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MEASURES OF ε-COMPLEXITY

V. Afraimovich and L. Glebsky

Abstract. We study some measures which are related to the notion of the
ε-complexity. We prove that measure of ε-complexity defined on the base of
the notion of ε-separability is equivalent to the dual measure that is defined
through ε-nets.

1. INTRODUCTION

The problems under consideration in this article were originated in the process
of study of complexity of behavior of orbits in dynamical systems. While symbolic
complexity (see, for instance [4]) deals with symbolic systems and topological com-
plexity [2]) reflects pure topological features of dynamics, the ε-complexity depends
essentially on a distance in the phase space (see definition bellow). If one has a
dynamical system generated by a continuous map f : X → X where X is a metric
space with a distance ρ, one can introduce the sequence of distances ([3])

ρn(x, y) = max
0≤i≤n−1

ρ(f ix, f iy), n ∈ N,

and study the ε-complexity with respect to the distance ρn as a function of “time” n.
This function reflects the evolution of instability of orbits in time [1]. But to study
it in details, one needs to know more about general properties of the ε-complexity
of a metric space (without dynamics).

The goal this article is to introduce and study quantities which contain an essen-
tial information about ε-complexity, the measures of ε-complexity in an “abstract”
metric space. The main results will be related to the ε-complexity defined on the
base of the notion of ε-separability. The notion was used first by Kolmogorov and
Tikhomirov [9] in their study of solutions of PDE and realization of random pro-
cesses. We will also study ε-complexities based on the notion of ε-nets (Shannon
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suggested to pay attention to this notions in 1949). We prove that measure of ε-
complexity defined on the base of the notion of ε-separability is equivalent to the
dual measure that is defined through ε-nets.

It appeared naturally that some results and ideas from discrete mathematics are
worth to be exploited.

2. SET-UP AND DEFINITIONS

2.1. Separated Sets and Complexity

Let (X, d) be a compact metric space with a distance d.

Definition 1. 1. Given ε > 0, a set Y ⊆ X is ε-separated iff for any different
x, y ∈ Y one has d(x, y) ≥ ε.

2. The number

Cε(X, d) = Cε := max{|Y |, Y is an ε-separated set},
where | · | denotes the cardinality of a set, is called the ε-complexity of X .

3. An ε-separated set Y is optimal iff |Y | = Cε.
Let us show the following natural inequality.

Proposition 1. Given D1, D2 ⊆ X and ε > 0 one has

Cε(D1 ∪ D2) ≤ Cε(D1) + Cε(D2).

Proof. Let Y ⊆ D1∪D2 be an optimal ε-separated set in D1∪D2. Then Yi =
Y ∩ Di is an ε-separated set in Di and |Y | ≤ |Y1| + |Y2| ≤ Cε(D1) + Cε(D2).

Remark. Invariant sets in dynamical systems can be treated as results of
inductive procedures. For example, the dynamical system generated by the map
f : R → R,

f(x) =
{

3x, x ≤ 1/2,
3x− 3, x > 1/2,

has an invariant set K containing all orbits belonging to the interval [0, 1]. One can
see that K is the one-third Cantor set, so that

K =
∞⋂

n=1

⋃
(i0...in−1)

∆i0...in−1,

where ij ∈ {0, 1}, ∆i0...in−1 are intervals of the length 3−n arising on the n-th
step of construction of the Cantor set. Therefore, if ε ≈ 3−n then Cε ≈ 2n = {the
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number of different words of length n in the full shift with 2 symbols}= ehn, where
h = ln 2 is the topological entropy of the full shift. Thus,

ln Cε

− ln ε
≈ ln 2

− ln 1/3
=

h

lnλ
= dimH K,

where dimH K is the Hausdorff dimension of K and λ = 1/3 is the contraction
coefficient. We obtained the familiar Furstenberg formula [5].

This example shows that if a subset of a metric space is the result of an inductive
procedure governed by a symbolic dynamical system then the ε-complexity contains,
in fact, an important dynamical information.

2.2. ε-nets and Complexity

In this subsection we give a dual definition of complexity. Given x ∈ X let
Oε(x) = {y : d(x, y) < ε}, the ball of radius ε centered at x. Given Y ⊆ X let
Oε(Y ) =

⋃
x∈Y

Oε(x).

Definition 2. 1. Given ε > 0, a set Y ⊆ X is an ε-net iff Oε(Y ) = X .
2. The number

Rε(X, d) = Rε := min{|Y |, Y is an ε-net},

is called the dual ε-complexity of X .
3. An ε-net Y is optimal iff |Y | = Rε.

