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ON σ-LIMIT AND sσ-LIMIT IN BANACH SPACES

Sanny Li, Chifung Li, and Yuan-Chuan Li

Abstract. For bounded sequences in a normed linear space X, we introduce
a notion of limit, called the sσ-limit, and discuss some interesting properties

related to σ-limit and sσ-limit. It is shown that the space Xsσ (resp. Xσ) of

all sσ-convergent (resp. σ-convergent) sequences in X is a Banach space, and

the space Csσ is a unital Banach subalgebra of �∞ such that every Banach limit

restricted to Csσ is a multiplicative linear functional. We also use sσ-limit to

characterize continuity of functions and prove two versions of the dominated
convergence theorem in terms of σ-limit and sσ-limit.

1. INTRODUCTION

A Banach limit φ on �∞, the space of all bounded sequences in the complex

field C with the sup-norm, is a positive linear functional on �∞ such that

φ ({an+k}) = φ ({an})

for all k = 1, 2, . . ., and such that φ ({an}) = limn→∞ an whenever the limit

exists. Let πσ denote the set of all Banach limits on �∞. It is known that πσ is a

weakly∗-compact set in (�∞)∗.

In 1948, Lorentz[6] defined the σ-limit of a sequence {an} ∈ �∞ to be a

number a such that φ({an}) = a for all φ ∈ πσ. It is unique if it exists. Some

related results and their applications can be found in [1, 7-10]. The definition

of σ-limit can be generalized to �∞(X), the space of all bounded sequences in a

general normed linear space X . A sequence {xn} ∈ �∞(X) is said to have x as

a σ-limit if σ-lim〈xn, x∗〉 = 〈x, x∗〉 (i.e., φ({〈xn, x∗〉}) = 〈x, x∗〉 for all φ ∈ πσ)
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for all x∗ ∈ X∗; in this case, we write σ-limxn = x. {xn} is said to be weakly
almost-convergent to x if for every x∗ ∈ X∗

lim
n→∞

1
n

n∑
k=1

〈xk+m, x∗〉 = 〈x, x∗〉

uniformly for m ≥ 0. A bounded sequence {xn} in X has the σ-limit if and only

if it is weakly almost-convergent. See [5] for these and further generalization.

We define two new notions of convergence for bounded sequences in �∞(X) as

follows:

x is said to be a sσ-limit of {xn} if σ-lim ||xn −x|| = 0; in this case, we write

sσ-limxn = x. {xn} is said to be strongly almost-convergent to x if

s- lim
n→∞

1
n

n∑
k=1

xk+m = x

uniformly for m ≥ 0.

Clearly, the sσ-limit is weaker than the strong limit but stronger than the σ-limit,

and the strong-almost-convergence implies the weak-almost-convergence. When X

is a Euclidean space, the latter two kinds of convergence are equivalent.

The purpose of this paper is to study some properties of σ-limit and sσ-limit

and their applications to description of continuity and convergence of vector-valued

functions.

In Section 2, we examine basic properties of sσ-limit. It is seen that a bounded

sequence in a Banach space having the sσ-limit x must be strongly almost-convergent

to x (Proposition 2.4). We also show that the space Xσ of all σ-convergent sequences

and the space Xsσ of all sσ-convergent sequences in X are Banach spaces (see The-

orems 2.6 and 2.7). In particular, the space Csσ is a unital Banach subalgebra of

�∞ (see Corollary 2.9). This also implies that every Banach limit restricted to Csσ

is a multiplicative linear functional.

In Section 3, we shall study how sσ-limit is related to or implies some proper-

ties of functions, such as continuity (see Proposition 3.1), uniform continuity (see

Proposition 3.2) and measurability (see Lemma 3.3) of limit function, and dominated

convergence theorem (Theorem 3.5).

2. BASIC PROPERTIES OF σ-LIMIT AND sσ-LIMIT

Some basic properties of σ-limit on Banach spaces can be found in [5]. We

state a characterization theorem for σ-limits in the following.

Theorem 2.1. [5, Theorem 3.2(d)] Let {xn} be a bounded sequence in a
normed linear space X . Then {xn} is weakly almost-convergent to x if and only
if σ-limxn = x.
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Lemma 2.2. Let {an} be a bounded sequence of nonnegative numbers such
that σ-liman = 0. If 0 ≤ bn ≤ an for all n ≥ 1, then sσ-lim bn = 0.

