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APPROXIMATION TO OPTIMAL STOPPING RULES FOR WEIBULL
RANDOM VARIABLES WITH UNKNOWN SCALE PARAMETER

Tzu-Sheng Yeh

Abstract. Let X1, X2, · · · , Xn, · · · be independent, identically distributed
Weibull random variables with an unknown scale parameter α. If we define
the reward sequence Yn = max{X1, X2, · · · , Xn}−cn for c > 0, the optimal
stopping rule for Yn depends on the unknown scale parameter α. In this paper
we propose an adaptive stopping rule that does not depend on the unknown
scale parameter α and show that the difference between the optimal expected
reward and the expected reward using the proposed adaptive stopping rule
vanishes as c goes to zero.

1. INTRODUCTION

An optimal stopping rule stops the sampling process at a sample size n that max-
imizes the expected reward. Weibull distribution, one of the prominent probability
models, has been widely used in reliability engineering. The purpose of this paper
is to find the approximation to optimal stopping rule for Weibull random variables
with unknown scale parameters in the hope to maximize the expected reward in the
sampling process.

Let X1, X2, · · · , Xn, · · · be independent, identically distributed Weibull random
variables with an unknown scale parameter α. The Xi is observed sequentially and
we are allowed to stop observing at any stage. If we stop at the nth observation then
we will receive a reward Yn, where Yn is a measurable function of X1, X2, · · · , Xn.
Optimal stopping rule depends on the distribution of the X i which has the conse-
quence that determination of an optimal stopping rule requires complete knowledge
of the underlying distribution for the data. If only partial information is available,
e.g., some parameter values are unknown, then it becomes necessary to use an
adaptive stopping rule to approximate the optimal rule.
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In this paper, we assume that the Xi is an independent Weibull random variable
with common probability density function

f(x; α, β) =
β

α
xβ−1exp

(
−xβ

α

)
, x > 0,

where β > 0 is a known constant and α is an unknown scale parameter. Let
max{X1, X2, · · · , Xn} be the reward for the first n trials and let c > 0 be the
cost for each trial. Then we will consider reward or net gain functions of the form
Yn = max{X1, X2, · · · , Xn} − cn. Such reward function arises in the context of
sampling with recall. Discussion of their motivations and utility can be found in [5]
or [6]. The purpose of this paper is to find an adaptive stopping rule in the case of
sequential observed Weibull random variable with unknown scale parameter. Using
a proposed adaptive stopping rule we prove that the difference between the optimal
expected reward and the expected reward using the proposed adaptive stopping rule
vanishes as c goes to zero.

The problem of finding an adaptive stopping rule to approximate stopping rule
has been studied by [1] that proved that in certain cases involving unknown location
parameters, the ratio of the expected reward under an adaptive stopping rule to the
optimal expected reward will approach one as c goes to zero. [10] assumed that Xi is
an exponential distributed random variable with unknown mean. [12] considered the
case where the Xi has common density function (α−1)x−αI[1,∞] with unknown α,
where IA(•) denotes the indicator function for the set A. [8] considered exponential
distributed random variables with unknown location and scale parameters. Under
the distribution discussed by [8, 10], and [12] the optimal stopping rules have closed
forms. [11] considered the case where the Xi is normal with unknown mean and
[7] generalized [11]’s results to include the case where both the mean and variance
are unknown. [9] treated the situation in which the X i is Gamma distribution with
unknown scale parameter, while [2] generalized [9]’s results to include the case
where both the location and scale parameters are unknown. In the situations of [2,
7, 9], and [11] the optimal stopping rules no longer have a closed form and adaptive
stopping rules were used to approximate the optimal stopping rules.

2. PRIMARY RESULTS

In this paper, we define the optimal stopping rule as

(1) τ∗
c = inf{n ≥ 1 : Xn ≥ γc}

where γc satisifies E(X1 − γc)+ = c, and (X1 − γc)+ = max{X1 − γc, 0}. The
stopping rule τ ∗

c maximizes E(Yτ ) over all stopping rules τ with E(Y −
τ ) < ∞
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where Y −
τ = −min{Yτ , 0}, and the expected reward is E(Yτ∗

c
) = E(Xτ∗

c
) −

cE(τ∗
c ) = γc. For more details see [4, p. 56-58].