The similar results to the one in Proposition 1 holds for dual complexities.

Proposition 2. Given D1, D2 ⊆ X and ε > 0 one has

Rε(D1 ∪ D2) ≤ Rε(D1) + Rε(D2).

Proof. Let Yi ⊆ Di be an optimal ε-net in Di. Then Y = Y1 ∪ Y2 is an ε-net
in D1 ∪ D2 and Rε(D1 ∪ D2) ≤ |Y | ≤ |Y1| + |Y2| = Rε(D1) + Rε(D2).

Any optimal ε-separated set is an ε net, therefore Cε ≥ Rε. On the other hand
the following statement holds.

Proposition 3. Rε/2 ≥ Cε

Proof. It follows directly from the definition that any pair of different points
in an ε-separated set Z can not belong to a ball of radius ε/2. Thus we cannot
cover Z by less than |Z| balls of radius ε/2. Assuming that Z is optimal we obtain
the inequality above.
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Let us introduce
bε = sup

x∈X
Rε/2(Oε(x)).

Obviously, for any D ⊆ X one has bεRε(D) ≥ Rε/2(D). It is not difficult to check
that bε ≤ 2d(2d + 1) for a subset of the Euclidean space Rd.

2.3. Ultrafilters

Now we give some known results and definitions that can be found, for instance,
in [6].

Definition 3. A set F ⊂ 2N is called to be a filter over N iff it satisfies the
following conditions:

• If A ∈ F and B ∈ F , then A ∩ B ∈ F ,
• If A ∈ F and A ⊂ B then B ∈ F ,
• ∅ �∈ F .

Let an be a sequences of real numbers, a is called to be the limit of an with respect
to a filter F , a = limF an, if for any ε > 0 one has {n | |an − a| < ε} ∈ F . From
the definition of a filter it follows that limF an is unique, if exists.

Example. Let FF = {A ⊆ N | N\A is finite }. FF is said to be the Frechét
filter. One can check that it is, indeed, a filter. A limit with respect to FF coincides
with ordinary limit.

Definition 4. A filter F is called to be ultrafilter iff for any set A ⊆ N one
has A ∈ F or N\A ∈ F .

Theorem 1. A bounded sequences has a limit with respect to an ultrafilter.
This limit is unique.

Example. For i ∈ N let Fi = {A ⊆ N | i ∈ A}. It is an ultrafilter. Such an
ultrafilter is called proper for i. One can check that limFi an = ai. So, limits with
respect to a proper ultrafilter are not interesting.

Proposition 4. An ultrafilter F is proper (for some i ∈ N) if and only if it
contains a finite set.

This proposition implies that an ultrafilter is non-proper if and only if it is an
extension of the Frechét filter FF . On the other hand, it follows from the Zorn
lemma that any filter can be extended to an ultrafilter.

Proposition 5. There is an ultrafilter F ⊃ FF . Any such an ultrafilter is
non-proper.
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3. MEASURES OF COMPLEXITY

Our goal is to define a measure reflecting an asymptotic behavior of the ε-
complexity as ε goes to 0. For that we will use the technique of ultrafilters.

Given ε > 0, consider an optimal ε-separated set Aε. Introduce the following
functional

Iε(φ) =
1
Cε

∑
x∈Aε

φ(x)

where φ : X → R is a continuous function. It is clear that Iε is a positive bounded
linear functional on C(X). Moreover, for any φ ∈ C(X) the family Iε(φ) is
bounded. Fix a sequence E = {εn}, εn → 0 as n → ∞ and an arbitrary non-proper
ultrafilter F . Consider

I(φ) = lim
F

Iεn(φ).

I is a positive bounded linear functional on C(X).

Theorem 2. The functional I is independent of the choice of an optimal setsA ε.

Proof. The proof is based on the following proposition.

Proposition 6. Let A and B be optimal ε-separated sets. There exists a
one-to-one map α : A → B such that d(x, α(x)) ≤ ε for any x ∈ A.

Let Aε and Bε be optimal ε-separated sets, ε ∈ E . Let αε : Aε → Bε be the
map from Proposition 6. Then

| 1
Cε

∑
x∈Aε

φ(x) − 1
Cε

∑
x∈Bε

φ(x)| = | 1
Cε

∑
x∈Aε

(φ(x) − φ(αε(x))) | ≤ rφ(ε)

where rφ(ε) = sup{|φ(x)− φ(y)| : d(x, y) < ε}, the modulus of continuity of φ.
Since X is a compact, rφ(ε) → 0 as ε → 0. It implies the desired result due to the
choice of the ultrafilter F . So, we need only to prove Proposition 6; it will be done
below.

