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SHAPE AND STRUCTURE OF THE BIFURCATION CURVE OF A
BOUNDARY BLOW-UP PROBLEM

Shin-Hwa Wang and Yueh-Tseng Liu

Abstract. We study the shape and the structure of the bifurcation curve f,(p)
(= V) with p := min,e(o,1) u(z) of (sign-changing and nonnegative) solu-
tions of the boundary blow-up problem

—u(x) = Af(u(x)), 0 < x <1,

li =oo = i
i, @) =00 = lim (o)

where A is a positive bifurcation parameter and the Lipschitz continuous
conacve function

—Juff ifu< —al/p,
J=falu) =4 —a if —a'/? <u<all?,
—uff ifw> at’/®,
with constants p > 1 and ¢ > 0. We mainly show that the bifurcation curve
Gy, (p) satisfies lim, ,1 oo Gy, (p) =0 and G (p) has a exactly one critical
point, a maximum, on (—o00,0). Thus we are able to determine the exact

number of (sign-changing and nonnegative) solutions of the problem for each
A>0.

1. INTRODUCTION

In this paper we study the shape and the structure of the bifurcation curve of
(sign-changing and nonnegative) solutions of the boundary blow-up problem
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—u(x) = Af(u(z)), 0 <z <1,
(1.1)

o e oo
g ) = o0 = g ul®),

where A is a positive bifurcation parameter and the Lipschitz continuous function
—|ufP if u < —al/p,
(1.2) f=faw) =< —a if —a/? <u<allp,
—Jufp ifu>al/p,
with constants p > 1 and a > 0. Note that f,(u) satisfies
(i) fa(0) = —a <0, fo(u) <0 for u >0,

(i) fo(u) = fa(—u) for u >0,
(i) f,(u) is a decreasing function on (0, co) and a concave function on (—o0, o).

Let
fow) = —|ulf.p>1, —o0o <u < oc.

For fixed p > 1, it is important to note that

falw) = fo(w) if |u| > a'/?,
(1.3)
{ fa(w) < fo(u) if —al/? <u < al/?,
and f,(u) — fo(u) uniformly in w as a — 07. For f = fo(u) = —|ul’, the

bifurcation curve of solutions of (1.1) has been studied in [14].
Blow-up solutions of the boundary value problem

{ —Au = f(u)in Q,

u = oo on Of,

(1.4)

where € is a bounded domain in RV (/N > 1) have been extensively studied; see
[1-10, 13-4]. A problem of this type was first considered by Bieberbach [3] in
1916, where f(u) = —e* and N = 2. Bieberbach proved that if ) is a bounded
domain in R? such that 92 is a C* submanifold of R?, then there exists a unique
u € C2(2) such that Au(w) = ¢ in Q and |u(z) — In(d(z)) 2| is bounded on €.
Here d(x) denotes the distance from a point 2 to 2. Rademacher [10] extended
the idea of Bicberbach to smooth bounded domain in R?. Keller [4] studied the
existence, but not uniqueness, of positive solutions of (1.4) under the assumptions
that f is continuous and decreasing on [0, c0), f(0) = 0 and [**(—F) /2 < oo,
where

F(s) : — /0 o
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For f(u) = —u? with p > 1, problem (1.4) is of interest in the study of the
subsonic motion of a gas when p = 2 (see [9]). Pohozaev [9] proved the existence,
but not the uniqueness, of positive solutions for (1.4), when f(u) = —u?. For the
case where f(u) = —u(N+2)/(N=2) (N > 2), Loewener and Nirenberg [5] proved
that if O consists of the disjoint union of finitely compact C'* manifolds, each
having codimension less than N/2 + 1, then there exists a unique positive solution
of (1.4). Marcus and Véron [6] proved the uniqueness of the positive solution of
(1.4) for f(u) = —uP with p > 1, when 90 is compact and is locally the graph of
a continuous function defined on an (/N — 1)-dimensional space.

The first result of nonuniqueness of (sign-changing and nonnegative) solutions
for (1.4) was obtained by McKenna et al. |7], in the special case when the domain
Q is a ball and f(u) = —|u|f. They proved that for 1 < p < N* (note that
N*=(N+2)/(N—-2)for N > 3and N* = oo for N = 1,2), there are
exactly two blow-up solutions: one is positive and the other one is sign-changing.
For p > N*, there is a unique blow-up solution and it is positive. Subsequently,
Aftalion and Reichel [1] studied

{ —Au = Af(u) in Q,

U = 00 on 952,

(1.5)

in bounded C?-domain €2 in RY (IV > 1). They assumed maxg f(u) < 0 and gave
growth conditions of f on +oo, and they proved that there exists a positive constant
A depending on f and €2 such that (1.5) has at least two solutions for 0 < A < A,
and has no solutions for A > .