However, in order to use the optimal stopping rule τ∗c it is necessary to know γc,
which in turn requires knowledge of distribution of Xi. If only partial information
about the distribution is available, it would be desirable to find an adaptive stopping
rule to approximate the optimal rule τ∗

c and the optimal reward E(Yτ∗
c
) as well.

Throughout the rest of this paper we assume that the Xi is an independent Weibull
random variable with the common probability density function

f(x; α, β) =
β

α
xβ−1exp

(
−xβ

α

)
, x > 0.

We define the function E(X1 − x)+ = f(x, α), and

(2) f(x, α) = α
1
β

[
1− G(

xβ

α
)
]
− x exp

(
−xβ

α

)
,

where G(xβ

α ) =
∫ xβ

α
0 t

1
β exp(−t)dt. Let γc satisfy

(3) f(γc, α) = c.

In this case the optimal stopping rule τ ∗
c will depend on the unknown parameter α.

Therefore, while α is replaced by its estimator α̂, we obtain an adaptive stopping
rule τ̂c which is

(4) τ̂c = inf{n ≥ nc : Xn ≥ γ̂c,n},
where γ̂c,n satisfies

(5) f(γ̂c,n, α̂n) = c,

α̂n =
{

X

Γ(1 + 1/β)

}β

and nc is a function of c.

First we state some properties of f(x, α), which will be needed later.

Lemma 2.1. For fixed α, f(x, α) is a strictly decreasing function in x, and
x ∈ (0,∞).

Proof.

∂f

∂x
= α

1
β (−β

α
xβ−1)

x

α
1
β

exp(−xβ

α
)− exp(−xβ

α
) +

β

α
xβ exp(−xβ

α
)

= − exp(−xβ

α ) < 0.
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We have proved that f(x, α) is a strictly decreasing function in x.

Lemma 2.2. For fixed x, f(x, α) is a strictly increasing function in α for all
α > 0.

Proof.

∂f

∂α
=

1
β

α
1
β
−1
[
1 − G(

xβ

α
)
]

+ α
1
β

[
xβ

α2

x

α
1
β

exp(−xβ

α
)
]
− xβ+1

α2
exp(−xβ

α
)

=
1
β

α
1
β
−1
[
1 − G(

xβ

α
)
]

> 0.

We have proved that f(x, α) is a strictly increasing function in α for all α > 0.

Using Lemma 2.1 and Lemma 2.2, it is easy to obtain Lemma 2.3

Lemma 2.3. If 0 < α1 < α2 and f(x, α1) = f(y, α2) then y > x.
Let γc satisfy f(γc, α) = c , this implies E(X1 − γc)+ = c in this case. For

fixed α, by Lemma 2.2, we see that γc is a decreasing function of c.
Therefore, we can choose c0 small enough such that for all c ∈ (0, c0), γ

β
c > α.

Lemma 2.4. For β > 1, we have P (X1 ≥ γc) ≥ c
{
βα−1/β

}
Proof. From the equality

c = f(γc, α) =
1
β

α1/β

∫ ∞

γ
β
c
α

z1/β−1exp(−z)dz

and β > 1, we have

c

P (X1 ≥ γc)
=

1
β

α1/β

∫ ∞

γ
β
c
α

z1/β−1exp(−z +
γβ

c

α
)dz

≤ 1
β

α1/β

∫ ∞

γ
β
c
α

exp(−z +
γβ

c

α
)dz

=
1
β

α1/β .

Therefore, we obtain P (X1 ≥ γc) ≥ c
{
βα−1/β

}
for all β > 1.

From Lemma 2.4, and using P (X1 ≥ γc) = exp(−γ
β
c
α ), we can obtain the

result of Lemma 2.5.

Lemma 2.5. When β > 1, γβ
c = o(c−b), for all b > 0 as c −→ 0.
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Lemma 2.6. Let τ∗
c be as defined in (1) and (3). Then {(cτ∗c )p : 0 ≤ c ≤ c0}

is uniformly integrable for all p > 0.