In the proof of Proposition 6 we will need the Marriage Lemma of P. Hall, see
for instance [10].

Lemma 1. For an indexed collections of finite sets F 1, F2, . . . , Fk the follow-
ing conditions are equivalent:

• there exists an injective function α : {1, 2, ..., k} →
k⋃

i=1
Fi such that α(i) ∈

Fi;

• For all S ⊆ {1, 2, . . . , k} one has | ⋃
i∈S

Fi| ≥ |S|.
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Recall that Oε(x) = {y : d(x, y) < ε}, the ball of radius ε centered at x.
Given Y ⊆ X let Oε(Y ) =

⋃
x∈Y

Oε(x).

Proof of Proposition 6. For any x ∈ A let Bx = Oε(x)∩B. If we show that
for any S ⊆ A the following inequality holds

(1) |
⋃
x∈S

Bx| ≥ |S|,

then the proposition follows from Lemma 1 due to |A| = |B| = Cε. To prove
inequalities (1), suppose that | ⋃

x∈S

Bx| = |Oε(S)∩B| < |S| for some S ⊆ A. Then

|S ∪ (B \ (Oε(S)∩ B)| = |S|+ (|B| − |Oε(S) ∩ B|) > |B| = Cε,

on the other hand, the set S ∪ (B \ (Oε(S)∩ B) is ε-separated. We have a contra-
diction with optimality of B.

So, we have defined a functional I which may depend on the choice of the
sequence E and the ultrafiter F only. Sometimes we will write IE,F to emphasize
this dependence. It is well known, that IE,F generate unique regular Borel measure
µE,F on X such that µE,F(X) = 1.

Definition 5. The measures µE,F(X) will be called measures of complexity.
We are going to show examples of (X, d) when µE,F = µ is independent on

E , F and when µE,F depends on E,F . In the first case

IE,F(φ) = I(φ) = lim
ε→0

Iε(φ).

Of course, it is difficult to find optimal sets and construct directly measures of
complexity in real situations. Nevertheless, it is possible to work with them by using
some of their intrinsic properties. Let us show now that measures of complexity are
invariant with respect to local isometries.

Definition 6. A homeomorphism τ : X → X is called to be ε-isometry iff
d(x, y) = d(τ(x), τ(y)) for all x, y ∈ X , d(x, y) ≤ ε A homeomorphism τ : X →
X is called to be local isometry iff it is ε isometry for some ε > 0.

It is clear that an isometry is a local isometry.

Proposition 7. Local isometries with composition form a group.

Proof. It is easy to check that the composition of two ε-isometries is an
ε-isometry. Let τ be an ε-isometry. Then τ−1 is uniformly continuous and there



Measures of ε-complexity 403

exists ε′ > 0 such that if d(x, y) ≤ ε′,then d(τ−1(x), τ−1(y)) ≤ ε. Consequently,
if d(x, y) ≤ ε′ then d(x, y) = d(τ−1(x), τ−1(y)), so, τ−1 is an ε′-isometry.

We do not know if ε-isometries form a group.

Proposition 8. Let τ be an ε0-isometry and A be an ε-separated set, ε ≤ ε0.
Then τ−1(A) is also ε-separated.

Proof. Assume, on the contrary, that τ−1(A) is not ε-separated, i.e., there are
different x, y ∈ τ−1(A) with d(x, y) < ε ≤ ε0. Then d(τ(x), τ(y)) = d(x, y) < ε,
so A cannot be ε-separated.

Theorem 3. Let τ be a local isometry. Then µE,F is invariant, i.e. µE,F(A) =
µE,F (τ−1(A)) for all measurable A.

Proof. It is enough to show that for all φ ∈ C(X)

(2) IF(φ ◦ τ) = IF (φ).

There exists ε0 > 0, such that τ is an ε0-isometry. Let Aε be an optimal ε-separated
set, ε ≤ ε0. It follows from Proposition 8 that τ−1(Aε) is an optimal ε-separated
set. It implies the validity of Equation (2). Indeed,

Iε(φ) =
1
Cε

∑
x∈Aε

φ(x), Iε(φ ◦ τ) =
1
Cε

∑
x∈τ−1(Aε)

φ(x),

and the result follows from Theorem 2.