Proof. For every Banach limit φ, we have 0 ≤ φ({bn}) ≤ φ({an}) = σ-

liman = 0. Therefore σ-lim bn = 0. Then we have σ-lim |bn| = σ-lim bn = 0.

Hence sσ-lim bn = 0.

Lemma 2.3. Let {xn} and {yn} be two bounded sequences in a normed
linear space X and let x ∈ X . The following statements hold.

(i) If sσ-limxn = x, then σ-limxn = x.

(ii) sσ-lim is linear, i.e., if sσ-limxn = x and sσ-lim yn = y, then sσ-lim(cxn+
yn) = cx + y for every scalar c.

(iii) Define, for every ε > 0, Eε := {n ∈ N; ||xn − x|| ≥ ε}. Then the following
are equivalent:

(a) sσ-limxn = x;
(b) σ-lim ||xn − x|| = 0;
(c) σ-lim IEε(n) = 0 for all ε > 0, where IEε is the indicator function of

the set Eε.

Proof. (i) Suppose sσ-limxn = x. For every Banach limit φ there is a λ ∈ C

with |λ| = 1 such that λφ({〈xn − x, x∗〉}) = |φ({〈xn − x, x∗〉})|. Since Φ is a

positive linear functional, we have for every x∗ ∈ X∗

|φ({〈xn − x, x∗〉})| = φ(λ{〈xn − x, x∗〉})
= φ(Re(λ{〈xn − x, x∗〉})) + ıφ(Im(λ{〈xn − x, x∗〉}))
= φ(Re(λ{〈xn − x, x∗〉}))
≤ φ({|〈xn − x, x∗〉|}) ≤ φ({||xn − x||})||x∗|| = 0.

Therefore σ-limxn = x.

(ii) Since the σ-limit is linear and ||cxn+yn−(cx+y)|| ≤ |c|·||xn−x||+||yn−y||
for all n ≥ 1, it follows from the hypothesis and Lemma 2.2 that sσ-(cxn + yn) =
cx + y.

(iii) The equivalence of (a) and (b) follows from the definition of sσ-limit.

(b) ⇒ (c). Let φ ∈ πσ and ε > 0 be arbitrary. Then we have

0 = φ({||xn − x||}) = φ({||xn − x||IEε(n)}) + φ({||xn − x||IEc
ε
(n)}),

where Ec
ε := N \ Eε. Since φ is positive, we must have

0 ≤ εφ({IEε(n)}) ≤ φ({||xn − x||IEε(n)}) = 0.
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Therefore φ({IEε(n)}) = 0 for all φ ∈ πσ and hence (c) holds.

(c) ⇒ (b). Suppose φ ∈ πσ. Then for any 0 < ε < 1

0 ≤ φ({||xn − x||})
= φ({||xn − x||IEε(n)}) + φ({||xn − x||IEc

ε
(n)})

≤ sup
n≥1

||xn − x||φ({IEε(n)}) + εφ({IEc
ε
(n)})

≤ 0 + ε.

This shows that φ({||xn − x||}) = 0 for all φ ∈ πσ and hence (b) holds.

Proposition 2.4. Let {xn} be a bounded sequence in a normed linear space
X and let x ∈ X .

(i) If sσ-limxn = x, then there is a subsequence {xnk
} of {xn} such that

s-limxnk
= x.

(ii) If sσ-limxn = x, then {xn} is strongly almost-convergent to x.

Proof. (i) Let Eε be as defined in Lemma 2.3. If sσ-limxn = x, it follows from

Lemma 2.3(iii) that φ({IEε(n)}) = 0 for all φ ∈ πσ . Therefore φ({IEc
ε
(n)}) = 1

for φ ∈ πσ and hence Ec
ε is an infinite set for all ε > 0. So there is a subsequence

{nk} of {n} such that nk ∈ Ec
1/k. Then ||xnk

− x|| < 1
k for k ≥ 1. Thus {xnk

} is

a subsequence of {xn} converging to x.

(ii) Since σ-lim ||xn − x|| = 0 and since for every positive integer n and

nonnegative integer m

0 ≤ || 1
n + 1

n∑
k=0

xk+m − x|| ≤ 1
n + 1

n∑
k=0

||xk+m − x||,

it follows by applying Theorem 2.1 to {||xn − x||} that {xn} is strongly almost-

convergent to x.