Proof. Since τ ∗
c is a geometric random variable, we have cE(τ∗c ) = c[P (X1 ≥

γc)]−1. Using Lemma 2.4 for all c ∈ (0, c0), we obtain sup0≤c≤c0 cE(τ∗
c ) ≤

1
β

α1/β . This implies sup0≤c≤c0 E(cτ∗
c )p ≤ Mp{ 1

β
α1/β}p, where Mp only depends

on p.

3. PERFORMANCE OF τ̂c

Unlike τ ∗
c the adaptive stopping rule τ̂c defined by (4) and (5) is not a geometric

random variable. The key to studying the behavior of τ̂c is to approximate τ̂c by
τ+
c,b and τ−

c,b which are defined as follows:

(6) τ+
c,b = inf{n ≥ 1 : Xn ≥ γ+

c,b}

and

(7) τ−
c,b = inf{n ≥ 1 : Xn ≥ γ−

c,b}

where γ+
c,b and γ−

c,b satisfy

(8) f(γ+
c,b, (1 + cb)βα) = c,

and

(9) f(γ−
c,b, (1− cb)βα) = c,

respectively. By Lemma 2.3, we have γ−c,b ≤ γc ≤ γ+
c,b. For fixed positive α, the

function f(x, α) is a function of x only and let f(x, α) = h(x). From (2), (3), (6),
and (7) it is easy to obtain Lemma 3.1.

Lemma 3.1. For fixed positive α, and β > 1, we have

(a) γc = h−1(c);

(b) γ+
c,b = (1 + cb)h−1( c

1+cb );

(c) γ−
c,b = (1 − cb)h−1( c

1−cb ).

Proof. From (2) and integration by parts, we have f(γc, α) = 1
βα

1
β
∫∞

γ
β
c
α

z
1
β
−1 exp(−z)dz =

c. For fixed α,
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f(γc, α) = h(γc) = c,

hence γc = h−1(c).
For (b), from the definition we have

f(γ+
c,b, (1 + cb)βα) =

1
β

(1 + cb)α
1
β

∫ ∞

(
γ+
c,b

1+cb )β 1
α

z
1
β
−1 exp(−z)dz

= (1 + cb)h(
γ+

c,b

1 + cb
) = c.

We obtain γ+
c,b = (1+cb)h−1( c

1+cb ). Similarly we can obtain γ−
c,b = (1−cb)h−1( c

1−cb ).

Lemma 3.2. For any b > 0, 0 ≤ γ+
c,b − γ−

c,b = o(cb/4).

Proof. Since

h−1(
c

1 + cb
) ≥ h−1(

c

1− cb
),

and by Lemma 3.1, we have

0 ≤ γ+
c,b − γ−

c,b = h−1(
c

1 + cb
) − h−1(

c

1− cb
) + cb

[
h−1(

c

1 + cb
) + h−1(

c

1− cb
)
]

≤ h−1(
c

1 + cb
) − h−1(

c

1− cb
) + 2cbh−1(

c

1 + cb
).

Using the Mean-Value theorem, we get

h−1(
c

1 + cb
)− h−1(

c

1 − cb
) = (h−1)

′
(cx∗)

(−2cb+1

1 − c2b

)

=
(−2cb+1

1− c2b

){
− exp

(
−
[
h−1(cx∗)

]β
α

)}−1

,

where x∗ ∈ ( 1
1+cb , 1

1−cb ) and (h−1)
′ is the first derivative of h−1. Using

h−1(cx∗) ≤ h−1(
c

1 + cb
) =

γ+
c,b

1 + cb
,

and letting c
′
= c

1+cb in lemma 3.1,we have γc′ = h−1(c
′
) =

γ+
c,b

1+cb . Replacing c by
c
′ , we get

γ+
c,b − γ−

c,b ≤ 2c1+b

P (X1 ≥ γc′ )(1− c2b)
+ 2cbγc

′

=
2cbc

′

P (X1 ≥ γc
′ )(1− cb)

+ 2cbγc′

=
2cb

1 − cb
O(1) + 2cbo(c−

b
4 ) ≤ o(c−

b
4 ).
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Since τ+
c,b and τ−

c,b are geometric distributed, it is easy to obtain Lemma 3.3.