For general nonlinearities f(u) and in one space dimension, Anuradha er al.
[2] studied (1.1) based on building a quadrature method for such boundary blow-up
solutions as follows:

Define

In={s€R: f(s) <Oand F(s) > F(u) for all u > s}.
Suppose that « is a solution of (1.1). Let

= min u(x).
P z€(0,1) ( )
Thus solution « is nonnegative if p > 0 (u is positive if p > 0) and is sign-changing
if p < 0.
The next lemma is mainly due to Anuradha et al. [2, Lemma 2.1] after slight
generalization.

Lemma 1.1.  Given A > 0 and f Lipschitz continuous, there exists a unique
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solution to (1.1) with min,c(qqyu(x) = p if and only if

(1.6) G du=+VX for pelg.

o0 1
(e): = ﬂ/ VF®) = Flw)

Wang [13, Theorems 2.2-2.3] improved some results of Anuradha et al. [2] as
follows.

Theorem 1.2. Let [ be a Lipschitz continuous function in R. If [ satisfies

(1.7) lim inf —4 ()

u—oo u(lnw)?

— L (0< L <o0),

then there exist solutions to (1.1) for some A > 0. Furthermore, G(p) is well defined
and continuous for all p € Ir. In addition, lim, .o G(p) = 0.
For f = fo(u), we let Fy(u) : = ;' fo(t)dt and

(1.8) Gy (p du for p € Ig = (—00,0) U (0, c0).

o0 1
)i= ﬁ/ VFolp) = Folw)

Recall the Gamma function as follows (see e.g. [11, p. 9]):

r@)/mfleﬂm(2>m.

0

Recently, Wang et al. [14, Theorem 2.4] computed explicitly G' s, (p) for f =
Jo(u) = —|ul? with p > 1.

Theorem 1.3. Let f = fo(u) = — |u|f with p > 1. Then

-p

Gy (p) = Mpp12 and Gy (—p) = Npp% for p > 0,

where . p—1
2 2p + 2

M,

P
p+1 r(_P
p+1

2 1 p—1 s
N, = r r + >0 forp > 1.
SR EICERY <p+1> <%+2> r(Pt3 g
2p +2

>0forp>1

Furthermore,

Gr(=p) _Np . p7

T
CSC
Grlp) M,y 2p+1)  2(p+1)

> 1 forp > 0.
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For general nonlinearity f = h(u) a negative concave function on (—oo, co)
satistfying (1.7) and lim,,_, o h(u)/u = oo, some numerical simulations in [13, Fig.
3] suggest that G’ (p) has exactly one critical point, a maximum, on (—oo, o). In
the next section, we verify it for the class of nonlinearities f = f,(u) defined in

(1.2).
2. MAIN RESULTS
For f = fo(u) defined in (1.2) with fixed p > 1, we let F,,(u) : = [ fa(t)dt

and

21) Gylp

o 1
=V?2 du (=v ) for IR =(—00,00
) f/p o T (Y forp & In=(o0, ),
(see (1.6)). First, in Theorem 2.1, we show that G5, (p) satisfieslim, 1o G, (p) =
0 and Gz, (p) has exactly one critical point at p*, a maximum, on (—oc, c0). Sub-
sequently, in Corollary 2.2, we are able to determine the exact number of (sign-
changing and nonnegative) solutions of (1.1) for each A > 0.
Recall that the hypergeometric function as follows (see e.g. [11, p. 45]):
Zalatl)--(atk=DBB+1)---(B+Ek—-1) ,

F<O"ﬂmz>§ Ky(y+ 1) (y k=1 -

Theorem 2.1. (See Figs. I and 2) Let f = f,(u) be defined in (1.2) with
p>1and a>0. Then Gy, (p) satisfies

| Grle)

= F

'
L]
'
]
'
L
10 ] il

Fig. 1. A numerical simulation of G ¢, (p) for f,(u) with p = 2, a = 10. p* =~ —3.2297.
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[ Grlo)

d=[5

3 1]
Fig. 2. Numerical simulations of G ¢ (p) for fo(u) with p = 2. a = 0.5, 1, 2, 5, 10, 20.