Corollary 1. Let a continuous group operation ∗ be defind on X such that
right shifts rg(x) = g ∗ x (left shifts lg(x) = x ∗ g) are local isometries for all
g ∈ X . Then µE,F is the normalized Haar measure on (X, ∗). In particular, µ E,F
does not depend on E,F .

Example 1. Let X = Ωp, the full shift with p symbols, i.e. Ωp = {0, 1, ..., p−
1}Z+ with the distance

dq(x, y) =
∞∑
i=0

|xi − yi|
qi

, q > 1.

Ωp can be equipped by the group operation ⊕ as follows:

(x ⊕ y)i = xi + yi, mod p
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It is clear that (Ωp,⊕) is a continuous group. Moreover, the right translation by
any element is an isometry. Therefore µE,F = µ coincides with the Haar measure
which, in fact, is the (1/p, ..., 1/p)-Bernoulli measure.

Example 2. Let X = ΩM be a topological Markov chain, defined by a finite
matrix M : {0, 1, ..., p − 1}2 → {0, 1}, i.e. ΩM = {< x0, x1, ... > | xi ∈
{1, 2, ..., p− 1} and M(xi, xi+1) = 1}. Metric d is the same as in Example 1.

Cylinder [a0, a1, ..., an−1] of the length n is the set of all x ∈ ΩM , such that
xi = ai for i = 0, 1, ..., n − 1. A word < a0, a1, ..., an−1 > is admissible iff
[a0, a2, ..., an−1] �= ∅. Let Wn be the set of all admissible words of the length n

and α be a permutation of Wn such that (α(w))n−1 = wn−1 for every w ∈ Wn

(admissible permutation). Given such an α define gα : X → X as follows

gα(x) = (α(x0, x1, ..., xn−1), xn, xn+1, ...).

It is simple to see that gα is a local isometry. It implies that µE,F([a0, a1, ..., an−1]) =
µE,F ([b0, b1, ..., bn−1]) if [a0, a1, ..., an−1] �= ∅, [b0, b1, ..., bn−1] �= ∅ and an−1 =
bn−1. Indeed, under these assumptions there exists an admissible permutation
α : Wn → Wn such that α(a0, a1, ..., an−1) = b0, b1, ..., bn−1. So, the mea-
sure µE,F of a nonempty cylinder [a0, a1, ..., an−1] depends only on an−1 and n.
Let vi(n) = µE,F([a0, a1, ..., an−2, i]) for an admissible < a0, a1, ..., an−2, i >

(vi(n) = 0 if there is no admissible words of length n ending by i). It is simple to
check that

vi(n) =
∑

j,M (i,j)=1

vj(n + 1)

This relation can be rewritten in the matrix form

v(n) = Mv(n + 1),

where v(n) = (v0(n), v1(n), ..., vp−1(n))T is a column vector. If M is a primitive
matrix (Mp > 0 for some p) then this equation uniquely defines the measure µE,F ,
which in this case turns out to be independent of E,F . Indeed, by Perron Theorem
matrix M has unique positive eigenvector e with eigenvalue λ > 0 (in our case, in
fact, λ > 1). Let P be the set of all lines in Rp, generated by non-negative vectors.
From the proof of Perron Theorem (see, for example, [8])

⋂
n∈N

Mn(P ) = {le},

where le is a line, generated by e. Since v(n) > 0 and v(k) = Mnv(n + k), one
has lv(k) ∈ Mn(P ) for any n. Hence, v(k) = cke. So, v(n) = λ−nc0e. We have
proved the following



Measures of ε-complexity 405

Proposition 9. Let M be a primitive matrix and C ⊂ ΩM is an admissible
cylinder of length n, ending by i. Then µE,F(C) = λ−nei, where (e0, e1, ..., ep−1)
is the positive eigenvector of M, with e0 + e1 + ...ep−1 = 1.

Example 3. Here we construct an example where µE,F is not unique. Let
X = Ω0,1 ∪Ω2,3, where Ωi,j is the Bernoulli shift of symbols i, j. We are going to
introduce a metric d on X such that µE,F depends on E,F .

Let us define d. For x ∈ Ω0,1 and y ∈ Ω2,3 let d(x, y) = 1. For x, y ∈ Ω0,1,
xn �= yn and xi = yi for i < n, let d(x, y) = an. For x, y ∈ Ω2,3, xn �= yn and
xi = yi for i < n, let d(x, y) = bn. Suppose, 1 ≥ a0 ≥ a1 ≥ ... ≥ an → 0 and
1 ≥ b0 ≥ b1 ≥ ... ≥ bn → 0. Straightforward calculations show that d is a metric
(even an ultrametric) defining the Markov topology on X .