Lemma 3.3.

(i) {(cτ+
c,b)

p : 0 < c ≤ c0} is uniformly integrable for all p > 0.

(ii) {(cτ−
c,b)

p : 0 < c ≤ c0} is uniformly integrable for all p > 0.

Lemma 3.4. Let τ̂c be as defined in (4) and (5) with nc = δc−θ and 0 ≤ θ ≤ 1.
For 0 < b < θ

2 and as c −→ 0, we have

E(τ̂c) ≤ o(1) + (nc − 1) + E(τ+
c,b).

Proof. We define

(10) Lc,b = sup{n ≥ 1 : |Xn − α
1
β Γ(1 +

1
β

)| ≥ cbα
1
β Γ(1 +

1
β

)}.

By [3,Theorem 7 ],

(11) {(c2bLc,b)p : 0 ≤ c ≤ c0} is uniformly integrable for all p > 0.

For K sufficiently large, Kc−1 > 2nc for c < c0. Treating Kc−1/2 as an integer,
we have

(12) P (cτ̂c > K) ≤ P (Lc,b > Kc−1/2) + P (cτ̂c > K, Lc,b ≤ Kc−1/2)

From the definition of Lc,b, we have

{Lc,b ≤ Kc−1/2} = {α(1− cb)β ≤ α̂n ≤ α(1 + cb)β for all Kc−1/2 < n},

where α̂n =
(

Xn

Γ(1+ 1
β
)

)β

and Xn = 1
n

∑n
i=1 Xi. Therefore we obtain

(13)

{cτ̂c > K, Lc,b ≤ Kc−1/2}
⊆ {α(1−cb)β≤ α̂n≤α(1+cb)β, Xn <γ̂c,n for all Kc−1/2<n<Kc−1}
⊆ {Xn < γ+

c,b for all Kc−1/2 < n < Kc−1}
⊆ {τ̃+

c,b > Kc−1/2}

where τ̃+
c,b ≡ inf{m ≥ 1 : Xm+Kc−1/2 ≥ γ+

c,b}. By (12) and (13), we get

P (cτ̂c > K) ≤ P (c2bLc,b > K/2) + P (cτ̃+
c,b > K/2).
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From (11) and Lemma 3.3, it is easy to see that

(14) {(cτ̂c)p : 0 ≤ c ≤ c0} is uniformly integrable for all p > 0.

Taking p = 2 in (14) and p > (θ/2 − b)−1 in (11), we get

E(τ̂c) = E(τ̂cI[Lc,b≥nc]) + E(τ̂cI[Lc,b<nc])

≤ [E(τ̂2
c )
]1/2 [P (Lc,b ≥ nc)]

1/2 + E(inf{n ≥ nc : Xn ≥ γ+
c,b})

≤ [E(τ̂2
c )
]1/2

n
−p/2
c [E(Lc,b)p]1/2 + (nc − 1) + E(τ+

c,b)

= o(1) + (nc − 1) + E(τ+
c,b).

The proof is completed.

Lemma 3.5. Let τ̂c be as defined in (4) and (5) with nc = δc−θ and 0 < θ < 1.
Then for 0 < b < θ/2, as c −→ 0,

E(τ̂c) ≥ E(τ−
c,b) + (nc − 1) − o(1).

Proof. Let Lc,b be as defined in (10)

E(τ̂c) ≥ E(τ̂cI[Lc,b<nc])

≥ E(
[
inf{n ≥ nc : Xn ≥ γ−

c,b}
]
I[Lc,b<nc])

≥ E(inf{n ≥ nc : Xn ≥ γ−
c,b}) − E(

[
inf{n ≥ nc : Xn ≥ γ−

c,b}
]
I[Lc,b≥nc]).