Remarks. (i) In general, σ-limxn = x does not imply sσ-limxn = x. For

example, if X = C and xn = (−1)n, n ≥ 1, then {(−1)n} is strongly almost-

convergent to 0 and hence σ- limxn = 0, by Theorem 2.1. But sσ-limxn does not

exist. In fact, if sσ-limxn = x, then x = σ-limxn = 0, by Proposition 2.3(i). Thus

we have sσ-limxn = 0, which contradicts the fact that |xn−0| = |(−1)n−0| = 1.

(ii) Clearly, strong convergence implies sσ-convergence. But the converse is not

true. For example, consider the sequence

an =
{

1 if n = 2k for some k ∈ N

0 otherwise.
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{an} does not converge to 0, while sσ-liman = 0. Indeed, we have for every

k ∈ N and 2k ≤ n < 2k+1

0 ≤ 1
n + 1

n∑
j=0

aj ≤ k + 1
2k

→ 0 as n → ∞

and

1
n + 1

n∑
j=0

aj+m = (n + 1)−1(#{k ∈ N; 0 ≤ 2k ≤ n + m} − #{k ∈ N; 0 ≤ 2k < m})

≤ log2(n + m) − log2(m) + 1
n + 1

=
1

n + 1
(log2(

n

m
+ 1) + 1)

≤ 1
n + 1

(log2(n + 1) + 1) → 0 as n → ∞

uniformly for m ≥ 1. Therefore σ-liman = 0 by Theorem 2.1. It follows from

Lemma 2.2 that sσ-liman = 0.

Theorem 2.5. Let {an} ∈ �∞ and let {xn} be a bounded sequence in a
normed linear space X . Suppose σ-liman = a and σ-limxn = x.

(a) If sσ-liman = a or sσ-limxn = x, then σ-limanxn = ax.

(b) If sσ-liman = a and sσ-limxn = x, then sσ-limanxn = ax.

Proof. Let M := sup
n≥1

(||xn||+ |an|). First, we assume sσ-liman = a. Since

||(an − a)xn|| ≤ M |an − a| for all n ≥ 1, it follows from Lemma 2.2 and Lemma

2.3(ii) that sσ-lim(an − a)xn = 0. Therefore we obtain

σ- lim(anxn) = σ- lim(an − a)xn + σ- lim(axn) = 0 + ax.

The proof of (a) for the case sσ-limxn = x is similar. Next, we assume sσ-

liman = a and sσ-limxn = x. Since for every n ≥ 1

||anxn − ax|| ≤ ||(an − a)xn|| + ||a(xn − x)|| ≤ M |an − a| + M ||xn − x||,

it follows from Lemma 2.2 that sσ-lim(anxn) = ax. This proves (b).

Remark. The sσ-lim in (b) of Theorem 2.5 can not be replaced by σ-limit.

To see this, we put an = (−1)n and xn = (−1)n then {anxn}=1 for all n ∈ N.

So,

σ- limanxn = 1 
= 0 = (σ- liman)(σ- limxn).
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We consider the following spaces of sequences in a Banach space X :

�∞(X) := the space of all bounded sequences in X equipped with the sup-norm.

Xσ := {{xn} ∈ �∞(X); σ- limxn = x for some x ∈ X}.

Xsσ := {{xn} ∈ �∞(X); sσ- limxn = x for some x ∈ X}.

Since σ-lim and sσ-lim are linear, the spaces Xσ and Xsσ are linear subspaces

of �∞(X). By Lemma 2.3(i), we have Xsσ ⊂ Xσ ⊂ �∞(X). When X = C, we

obtain from Theorem 2.5(b) that Csσ is a unital algebra.

Theorem 2.6. Suppose X is a Banach space. Then Xσ is a closed linear
subspace of �∞(X).

Proof. Suppose {w(m)} is a sequence in Xσ. Then for every m ≥ 1 there

exists ym ∈ X such that

(2.1) σ- lim〈x(m)
n , x∗〉 = 〈ym, x∗〉 for all x∗ ∈ X∗,

where w(m) = {x(m)
n } for m = 1, 2, . . .. If {w(m)} converges to a point {xn} in

�∞(X), then we have

(2.2) sup
n≥1

||x(m)
n − xn|| → 0 as m → ∞,

so that for any ε > 0 there is an integer m0 ≥ 1 such that

(2.3) sup
n≥1

||x(m1)
n − x(m2)

n || < ε for all m1, m2 ≥ m0.