(i) lim, 100 Gg (p) =0 and Gy, (—p) > Gg (p) for p > 0.
(ii) G, (p) has exactly one critical point at p = p*, a maximum, on (—00, 00).

(iii)

3 1 1/(p+1)
2.2) - < Pt > a'’? < pt < —a'/P,
p—1
(v)
2:3) Gr (—a'/?) < Gy (") = max Gy, (p) < G (—a/?),
—oo< ploo
where
2 1 p—1 T 1-p
2.4 Gy a/?)y= | ——T(— ) | + %
(2.4) 7 Ca'’P) 1D <p+1> <2p+2> NATE a
2p+2
and

2 1—p p+2 p—1
Ge(—a/Py={414 /2 DY2(2p + 1)z r
fu(=a'’?) { e )E2p T ) 12

1 1 p+t2 -1 i
—/92 11/22 171/2F . . el
Va0 ) (3 Y

2.5)

(v) For fixed p > 1, p* = p*(a) satisfies lim, o+ p*(a) =0, lim, s p*(a) = —c0.
(vi) For fixed p > 1, Gy (p*(a)) is a strictly decreasing functions of a > 0, and
lim, Lo+ Gy, (p*(a)) = 00 and lim, o G ¢, (p*(a)) = 0.
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Conjecture. Some numerical simulations as in Fig. 2 suggest that p* (a) is a strictly
decreasing functions of a > 0. But we are not able to give a proof.

By (2.1), it can be computed that

Gr.(0)

> 1
- ﬂ/  du
o /—Fa(u)
1-p 1-p | 1 p+2 p—1
= 2 2V 24 /2 2p2tz | —I° I
¢ {f+ P {ﬁ <p+1> <2p+2>
st (L L2 2
pr1'2p+rl p

We omit the detailed computation; see (3.10) for F},(u). Theorem 2.1 implies immediately
the next corollary.

Corollary 2.2. (See Fig. 1) Let f = f,(u) be defined in (1.2) withp > 1 and a > 0.
Then

(i) for 0 < X < (G, (0))2, problem (1.1) has exactly one nonnegative solution and
exactly one sign-changing solution,

(if) for (G7, (0))% < X < (Gy.(p%))?, problem (1.1) has exactly two sign-changing
solutions,

(iti) for X\ = (G (p*))?, problem (1.1) has exactly one sign-changing solutions, and
(iv) for X > (Gy.(p*))?, problem (1.1) has no solution.

Example 1. (See Fig. 1) Let f = f,(u) with p = 2 and @ = 10. Then G, (0) =
4.1087, and (2.2) reduces to

—6.0492 = —7'/31/10 < p* = —3.2297 < —/10 =~ —3.1623,
and (2.3) reduces to

46016~ G (—V10) < Gy, (p*) = 4.6046 < G, (—V/10) = 5.7943,
3. PROOF OF THEOREM 2.1

First, in Theorem 2.1(i), the assertion that G ¢ (—p) > G, (p) for p > 0 follows from
the next lemma which is of independent interest.

Lemma 3.1.  Consider (1.1). In addition to (1.7), suppose that f satisfies

(i) f(u) < 0on(0,00) and f(u) is decreasing on (0,00) and is strictly decreasing on
(K, 00) for some K >0,

(i) f(—u) = f(u) for u> 0.
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Then for G(p) defined in (1.6), G(—p) > G(p) for p >0, p € Ig.

Proof of Lemma 3.1.  From (1.6), for p € IR,

G(p)

o0 du
\/5/0 VEF(p) — F(u)

20+ K () du
) NGOETA0)

and

o0 du
ﬁ/ NZEDETa0)
o0 du
ﬂ/ Vo T 0=

o0 dt
- ﬂ/ VG —Fa_g) et
du

AT VG~ Fla=2)

To prove G(—p) > G(p) for p > 0, p € IR, it suffices to show that

—F(p) by assumption (ii))

Flu—2p)for0<p<u<2p+ K,

——
R
S
[
3=
& £
VARV
[
2=
=
[
=

u— 2p) for u > 2p+ K;

) > F(u) for 0 < p<u<2p+K,
G.1)
> F

)

Case (I) (0 <) p < u < 2p. By the Mean Value Theorem, we have

2p
2F(p)+ F(u—2p

2F(p) + F(u—
{ (u) for u > 2p+ K.