Taking p = 2 in Lemma 3.3 and p > (θ/2 − b)−1 in (11), we have

E(τ̂c) ≥ (nc − 1) + E(τ−
c,b) − {E

[
(nc − 1) + τ−

c,b

]2}1/2{
[
n−p

c E(Lc,b)p
]1/2}

≥ (nc − 1) + E(τ−
c,b) − {O(c−2θ) + O(c−θ−1) + O(c−2)}1/2O(c(θ/2−b)p)

≥ (nc − 1) + E(τ−
c,b) − O(c(θ/2−b)p−1)

≥ (nc − 1) + E(τ−
c,b) − o(cq), for some q > 0.

From (11), it is easy to obtain Lemma 3.6.
Lemma 3.6. Let Lc,b be as defined in (10). If nc = δc−θ for some δ > 0 and

0 < θ < 1, then
∞∑

j=nc

E(|Xj|I[Lc,b≥j]) −→ 0, as c −→ 0;
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for b ∈ (0, θ/2).

Proof. Since
∞∑

j=nc

E(|Xj|I[Lc,b≥j])

≤
∞∑

j=nc

{E(X2
j )P (Lc,b ≥ j)}1/2

≤
∞∑

j=nc

{E(X2
j )E(Lc,b)2p1/j2p1}1/2

≤ {E(X2
1 )}1/2

[
E(c2bLc,b)2p1

]1/2
∞∑

j=nc

c−2bp1j−p1

≤ {E(X2
1 )}1/2

[
E(c2bLc,b)2p1

]1/2
c−2bp1O(n−p1+1

c )

≤ O(c−2bp1−θ+p1θ)

= O(cp1(θ−2b)−θ).

Therefore taking p1 such that p1(θ − 2b)− θ > 0, we have
∞∑

j=nc

E(|Xj|I[Lc,b≥j]) −→ 0, as c → 0.

Lemma 3.7. E(Xτ̂c) ≥ E(X1I[X1≥γ+
c,b])E(τ−

c,b) + o(1) as c −→ 0.

Proof. Let Lc,b be as defined in (10)

E(Xτ̂c) =
∞∑

j=nc

E(XjI[τ̂c=j])

≥
∞∑

j=nc

E(XjI[τ̂c=j,Lc,b<j]) + o(1)

≥
∞∑

j=nc

E(XjI[τ̂c=j,α(1−cb)β≤α̂n≤α(1+cb)β for all n≥j]) + o(1)

≥
∞∑

j=nc

E(XjI[τ̂c=j,α(1−cb)β≤α̂n≤α(1+cb)β for all n≥j,Xj≥γ+
c,b]) + o(1)

≥
∞∑

j=nc

E(XjI[τ̂c≥j,α(1−cb)β≤α̂n≤α(1+cb)β for all n≥j,Xj≥γ+
c,b]) + o(1)

=
∞∑

j=nc

E(XjI[Xj≥γ+
c,b]I[τ̂c≥j,Lc,b<j])
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≥
∞∑

j=nc

E(XjI[Xj≥γ+
c,b]

{I [τ̂c≥j] − I[τ̂c≥j,Lc,b≥j]})

≥
∞∑

j=nc

E(XjI[Xj≥γ+
c,b]I [τ̂c≥j]) −

∞∑
j=nc

E(XjI[Xj≥γ+
c,b]I[τ̂c≥j,Lc,b≥j]).

From Lemma 3.6, it is easy to obtain

E(Xτ̂c) ≥
∞∑

j=nc

P {τ̂c ≥ j}E(XjI[Xj≥γ+
c,b]) + o(1)

= E(X1I[X1≥γ+
c,b]) [E(τ̂c)− (nc − 1)] + o(1).

By Lemma 3.5, we have

E(Xτ̂c) ≥ E(X1I[X1≥γ+
c,b])E(τ−

c,b) + o(1).

Lemma 3.8. For all b > 0, γc(1 − P (X1 ≥ γ+
c,b)/P (X1 ≥ γ−

c,b)) −→ 0 as
c −→ 0.