Proposition 10. If ar−1 ≥ ε > ar and bm−1 ≥ ε > bm then Cε(Ω0,1) = 2r

and Cε(Ω2,3) = 2m, the cardinality of an optimal ε-separated set on Ω 0,1 and Ω2,3,

correspondingly.

Proof. Indeed, if, say, x, y ∈ Ω0,1 are in the same cylinder of length r, then
d(x, y) ≤ ar < ε. So, an ε-separated set does not contain different points of the
same cylinder of length r. On the other hand, if x, y ∈ Ω0,1 are in different cylin-
ders of length r, then d(x, y) ≥ ar−1 ≥ ε.

Take εn = 1/2n and ε′n = 1/(2n + 1). The idea is to choose an and bn such
that

(3)
Cεn(Ω2,3)
Cεn(Ω0,1)

→ 0 and
Cε′n(Ω0,1)
Cε′n(Ω2,3)

→ 0,

as n → ∞. In particular, we can take b0 = 1, a(n−1)(2(n−1)+1) = a(n−1)(2(n−1)+1)+1 =
... = an(2n+1)−1 = 1/2n and bn(2n−1) = bn(2n−1)+1 = ... = b(n+1)(2n+1)−1 =
1/(2n + 1), where n = 1, 2..... Now one can check that

an(2n+1)−1 =
1
2n

= εn > an(2n+1) and bn(2n−1)−1 >
1
2n

= εn > bn(2n−1).

Because of the proposition Cεn(Ω0,1) = 2n(2n+1), Cεn(Ω2,3) = 2n(2n−1) and the
first limit in (3) occurs.

On the other hand

an(2n+1)−1 >
1

2n + 1
= ε′n > an(2n+1) b(n+1)(2n+1)−1 =

1
2n + 1

= ε′n > b(n+1)(2n+1).

So, Cε′n(Ω0,1) = 2n(2n+1) and Cε′n(Ω2,3) = 2(n+1)(2n+1); the second limit of (3) is
valid. Now, for E = {1/2n | n ∈ N} one has µE,F (Ω2,3) = 0 and µE,F |Ω0,1 is
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the (1/2, 1/2)-Bernoulli measure, independently of F . For E′ = {1/(2n+1) | n ∈
N} one has µE′,F(Ω0,1) = 0 and µE′,F |Ω2,3 is the (1/2, 1/2)-Bernoulli measure,
independently of F . For Ẽ = {1/n | n ∈ N} = E ∪ E ′ the measure µẼ,F will
depend on F .

4. MEASURES OF DUAL COMPLEXITY

To define measures of dual complexity we proceed in the same way as in Sec-
tion 3, just replacing ε-separated sets by ε-nets.

Given ε > 0, consider an optimal ε-net Aε. Introduce the following functional

Ĩε(φ) =
1
Rε

∑
x∈Aε

φ(x).

Consider
Ĩ(φ) = lim

F
Ĩεn(φ).

Theorem 4. The functional Ĩ is independent of the choice of an optimal ε-nets
Aε.

Proof. The proof is similar to the one of Theorem 2, just instead of Proposi-
tion 6 one should use Proposition 11, formulated below.

Proposition 11. Let A be an optimal ε-net and B be an ε-net. There exists
an injective map α : A → B such that d(x, α(x)) ≤ 2ε for any x ∈ A.

Proof. Again we will use Marriage Lemma (Lemma 1). For x ∈ A let

Bx = {y ∈ B | Oε(y) ∩ Oε(x) �= ∅} ⊆ O2ε(x) ∩ B

For S ⊆ A let
BS =

⋃
x∈S

Bx.

As in the proof of Proposition 6 it is enough to show that for any S ⊆ A one has

(*) |BS| ≥ |S|.
First of all, Oε(x) ⊆ Oε(Bx), x ∈ A. Indeed, due to Oε(B) = X we have

Oε(x) = Oε(x) ∩ Oε(B) = Oε(x) ∩ Oε(Bx).

So, Oε(S) ⊆ Oε(BS).
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Now, suppose that |BS| < |S| in contradiction to (*). Then

|A\S ∪ BS | < |A|.