First, we show that {ym} strongly converges to a point y ∈ X . It follows from

(2.1) and (2.3) that for every m1, m2 ≥ m0 and φ ∈ πσ

|〈ym1 − ym2 , x
∗〉|

= |φ({〈x(m1)
n − x

(m2)
n , x∗〉})|

≤ sup
n≥1

||x(m1)
n − x

(m2)
n || · ||x∗||

≤ ε · ||x∗||.
Therefore we have

||ym1 − ym2 || ≤ ε for all m1, m2 ≥ m0.

This proves that {ym} is a Cauchy sequence in X and hence {ym} strongly con-

verges to a point y ∈ X .



On σ-limit and sσ-limit in Banach Spaces 365

Next, we show that {xn} ∈ Xσ. For arbitrary φ ∈ πσ and x∗ ∈ X∗, using (2.1),

(2.2) and the fact that ym → y strongly as m → ∞ we have for every x∗ ∈ X∗

|φ({〈xn − y, x∗〉})|
≤ |φ({〈xn − x

(m)
n , x∗〉})|+ |φ({〈x(m)

n − ym, x∗〉})|+ | < ym − y, x∗ > |
≤ sup

n≥1
||xn − x

(m)
n || · ||x∗||+ 0 + ||ym − y|| · ||x∗||

→ 0 + 0 + 0 as m → ∞.

This shows that φ({〈xn−y, x∗〉}) = 0 for all φ ∈ πσ . Therefore σ-limxn = y and

hence {xn} ∈ Xσ. This proves that Xσ is closed in �∞(X).

Theorem 2.7. Suppose X is a Banach space. Then Xsσ is a closed linear
subspace of �∞(X).

Proof. Suppose {w(m)} is a sequence in Xsσ converging to a point {xn} in

�∞(X), i.e., (2.2) holds. Then we have for every m ≥ 1

(2.4) sσ- limx(m)
n = ym for some ym ∈ X,

where w(m) = {x(m)
n } for m = 1, 2, . . .. We need to show that {xn} ∈ Xsσ. Since

(2.4) implies σ-limx
(m)
n = ym, by the proof of Theorem 2.6, we have that {ym}

strongly converges to a point y ∈ X .

Since

||xn − y|| ≤ ||xn − x
(m)
n ||+ ||x(m)

n − ym||+ ||ym − y|| for every n, m ≥ 1,

we obtain from assumptions (2.2) and (2.4) that for every φ ∈ πσ

φ({||xn − y||})
≤ φ({||xn − x

(m)
n ||}) + φ({||x(m)

n − ym||}) + ||ym − y||
≤ sup

n≥1
||xn − x

(m)
n ||+ 0 + ||ym − y||

→ 0 as m → ∞.

Therefore sσ-limxn = y and hence {xn} ∈ Xsσ . Therefore Xsσ is closed in

�∞(X). This completes the proof.

Corollary 2.8. Suppose X is a Banach space. Let {w (m)} be a sequence
sequence in Xσ converging to a point {xn} in �∞(X). Suppose for every m ≥ 1
there is some ym ∈ X such that

(2.5) sσ- lim
n→∞〈x(m)

n , x∗〉 = 〈ym, x∗〉 for all x∗ ∈ X∗,

where w(m) = {x(m)
n } for m = 1, 2, . . . . Then
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(i) {ym} converges strongly to a point y ∈ X ;

(ii) sσ-lim〈xn, x∗〉 = 〈y, x∗〉 for all x∗ ∈ X∗.

Proof. Since (2.5) implies (2.1), it follows from the proof of Theorem 2.6 that

(i) holds. (ii) follows from Theorem 2.7 for the case X ≡ C.

The following corollary is deduced from Theorem 2.5(b) and Theorem 2.7.

Corollary 2.9. Csσ is a unital Banach algebra.

Remark. In view of Theorem 2.5(a) and Corollary 2.9, we see that every

Banach limit on Csσ is a multiplicative linear functional on Csσ. Now, suppose

{an} and {bn} are two bounded sequences of complex numbers such that sσ-

liman = a 
= 0 with inf
n≥0

|an| > 0 and sσ-lim bn = b. It follows from Proposition

3.1 by taking f(x) := 1
x that sσ-lim bn/an = b/a.