{ F(p) + F(u—2p) = F(p) — F(2p— u) = (u—p) f(c1),
F(u) — F(p) = (u— p)f(c2),

where ¢; € (0, p), c2 € (p, 2p). Thus f(c1) > f(ce) which implies
2F(p) + F(u—2p) > F(u) for 0 < p < u < 2p.
Case (I) u = 2p. By assumption (i),

2F (p) > F(2p) for u = 2p.
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Case (D) 2p < v < 2p + K. By assumption (i),

2F(p) + Flu—2p) > F(2p)+ F(u—2p)
/0 * Ko+ /0 T

= ["was [ s

2p
= F(u)for2p<u<2p+ K.

Case (IV) u > 2p + K. By assumption (i),

2F(p) + F(u—2p) > F(2p) + F(u—2p)

2p u—2p
d d
f(t)dt + / f(t)at

0

” f(t)dt+/20+K f(t)dt+/u F@)dt

>
0 2p 20+ K
= F(u)foru>2p+ K.
By above, (3.1) holds and hence G(—p) > G(p) for p > 0, p € Ig. [ ]

We are now in position to prove Theorem 2.1.

Proof of Theorem 2.1.
Part (i). By Theorem 1.2, we obtain lim, .o G, (p) = 0. By (1.3), (1.8) and (2.1),
we easily obtain the comparison result

(32) (0<) G, (p) < Gplp) (= Ny (=p) =) for p < 0;

we omit the details of the proof. Hence lim, , o, G, (p) = 0 since lim, , o Gz (p) =0
and p > 1. The fact that G (—p) > Gy, (p) for p > 0 was proved above by applying
Lemma 3.1.

Part (ii). First, since f,(u) is nonincreasing on [—a'/?, c0), it follows by [2, Theorem
3.4] that G4, (p) is strictly decreasing on [—a'/?, 00).

For G, (p) in (1.6), G'; (p) can be easily computed, see e.g. [12, p. 273]. We have,
for p < —a'/?,

, _ * 0,(p) — 0,(u)
/ I St
(3.3) Gfa(p) —9o1 2//) p(AFa>3/2 du,

where AF, = F,(p) — F,(u) and
(3.4 0o(x) = 2F,(x) — o f,(x).
We compute that

(3.5) 0, (x) = falx) — xf, (),
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(3.6) 0, (x) = —af; (x).

Moreover, G’Jia (p) can be computed from (3.3), ¢f. [12, p. 273]. We have, for p < —al/?,

3 3 / /
L [ 3 10a00) = 0] (ML) + (AF) 60, (p) — ()
(B.7) G (p) =2 /p EIINAE du,
where Afo = pfa(p) — ufa(w).
Recalling a result of Smoller and Wasserman [12, p. 282], we obtain
" M !
38)  GY(p+ 2, L (p)
M ~ 3, - - .
o B [PARY—(ATNAR)]+ DAL -2AT)AF) - (AF)(AF,)
= /p pQ(AFa)5/2 du

where Af! = p2f" (p) — u2f! (u) and M is a constant to be chosen. Let the numerator of
the integrand of the above integral be Q); ie.,

M _ _ _ .
(9 Q=5 [ASEY — (AF)AF)]| + (M)~ AATNAF) — (AL)AF,).
Now, for f = f,(u) defined in (1.2), we obtain

1
—(—u)pHJrLa% if u<—at/?,
“ p+1 p+1
(3.10) F,(u) = / fa)dt = —au if —a'/P<u<all?,
0

— ! wbtl — b — if uw>al/?

pr1 pir1”

and
p(—w)P~ 1 ifu < —al/?,

frluy=< 0 if —a/? <u<all?,
—puP1 ifu>al/?,

where f/ (u) does not exist only at uw = £a'/?.
We choose M = p+ 1 in (3.8) and (3.9), and we compute that
(a) For p < —a'/?, p < u < —al/?,

Q = T [28R) — AJIAF)] 4 HAL) ~2AAF)BR) ~ (Af)AR)
(1=p) [M = (p+ D] [(~w)P*! = (=p)r1]

2(p+1)2
0 since M =p+ 1.
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(b) For p < —a'/?, —a'/? < u < al/?,
-

Q = pa >{(p+1)au +(3p—1){

2(p + 1 = (o

+2paT — al/p(—p)p+1 — 3pa1/p(—p)p+1} )

