− µDf(z) + µI‖ < S

for all z ∈ Bn , then f ∈ S∗
m(α, Bn).

Proof. Let u ∈ Bn − {0} and fix it. Set w(z) = Df(z)(u) − u, then
w(z) ∈ N (Bn) with w(z) =

∑∞
m+1

kDkf(0)
k! (zk−1, u) and w(0) = 0.

Now we verify that ‖w(z)‖ < S1 = S
T (µ)

‖u‖ for all z ∈ Bn. If not, then there
exists a point z3 ∈ Bn such that

S1 = ‖w(z3)‖ = max
‖z‖≤‖z3‖

‖w(z)‖.

By Lemma 1, there exists a real number t ≥ m such that

(2.32) 〈Dw(z3)(z3), w(z3)〉 = t‖w(z3)‖2.

Then by a simple computation, from (2.31), we obtain

(2.33) ‖Dw(z3)(z3) − µw(z3)‖ < S‖u‖.
It follows from (2.32) and (2.33) that

|t− µ|‖w(z3)‖2 ≤ |〈Dw(z3)(z3) − µw(z3), w(z3)〉| < S‖u‖‖w(z3)‖.
When Reµ < m, we obtain

(2.34) |t− µ| =
√

(t− Reµ)2 + (Imµ)2 ≥
√

(m− Reµ)2 + (Imµ)2 = |m− µ|
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for t ≥ m.
When Reµ ≥ m and Imµ �= 0, we obtain

(2.35) |t− µ| =
√

(t− Reµ)2 + (Imµ)2 ≥ |Imµ|.
From (2.29), (2.34) and (2.35), we have

T (µ)‖w(z3)‖2 ≤ |〈Dw(z3)(z3)− µw(z3), w(z3)〉| < S‖u‖‖w(z3)‖.
Therefore ‖w(z3)‖ < S

T (µ)‖u‖ = S1, which contradicts ‖w(z3)‖ = S1. Hence
we obtain

‖Df(z)(u)− u‖ ≤ S

T (µ)
‖u‖

for all ‖u‖ = 1. From this, we conclude that

‖Df(z)− I‖ ≤ S

T (µ)
= (m+ 1)Nm(α),

for all z ∈ Bn. By Corollary 2, we obtain that f(z) ∈ S∗m(α, Bn) and the proof is
complete.

Remark 4. Suppose that X is a complex Hilbert space with product 〈·, ·〉 and
norm ‖ · ‖ =

√〈·, ·〉, and B = {z ∈ X : ‖z‖ < 1} is the unit ball in X .

Similarly, f ∈ S∗
m(α, B) if and only if f(z) = z +

+∞∑
k=m+1

1
k!D

kf(0)(zk) is a

locally biholomorphic mapping on B and satisfies the following inequalities∣∣∣∣ 1
‖z‖2

〈Df(z)−1f(z), z〉 − 1
2α

∣∣∣∣ < 1
2α
, z ∈ B − {0}

for 0 < α < 1 and

Re〈Df(z)−1f(z), z〉 > 0, z ∈ B − {0}
for α = 0. We call the biholomorphic mapping f ∈ S∗

m(α, B) starlike of order α.
Recently, we discover that if we let X instead of Cn and f : B → X is a

locally biholomorphic mapping (see [8], p. 146-147), then the results of Lemma
1 and Theorem 1-4 still hold. The proofs are similar. For example, we state two
results as follows and omit their proofs.

Theorem 1′. Suppose that α ∈ [0, 1), f(z) = z +
+∞∑

k=m+1

1
k!D

kf(0)(zk) :

B → X is a locally biholomorphic mapping on B and R(λ) is defined by (2.1),
N = N (λ, α) is defined by (2.2). If f(z) satisfies the inequality

‖‖z‖2(Df(z)(u)− u) − λ〈u, z〉(f(z)− z)‖ ≤M‖z‖2
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for all z ∈ B and all u ∈ X with ||u|| = 1, where M = R(λ)N (λ, α), then
f ∈ S∗

m(α, B).

Theorem 4′. Suppose that α ∈ [0, 1), f(z) = z +
+∞∑

k=m+1

1
k!D

kf(0)(zk) :

B → X is a locally biholomorphic mapping on B and T (µ) is defined by (2.29),
S = Sm(µ, α) is defined by (2.30). If f(z) satisfies the inequality

‖D2f(z)(z, ·)− µDf(z) + µI‖ < S

for all z ∈ B, then f ∈ S ∗
m(α, B).
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