3. DESCRIPTION OF CONTINUITY AND CONVERGENCE OF FUNCTIONS IN

TERMS OF σ-LIMIT AND sσ-LIMIT.

In this section, we describe continuity and convergence of functions in terms of

σ-limit and sσ-limit.

Proposition 3.1. Let X and Y be two normed linear spaces and let f : Ω → Y
be a function, where Ω is a nonempty subset of X . If x ∈ Ω and f is locally bounded
on an open ball BΩ(x; r) with center at x, then the following are equivalent:

(a) f is continuous at x.

(b) sσ-lim f(xn) = f(x) for all those bounded sequence {xn} in BΩ(x; r) which
satisfy sσ-limxn = x.

Proof. (a) =⇒ (b): Suppose that f is continuous at x. Let {xn} be an arbitrary

bounded sequence in BΩ(x; r) such that sσ-limxn = x. It follows from Lemma

2.3(iii) that σ-lim IEδ
(n) = 0 for all δ > 0, where Eδ is defined as in Lemma

2.3(iii). Since f is continuous at x, we have for every ε > 0 there is a δ > 0 such

that ||f(y)− f(x)|| < ε whenever y ∈ Ω and ||x− y|| < δ. Thus we have

Kε := {n; ||f(xn) − f(x)|| ≥ ε} ⊂ Eδ.

Since {f(xn)} is bounded and σ-lim IEδ
(n) = 0, it follows from Lemma 2.2 that

σ-lim IKε(n) = 0. By Lemma 2.3(iii) again, we obtain that sσ-lim f(xn) = f(x).

This proves (b).
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(b) ⇒ (a): Suppose f is not continuous at x. Then there is a positive number

ε > 0 and a sequence {xn} in BΩ(x; r) such that lim
n→∞xn = x but ||f(xn) −

f(x)|| ≥ ε for all n ≥ 1. By the assumption (b), we have sσ-lim f(xn) = f(x).

By Proposition 2.4, {f(xn)} has a subsequence converging strongly to f(x). This

contradicts the choice of {xn}. Therefore f must be continuous at x.

In Proposition 3.1, the assertion sσ-limxn = x can not be replaced by σ-

limxn = x. To see this, we take X=�2, and f(x) := ||x||2, x ∈ X . Then f
is continuous. Let en, n = 1, 2, 3 . . ., be the standard coordinate unit vectors of

�2. Then en → 0 weakly, so σ-lim en = 0. But f(en) = 1 for all n ≥ 1, so

σ-lim f(en) = 1 
= f(0).
Since the function f(x) := ln (1 + |x|) , x ≥ 0, is continuous on [0,∞), it

follows from Proposition 3.1 that, for a nonnegative bounded sequence {an} in R,

if σ-liman = 0, then σ-limf(an) = 0.

Similarly, since the function f(x) := xr, where r ∈ R (the real field) is a

constant and x ∈ R such that xr is well-defined, is continuous on its natural

domain, if {an} is a sequence in the domain of f such that sσ-liman = a ∈ the

domain of f , then, by Proposition 3.1, sσ-limar
n = ar.

Proposition 3.2. Suppose Ω is a metric space and a sequence of functions
fn : Ω → X, n = 1, 2, . . . , is equicontinuous, that is, for every ε > 0, there exists
a δ > 0 such that

||fn (x) − fn (y) || < ε

for all n = 1, 2, . . . , whenever x, y ∈ Ω with d(x, y) < δ. If σ-lim fn(ω) exists
for all ω ∈ D, where D is a dense subset of Ω, then σ-limfn(ω) exists for every
w ∈ Ω and the limit function

g(ω) := σ- lim fn(ω), ω ∈ Ω,

is uniformly continuous.

Proof. We first show that g is uniformly continuous on = D. Then g can

be extended to Ω as a uniformly continuous function. Let ε > 0 be arbitrary.

Fix an φ ∈ πσ. Since {fn} is equicontinuous, there exists a δ > 0 such that

||fn (x)−fn (y) || < ε for every x, y ∈ Ω with d (x, y) < δ and for all n = 1, 2, . . ..