Proof. Note that P (X1 ≥ γ−
c,b) = exp(− (γ−

c,b)
β

α ) and γc{1 − P (X1 ≥
γ+

c,b)/P (X1 ≥ γ−
c,b)} = γc{P (γ−

c,b ≤ X1 ≤ γ+
c,b)}/P (X1 ≥ γ−

c,b). Using the
Mean Value theorem to compute P (γ−

c,b ≤ X1 ≤ γ+
c,b), we have

γc(1 − P (X1 ≥ γ+
c,b)/P (X1 ≥ γ−

c,b))

≤ γc(γ+
c,b − γ−

c,b)
β

α

[
γ+

c,b

]β−1

≤ o(cb/4)O(c−η), for all η > 0

Therefore, we can choose η such that b/4 > η, then

γc(1− P (X1 ≥ γ+
c,b)/P (X1 ≥ γ−

c,b)) −→ 0 as c −→ 0.

Lemma 3.9. E(X1I[γc≤X1≤γ+
c,b])E(τ−

c,b) −→ 0 as c −→ 0.

Proof.

E(X1I[γc≤X1≤γ+
c,b]

)E(τ−
c,b) ≤ γ+

c,bP (γ−
c,b ≤ X1 ≤ γ+

c,b)/P (X1 ≥ γ−
c,b)

≤ (γc + o(cb/4))(1− P (X1 ≥ γ+
c,b)/P (X1 ≥ γ−

c,b)).

Using lemma 3.8 it is easy to obtain the result.
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Lemma 3.10. c{E(τ̂c) − E(τ−
c,b)} −→ 0 as c −→ 0.

Proof. From Lemma 3.4., we have

c{E(τ̂c) − E(τ−
c,b)} ≤ c{E(τ+

c,b) − E(τ−
c,b)} + c(nc − 1) + o(1)

= c{E(τ+
c,b) − E(τ−

c,b)} + o(1)

=
cP (γ−

c,b ≤ X1 ≤ γ+
c,b)

P (X1 ≥ γ+
c,b)P (X1 ≥ γ−

c,b)
+ o(1)

≤ cP (γ−
c,b ≤ X1 ≤ γ+

c,b)

P (X1 ≥ γ+
c,b)P (X1 ≥ γc)

+ o(1)

≤ c

P (X1 ≥ γc)
(γ+

c,b − γ−
c,b)
[
γ+

c,b

]β−1
+ o(1).

Using Lemma 2.4. and Lemma 3.2., we have

c{E(τ̂c)− E(τ−
c,b)} ≤ O(1)o(cb/4)o(c−ηβ) for all η > 0.

We choose η such that ηβ ≤ b/4 and the result of this lemma follows.

Theorem. Let τ̂c be as defined in (4) and (5) with nc = δc−θ for some δ > 0
and 0 < θ < 1. Then

E(Yτ∗
c
)− E(Yτ̂c) −→ 0 as c −→ 0.

That is, the expected loss due to not knowing α vanishes when we use the approx-
imating rule τ̂c as c −→ 0.

Proof.

0 ≤ E(Yτ∗
c
) − E(Yτ̂c) = γc − E(Xτ̂c) + cE(τ̂c)

≤ γc − E(X1I[X1≥γ+
c,b])E(τ−

c,b) + cE(τ̂c)

≤ γc − {E(X1I [X1≥ γc]) − E(X1I[γc≤X1≤γ+
c,b])}E(τ−

c,b) + cE(τ̂c) + o(1).

From Lemma 3.7., the second inequality holds. Using Lemma 3.9. and the equality

E(X1I [X1≥γc ]) = c + γcP (X1 ≥ γc),

we have

0 ≤ E(Yτ∗
c
) − E(Yτ̂c)

≤ γc{1 − P (X1 ≥ γc)/P (X1 ≥ γ−
c,b)} + c{E(τ̂c)− E(τ−

c,b)} + o(1)

≤ γc{1 − P (X1 ≥ γ+
c,b)/P (X1 ≥ γ−

c,b)} + c{E(τ̂c)− E(τ−
c,b)}+ o(1).
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By Lemma 3.8 and Lemma 3.10, we obtain

0 ≤ E(Yτ∗
c
) − E(Yτ̂c) −→ 0 as c −→ 0.

The main result is proven.
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