Moreover, Oε(A\S) ⊇ Oε(A)\Oε(S). Indeed, if z ∈ Oε(A)) and z �∈ Oε(S) then
there exists a ∈ A such that d(a, x) < ε; a cannot belong to S because z �∈ Oε(S).
Hence, a ∈ A\S, and z ∈ Oε(A\S). Thus

Oε(A\S ∪ BS) = Oε(A\S)∪ Oε(BS) ⊇ Oε(A)\Oε(S) ∪ Oε(BS)
= X\Oε(S) ∪ Oε(BS) = X,

the contradiction with minimality of A.

Definition 7. The measures νE,F (X) corresponding to ĨE,F will be called
dual measures of complexity.

Proposition 12. Let τ be an ε0-isometry and A be an ε-net, ε ≤ ε0. Then
τ(A) is also an ε-net.

Proof. Given x ∈ X we have to prove that x ∈ Oε(τ(A)). Due to surjectivity
of τ there exists y ∈ X , x = τ(y). There exists a ∈ A such that y ∈ Oε(a). By
the definition of ε-isometry x = τ(y) ∈ Oε(τ(a)).

Using Proposition 12, Proposition 7 one can prove the following analogue of
Theorem 3.

Theorem 5. Let τ be a local isometry. Then νE,F is invariant, i.e. νE,F(A) =
νE,F (τ−1(A)) for all measurable A.

We don’t know if µE,F and νE,F can be different, but we can prove the following
theorem.

Theorem 6. If there exists k ∈ N such that for any x ∈ X and any small
enough ε > 0 one has Cε(Oε(x)) ≤ k, then µ and ν are equivalent and, moreover,

1
k
νE,F (A) ≤ µE,F(A) ≤ kνE,F (A)

for any Borel set A ⊆ X .
It easily implies

Corollary 2. If d is a ultrametric (i.e. d(x, z) ≤ max{d(x, y), d(y, z)} for
any x, y, z ∈ X) then νE,F = µE,F .
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Proof. The result follows from the fact that Cε(Oε(x)) = 1 for any x ∈ X and
any ε > 0, so k = 1 in the conditions of the theorem. Indeed, for any z, y ∈ Oε(x)
one has d(z, y) ≤ max{d(z, x), d(x, y)} < ε

So, for Example 3 of Section 3 one has νE,F = µE,F . The measures in
Examples 1,2 are also coinside because of Theorem 5.

In our proof of Theorem 6 we will use the following proposition.

Proposition 13. Let A be an optimal ε-net and B be an optimal ε-separated
set. Then there exists a collection {Kx} of subsets of B, indexed by elements of
A, with the following properties:

• Kx ⊆ Oε(x) ∩ B for any x ∈ A;

• Kx �= ∅ for any x ∈ A;

• Kx ∩ Ky = ∅ for any different x, y ∈ A;

• ⋃
x∈A Kx = B.

Proof. Since B is an ε-net, it follows from Proposition 11 that there exists an
injective map α : A → B. So, we can put α(x) to Kx and distribute the points
B\α(A) among Kx so that Kx satisfy the properties claimed. (For example, we can
order A and put b ∈ B\α(A) into Kx with the smallest x ∈ A such that b ∈ O ε(x)).

Proof of Theorem 6. It is enough to show that for non-negative continuous φ

(4)
1
k
Ĩε(φ)− δε(φ) ≤ Iε(φ) ≤ kĨε(φ) + δε(φ),

where δε(φ) is the modulus of continuity of φ. Let A be an optimal ε-net and B

be an optimal ε-separated set. Let Kx be the sets of Proposition 13. ¿From the
conditions of the theorem it follows that |Kx| ≤ k and Rε ≤ Cε ≤ kRε. Then∑

y∈B

φ(y) =
∑
x∈A

∑
y∈Kx

φ(y) ≤
∑
x∈A

|Kx|(φ(x) + δε(φ)) ≤ k
∑
x∈A

φ(x) + Cεδε(φ).

Thus
1
Cε

∑
y∈B

φ(y) ≤ k

Cε

∑
x∈A

φ(x) + δε(φ) ≤ k

Rε

∑
x∈A

φ(x) + δε(φ),

that proves the right inequality in (4). Similarly,∑
y∈B

φ(y) =
∑
x∈A

∑
y∈Kx

φ(y) ≥
∑
x∈A

|Kx|(φ(x)− δε(φ)) ≥
∑
x∈A

φ(x) − Cεδε(φ).

Thus
1
Cε

∑
y∈B

φ(y) ≥ 1
Cε

∑
x∈A

φ(x) − δε(φ) ≥ 1
kRε

∑
x∈A

φ(x)− δε(φ),
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