Hence for every x∗ ∈ X∗ and x, y ∈ D with d (x, y) < δ,

|〈g(x)− g(y), x∗〉| = |φ({〈fn(x) − fn(y), x∗〉})|
≤ φ({|〈fn(x) − fn(y), x∗〉|}) ≤ φ(ε||x∗|| · 1) = ε,

where 1 is the unit in �∞. This shows that ||g(x) − g(y)|| ≤ ε. Therefore g

is uniformly continuous on D and hence g can be extended to Ω as a uniformly
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continuous function such that ||g(x)− g(y)|| ≤ ε whenever d(x, y) < δ. Now, let

w0 ∈ Ω, φ ∈ πσ be arbitrary. Then there is a w ∈ D such that d(w, w0) < δ, so

||g(w)− g(w0)|| ≤ ε. Therefore we have for every x∗ ∈ X∗, and m = 1, 2, . . .,

|φ({〈fn(w0), x∗〉})− 〈g(w0), x∗〉|
≤ |φ({〈fn(w0)− fn(w), x∗〉})|+ |〈g(w)− g(w0), x∗〉|
≤ φ({||fn(w0)− fn(w)|| · ||x∗||}) + ||g(w)− g(w0)|| · ||x∗||
≤ ε||x∗|| + ε||x∗|| = 2ε||x∗||.

Since φ ∈ πσ, ε > 0 are arbitrary, this proves that σ-lim fn(w0) exists and is equal

to g(w0). The proof is complete.

Lemma 3.3. Suppose (Ω, Σ, μ) is a measure space and
fn : Ω → C, n = 1, 2, . . . , are Lebesgue measurable functions such that

σ- lim fn = f a.e.[μ].

Then f is measurable.

Proof. Define f (ω) := σ-limfn (ω). It follows from Theorem 2.1 that for

every m = 0, 1, 2, . . .

f (ω) = lim
n→∞

1
n

n∑
k=1

fk+m (ω) a.e.[μ].

This proves that f is measurable.

Theorem 3.4. Suppose (Ω, Σ, μ) is a measure space and let {En} be a
sequence of μ-measurable subsets of Ω such that sσ-limμ(E n)=0. If f : Ω → X is
a Bochner integrable function,whereX is a Banach space, then sσ-lim

∫
En

fdμ=0.

Proof. First, we suppose X = R. Let {En} be an arbitrary sequence of

measurable subsets of Ω such that σ-limμ(En) = 0. Let D := {f ∈ L1(μ); sσ-

lim
∫
En

fdμ = 0}. Then D is a linear space. If A is a measurable subset of Ω,

then 0 ≤ ∫
En

IAdμ = μ(A ∩ En) ≤ μ(En) for all n ≥ 0. By Lemma 2.2, we have

sσ-lim
∫
En

IAdμ = 0. Therefore IA ∈ D if μ(A) < ∞, and hence D contains all

simple functions in L1(μ). Therefore D is dense in L1(μ).

If f ∈ L1(μ), then for every ε > 0 there is a simple function h ∈ L1(μ) such

that ||f − h||1 < ε. Since h is simple, we have for every n ≥ 0

0 ≤
∫

En

|f |dμ ≤
∫

En

|f − h|dμ +
∫

En

|h|dμ ≤ ||f − h||1 +
∫

En

|h|dμ.
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This implies that for every φ ∈ πσ

0 ≤ φ({
∫

En

|f |dμ}) ≤ ε + φ({
∫

En

|h|dμ}) = ε.

Since ε > 0 is arbitrary, we have σ-lim
∫
En

|f |dμ = 0.

Finally, if X is an arbitrary Banach space and f : Ω → X is Bochner integrable,

then

||
∫

En

fdμ|| ≤
∫

En

||f(ω)||μ(dω) for all n ≥ 1.

Since σ-lim
∫
En

||f(ω)||μ(dω) = 0 by the above argument, we obtain from Lemma

2.2 that sσ-lim
∫
En

fdμ = 0. This completes the proof.

In general, if {fn} is a sequence in L1(μ) such that supn≥1

∫
Ω |fn| dμ < ∞,

the equality

(3.1) σ- lim
∫

Ω
fn dμ =

∫
Ω

σ- limfn(ω)μ(dω)

may be false. For instance, if fn := nχ[0, 1
n

], n = 1, 2, . . ., then
∫ 1
0 fn(x)dx = 1 for

all n ≥ 1 and fn → 0 a.e. and so σ-lim fn(ω) = 0 a.e. Thus
∫ 1
0 σ- limfn(ω)dω =

0, but σ- lim
∫ 1
0 fn(ω)dω = 1. The following theorem presents two versions of

dominated convergence theorem with respect to σ-limit and sσ-limit.

