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ESTIMATES ON SOLUTIONS TO CERTAIN QUASILINEAR
EQUATIONS IN DIVERGENCE FORM

Tsang-Hai Kuo

Abstract. The convergence of approximations to solutions of nonlinear elliptic
equations is closely related to the structure of the equations. As examples,
we examine certain quasilinear elliptic equations with quadratic growth in the
gradient defined on bounded domains. L and H' estimates on approximating
solutions are performed to deduce the convergence to a solution in Hg(£2) N
L°°(Q). In some cases, H' a priori bound can be derived without referring
to L>° estimate. Furthermore, a W2?(€2) bound is also established to deduce
the existence of strong solutions in W22 (£2) N W, P(£2).

1. INTRODUCTION

The convergences of approximating solutions to nonlinear elliptic equations in
various function spaces are closely related to the structure of equations as well as
the constraints on nonlinear terms. As examples, we examine certain quasilinear
elliptic problems with quadratic growth in the gradient defined on bounded domains.
Let € be a bounded domain in R, N > 3, which is C'1! diffeomorphic to a ball
in RN. L,, L. D,, D are the elliptic operators defined by

2

Lyu = — Z aii(x,v) . ;x] e(z,v)u,
1,j=1
Lu = Luu,
Dau = — Z ——aij (2, v) 5— Ou + c(x, v)u,
52 8 / dx;
Du = Dyu,
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. Aa,;  Oai; .
where the coefficients a;;, ¢. and 5;7 , —g;” are bounded Carathé¢odory functions,
K2

¢ = ap > 0 for some constant ag, and Zf.vj:l aij&i&; = MEE
Let f(x,r, &) be a Carathéodory function. Consider the following quasilinear
elliptic problems
Lu = f(z,u,Vu) in €,

Du = f(x,u,Vu) in €,

where
(3) |f(,m, Ol < b(|r) +R(P)E% 0 <0 <2,

b(|r|) and h(|r|) are locally bounded functions. When b(|r|) = C, it has been shown
[2] that Equation (2) has a solution in H3(2)NL>(£2). L>, H'! estimates and then
H' convergence to a solution are established in successive steps. In Section 1, we
extend to the case b(|r|) = o(|r|). We follow the similar steps to show the existence
result of solutions in H}(£2) N L°°(€2). In case that | f(z,r, &)| < b(|r[)(1 + [£]?),
H" a priori bound can be derived without refering to the > estimate. If 0 < 6 < 2,
and the oscillations of a;;(x,r) with respect to r are sufficiently small, we shall

prove in Section 2 that there exists a solution in W2P(£2) "W, 7 (£2), 1 < p < oc.

2. H! ESTIMATE AND THE EXISTENCE OF SOLUTION

Let f,, be the truncation of f,, by + n. Consider the approximating equation
(4) Du = fp(x,u, Vu) in Q.

Notice that the map v € H}(Q2) — f,(z,v, Vv) is bounded and for every v €
H () there exists a unique w € H}(Q) satisfying D,w = f,,(v, Vv). The map
v € HY(Q) — w € H}(Q) satisfies the hypotheses of Schauder Fixed Point
Theorem, so there exists a solution u,, € Ha(£2) such that

Duy,, = f(z, un, Vu,). Moreover, by the weak maximum principle, ||w,||f~ <
k13

ap ’
Now we proceed to the H I estimate of the solutions (up). Set E, = et“%,
_ vy Aun 2 Qun
Theorem 1. Assume that f(x,r, &) < b(|r|)(1+&|?) and b(|r|) = o(|r]). Then
the approximating solutions (uy,)are H'-bounded.

Proof.  Let £ be given. Since b(|r|) = o(]r|), there exists C' and K > 0
such that b(|r|) < C for |r| < K and b(]r|) < &|r| for |r| > K. Denote Q,,, =
{@llun(2)] < K}, 0y = Q\ Ry
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Multiply the test function v,, on both sides of Equation (4),
Ou,, Ouy, ou,, Ouy, 2
Z/ nama . +2t2/ nu a”@ 8(%’]Jr/Encun

By the ellipticity, one has

A/ En|Vun|2+2t>\/ Enu3|vun|2+ao/ E,u?
Q Q Q

< / o s V)| Bl
Q

< /Q(b(|un|)(1+|Vun|2)En|un|

(6) g/ CetKQKJrg/ En|un|2+/ C| V|2 Ey, |t
in Qn2 in

+€/ |Vt |2 By 0|

2

Use Young’s inequality, the right-hand side is less than

2 4 >\ 2y C? 2
M+¢ E |wn]” + E |Vu,|” + E |un| |V,|
(7) 2\

+<€an2 |Vun|2En|un|2.