In the above quadratic polynomial in u:

+

(p+ Dau? + (3p = 1) [aF = (=)™ [t 205 — (8p + /P (=p) Y,

+

the two coefficients (p + 1)a > 0 and (3p — 1)[a™®» — (—p)PT!] < 0 since p > 1, a > 0,
and p < —a'/?. So
pa el +1
- 1 3p—1 [ —(=p)? }
Q 2(p+1){(p+ Jau® + (3p — 1) (=p)"" | u

+2pa”s — (3p o+ 1)601/”(—P)p+1}

< 50D {4+ Da(=at + @3p—1) [«

+2pa’s — (Bp + 1>a1/f°<—p>f°“}

+

_ (_p)pﬂ} (—al/?)

ptl

- Gl -

< 0 (since p < —a'/P).

(¢) For p < —a'/? w > a'/? it is easy to see that

ptl

P [6p+ D+ dpa — 3+ D]

Q E
(p+1)
paPTl [—(3p+ l)apTl +4pa% - (Bp+ 1)a%}
<
(p+1)
2pt2
= —2pa, P
< 0.

By (a)-(c) above, for p < —al/P(< 0), we choose M =p+1 in (3.8) and we conclude that

—G = 5
5y 1) /p p2 e
Q

/p / —al/p PQ(AFOL)O/Q

al/e P (AFG>O/2

G% (p) +

al/P

du

+
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Since Gy, (p) is strictly decreasing on [—a'/P, c0) and lim, -, G, (p) = 0, we conclude
that G'¢ (p) has a exactly one critical point, a maximum, at p = p* for some p*, on
(=00, —a'/?] and hence on (—o0, 00). The proof of part (ii) is complete.

Part (iii). In above, we obtain p* < —a!/?. To show

3 1 1/(p+1)
_<ppj1> Ctl/p<p*7

it suffices to show

?

1/(p+1)
3p+ 1) al/p

3.11 G 0 fi < —
G.11) ()= 0o p < — (2

which is shown as follows. By (3.4)-(3.6), it is easy to see that, for f = f,(u) in (1.2),

0,(0) =0, lim 6,(u) =—oc0, lim 6,(u) = o0,

0! (u) = fa(u) = —a < 0 for —a'/? < u < al/?,
—plp—D(—uw)P1 <0 ifu<—al/?,
O (w) = —ufl!(u) =< 0 if —al/? <wu<all?,
plp— DuP™! >0 if u > al/?.

Thus, it follows that 6, (u) has exactly two critical points at —a'/? (a local maximum) and
a*/? (a local minimum) such that

3 1 1/(p+1) » »
0. (_ < Pt ) a’? ) = 0,(aVP) = —a"F < 0,(0) =0 < 0,(—a"/P) = o

p—1

and 6, (u) is strictly increasing on (—oo, —a'/?), strictly decreasing on (—a'/?, a'/?), and
strictly increasing on (al/ P 00). Thus by (3.3), Inequality (3.11) follows. So (2.2) is proved.

Part (iv). Equality (2.4) follows immediately from Theorem 1.3, and Equality (2.5)
from (2.1), after some simple computations which we omit.
By parts (i1)-(iii),

Gfa<_a1/p> S Gfa(/)*) - maXGfa<p>'
P

By (3.2), we obtain

N,
Gy, (p) < G, (p) = 711,;1 for p < 0.
(=p)2

Moreover, since Gz, (p) is strictly increasing for p < 0 and since p* < —a'/? we obtain
Gr.(p") = max G, p) < G (o) < Gpo(—al/?),

So part (vi) follows.
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Part (v). For fixed p > 1, Inequality (2.2) implies immediately that lim,_q+ p*(a) =0
and lim, o0 p*(a) = —o0.

Part (vi). For fixed p > 1, Inequality (2.3) implies immediately that lim, o+ G ¢, (p*(a)) =
oo and lim, oo Gy, (p*(a)) = 0. By (1.2) and (2.1), for 0 < a1 < ag, it is easy to show
the comparison result Gy, (p) > Gy, (p) for p < 0; we omit the details of the proof.
Thus by Parts (ii) and (iii), Gy, (p*(a1)) > Gy, (p*(az)). Hence Gz, (p*(a)) is a strictly
decreasing functions of a > 0.

The proof of Theorem 2.1 is now complete. ]
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