Theorem 3.5. Suppose (Ω, Σ, μ) is a complete measure space and X is a
complex Banach space. Then the following hold:

(a) If f, fn : Ω → C, n = 1, 2, . . . , are measurable functions such that σ-
lim fn = f a.e. [μ], and if |fn| ≤ g a.e. [μ] for some g ∈ L1(μ) and all
n = 1, 2, 3, . . . , then σ-lim

∫
Ω fnμ =

∫
Ω fdμ.

(b) If f, fn : Ω → X, n = 1, 2, . . . , are strongly measurable functions such
that sσ-lim fn = f a.e. [μ], and if ||fn(w)|| ≤ ||g(w)|| a.e. [μ] for some
g ∈ L1(μ) and all n = 1, 2, . . . , then sσ-lim

∫
Ω fnμ =

∫
Ω fdμ.

Proof. (a) Suppose σ-lim fn = f a.e. [μ]. By Lemma 3.3, f is mea-

surable. If we define hn(w) := sup
k≥0

| 1n
n∑

i=1
fi+k(w) − f(w)| for w ∈ Ω and

n ≥ 1, then hn → 0 a.e. [μ] by Theorem 2.1 (with X = C), so that f(ω) =
limn→∞ 1

n

∑n
k=1 fk(ω) a.e.[μ]. Since |fn| ≤ g a.e [μ] implies |hn| ≤ 2g a.e [μ]

for all n ≥ 1, by the dominated convergence theorem we have
∫
Ω hndμ → 0 as

n → ∞. Therefore

sup
k≥0

| 1
n

n∑
i=1

∫
Ω

fi+kdμ −
∫

Ω
fdμ| ≤

∫
Ω

hndμ → 0 as n → ∞.
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This shows that {∫
Ω fndμ} is strongly almost-convergent to

∫
Ω fdμ and hence

weakly almost convergent. Hence we must have that σ-lim
∫
Ω fndμ =

∫
Ω fdμ by

Theorem 2.1.

(b) Since sσ-lim fn = f a.e. [μ], we have σ-lim ||fn(w)− f(w)|| = 0 a.e. [μ].
By the assumption of (b) and Proposition 2.4(i), we have ||fn(w)−f(w)|| ≤ 2g(w)
a.e. [μ] for all n ≥ 1. It follows from (a) that σ-lim

∫
Ω ||fn(w)−f(w)||μ(dw) = 0.

Since for every n ≥ 1

||
∫

Ω

fndμ −
∫

Ω

fdμ|| ≤
∫

Ω

||fn(w)− f(w)||μ(dw),

it follows from Lemma 2.2 that sσ-lim
∫
Ω fndμ =

∫
Ω fdμ. This proves (b).

The ordinary dominated convergence theorem can be found in [2] for the scalar-

valued version and in [4, pg. 27] for the vector-valued version. As an application

of Proposition 3.5, we end this paper with the following analog of the Riemann-

Lebesgue lemma (cf. [3, p. 22])

Corollary 3.6. Suppose (Ω, Σ, μ) is a complete measure space and X is
a complex Banach space. Let f ∈ L1(Ω, Σ, μ). If h : Ω → R is a measurable
function such that

μ{ω ∈ Ω; (2π)−1h(ω) is an integer} = 0,

then

σ- lim
∫

Ω
f sin(nh)dμ = σ- lim

∫
Ω

f cos(nh)dμ = 0.

Proof. If θ ∈ R, then φ({eınθ}) = φ({eı(n+1)θ}) = eıθφ({eınθ}) for every

φ ∈ πσ. Therefore, for every θ ∈ R \ (2πZ), we have φ({eınθ}) = 0 for all φ ∈ πσ

and hence σ-limeınθ = 0, where Z is the set of all integers. This also implies that

σ- lim cos(nθ) = σ- lim sin(nθ) = 0 for every θ ∈ R \ (2πZ).

By the hypothesis, we have σ- limcos(nh) = σ- limsin(nh) = 0 a.e. [μ]. It

follows from Theorem 3.5(a) that

σ- lim
∫

Ω
f sin(nh)dμ = σ- lim

∫
Ω

f cos(nh)dμ = 0.
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