Choose = = %2, t > 4)\2 (C? + ap)) and move the last four terms of (7) to (5), we

obtain 5
/|Vun|2 < /En|Vun|2 <M

Finally, by the Poicar¢ inequality, ||w,| g1 < M- [ |

Remark 1. The Proof of Theorem 1 indicates that /! bound can be deduced
independently without employing .°° bound.

Consider now Equation (2) with f satisfying (3) when b(|r|) = C, an L™
estimate was performed in [2] by a sort of of weak maximum principle’” method.
Assume that b(|r|) = o(]r|). Then for every &, ag > &£ > 0, there exists a constant
C' > 0 such that

(8) |f (2, 1 < C+e(lr]) + h(IrDIEN



240 Tsang-Hai Kuo

Denote z,, = u,, — ﬁ, en = exp(t|z]?) and v, = e,z, . Following the demon-
stration in [2], we multiply the test function v,, on both sides of Equation (2.15)
in [2, page 28]. Observe that the additional integral € [ |z,|v, = £ [en]2]|?
on the right-hand side is dominated by [ C(u)|u,|v, > ag [ eyl |* on the left.

Thus, from the estimate in [2], u, < ﬁ for all n. In a similar way, one gets

C . _ C
o SUn by using z,, = —a T~ Un- Therefore, one concludes that

Lemma 1. Let fbe given in (3) with b(|r|) = o(|r|). Then the approximating
solutions (uy) in (4) are L>-bounded. Moreover, if f satisfies (8) then || uy, ||r~<
c

ap—E&"
Once an L bound is established, H' bound for (u,) can be further estab-
lished.

Lemma 2. Let [ be given as in (3) with b(|r|) = o(|r]). Then (u,) is H'-
bounded.

Proof. Notice that (u,) is L*°-bounded and hence h(|u,(x)|) < C; ae. for
some constant ] .
If one replaces (8) for (6) in the proof of Theorem 1, then

/ (@ s V)| ]
9]
< /Q (bt + 120 [Veta]?)) Bl

< / (C + £l + Oy [Vetn]) E ]
Q

2

A
0 2 Jo 2X Ja

2
Choose £ = <2 and ¢ > 40712, it follows from the proof of Theorem 1 that (u,) is

H'!-bounded. m

Together with Theorem 1, one can follow the steps in [2] to show that there exists
a subsequence relabeled as (u,, ), such that u,, — win H'(Q) and f, (2, u,, Vu,) —
f(x,u, Vu) in L'(Q). Therefore, by passing to the limit, one concludes that u €
H () N L>=(Q) is a solution to (2).

Theorem 2. Let f be given as in (3) with b(|r|) = o(|r|). Then there exists a
solution v € Ha(Q) N L>(Q) to (2).
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3. STRONG SOLUTIONS TO EQUATIONS IN DIVERGENCE ForM

In this section, we examine the existence of W2P(€2) N W, () solutions to
the quasilinear equations in divergence form,

N
Du=— 3% ZLa;(x,u) gL + C(z,u)u
(9) ig=1"" i /

= f(x,u, Vu) in the sense of distribution O(£2),

where the cofficients a;; € C%1(2 x R), and
(10) [f (2, O < Co+ h(lrIg), 0<0 <2

For a fixed point € RY, we denote osc a;;(w, ) the oscillation of a;;(x,r) with
respect to r, that is, osc a;j(x, r) = sup{|a;; (@, 1) — aij(x, r2)| 1 r1, 72 € R}, and
0s¢ a;; (@, r) = maxi<;, j<n 0S¢ a;(x,r).

For operators L,, we quote the following result from [35, p.191].

Lemma 3. Let Q) be a bounded domain in RN which is C'' diffeomorphic
to a ball in RN, and the cofficients a;; € COH(Q x R), |ayl, |c| <A, where A is
a positive constant, i, j= 1, ..., N. Assume that osc a;;(x,r) is sufficiently small
with respect to v and uniformly for @ € Q. Then if u € W2P(Q) N WyP(Q) and
Lyu € LP(Q),1 < p < 0o. One has the estimate

(11) [ullwze) < CUILoull o) 1 lull o)),

where C is a constant (independent of v) dependent on N,p, A\, A, 982, and €0, the
diffeomorphism and the mpduli of continuity of a;;(w,r) with respect to x in L.

Consider now Equation (1). Suppose f(z, r, £)is bounded. For v € W2P(Q) N
WO1 ?(Q2), the Dirichlet problem L,u = f(x,v, Vu) has a unique solution u €
W2P(Q) N W, () and by Theorem 2,

[ullw2e) < Cllull o) + 11/ (2,0, Vo) llLe))

An application of the Weak Maximum Principle of A.D Aleksendrov [4, p.220]
together with the Schauder Fixed Point Theorem implies that

Lemma 4. Suppose that f(x,r, &) is bounded. Then for each 1 < p < oo,
there exists a solution u € W2P(Q) N Wy ().

Proof. See|5. pll8]. ]
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Let

rs a; 81
Fa,r &) = fla,re)+ 32 it 6.6,

Oa; Oa;
Gulrr €)= Tl €+ 30 G+ D FEL,

In view of Lemma 4, there exists a W2?(Q) N W, 7(€) solution u,,., satisfying

(12) Ly = f,,(2, tn, Vi),

or equivalently,

(13) Dy, = Gn(, Uy, Vuy,).

Observe that for & > 0, |g,(z, 7, &) < Co+e+hy(r])|€]% where hy(|r]) is a locally

bounded function. By Lemma 1, |||z~ < 2—8. One can now proceed to the W2P
estimate and then show the existence of W2#(Q) N W, () solutions to (9).

Lemma 5. [fin addition to the assumption of Lemma 3 and (10), the coffi-
cients a;; are independent of v for |r| < 2—8. Then there exists a W2P-bounded

subsequence of the approximating solutions (uy,) in W27P(Q)OW01’p(Q) to Equation
(9).

Proof. As described in the above paragraphs, the approximating solutions (,,)
to (13) are L°°-bounded by 2—8. By the assumption that a;;(z,r) = a;;(x) and
consequently % =0 for |r| < 2—8
Ouy,

a%‘j '

f(m,un, Vu,) = f(2, tun, V) — Vuy,)

aij
For £ > 0, there exists C. > 0 such that [£|? < C. + £|¢]2. Combine with (10),
|fn<$7 Un, vun)| <O+ 02‘€|vun|27

for some constants C, Cs.
In view of the estimate (11), one has

lullwze < Clllunllze + 11 Fa(@, . Veo) | 22)
< 02 + ECQHV'LLnH%Qp.

Now since u,, € L>(Q) N W2P(), from the Interpolation Theorem of Gagliardo-
Nirenberg [1, p.194], we obtain

lullwzs < Co ot eChllunllwaslunll
<

Cy + £C5 L |l |2
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. ! C 1 . .
Hence, by choosing £C, 22 = 5. we conclude that [[u,[ly2r < Cs. e (uy) is

W2P-bounded.
The existence of strong solutions can now be concluded from above lemmas.
We summerize in our main theorem.

Theorem 3. Let Q) be a bounded c*-'-smooth domain in RN, N > 3. The

coefficients a;j, aac;” , aac;” , ¢ are bounded Carathéory functions. Assume that osc
a(x,r) is sufficiently small with respect to r and uniformly for x € Q,a;; are
independent of r for |r| < €2, and f satisfies (8). Then for each p, 1 < p < oo,

ap’

there exists a solution u € WP (Q) N Wy P () to (8) with ||ul|p~ < 2.

@0

Proof. By Lemma 5 we get the approximating solutions (u,,) which is W22 (2)
bounded. It follows from the compact imbedding W2P(Q) — W1P(Q) that there
exists a convergent subsequence in W 1P(), which is still denoted by (u,,), such
that u,, — u a.e.. Vu,, — Vu ae. and u,, — u in WP(Q).

Passing to the limit and using Vitali Convergence Theorem, one can show that
L, — Luin O(Q) and f,,(2, tn, Vti,) — f(2,u, Vu) in L(2). Moreover, since
||t |l w2p < M and the set

{v e W) N Wy P Dlllwnllwzs < M}

is closed in W, P(€2), the limit u of (u,) belong to W2P(Q2) N W,P(€). The
existence of solutions in W2?(€2) N W, () to Problem (9) is now asserted.  m
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