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ON LOCAL STABLE REDUCTION OF SINGULARITY (ya − xb)(yp − xq)

Pyung-Lyun Kang and Sun-Mi Sun

Abstract. We consider a local stable reduction of a family of curves with
smooth fibers except a central fiber that has a singularity like (ya − xb)(yp −
xq).

1. INTRODUCTION

We consider one-dimensional family of curves with smooth fibers except a cen-
tral fiber. By the local stable reduction theorem, after suitable blow-ups, base
changes and contractions of some rational curves we obtain a family extending the
original family such that the new central fiber is a stable curve. The local stable
reduction process(see [1] or [2]) can be divided in two parts; one is an embedded
resolution of the singularity of the central fiber and the other is to make the curve
obtained in the first part reduced via base changes and following normalizations.
Both are well known and not hard to work out. The singularity of type yp − xq

is called a toric singularity and the above question for a toric singularity has been
studied in [3] and [4].

In this short paper we give a simple description for both parts when the central
fiber C0 has only one singularity locally given by (ya − xb)(yp − xq), a singularity
that is locally given as a union of two toric singularities. For the resolution part
we may assume that C0 ⊂ S0 = SpecC[[x, y]]. Let P0 = (0, 0) and call X0, Y0

the branches of C0 given by yp − xq and ya − xb respectively. If f : S → S0 is
a minimal embedded resolution of C0 and E the divisor of exceptional curves of
f , then we have the following. For the precise definition of a minimal embedded
resolution, see [3].

Proposition 1. E forms a chain of exceptional curves if
q

p
�= b

a
.
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Proposition 2. Let E and F be distinct components of E that meet the proper
transform of a branch y p − xq and the proper transform of a branch y a − xb

respectively and let E1 be the exceptional curve in E we get from the first blow
up. Then the greatest common divisors of the multiplicities of any two adjacent
components of E are as follows:

(Type A) suppose a subchain from E1 through E does not contain F, then the
greatest common divisor of the multiplicities of any two adjacent exceptional curves
between E1 and E is p + a, the greatest common divisor of the multiplicities of
any two adjacent exceptional curves between E and F is (q, a), and the greatest
common divisor of the multiplicities of any two adjacent exceptional curves between
F and the other end is q + b;

(Type B) suppose a subchain from E1 through E contains F, then the greatest
common divisor of the multiplicities of any two adjacent exceptional curves between
E1 and F is p + a, the greatest common divisor of the multiplicities of any two
adjacent exceptional curves between F and E is (p, b), and the greatest common
divisor of the multiplicities of any two adjacent exceptional curves between E and
the other end is q + b.

Theorem. Let π : S0 → ∆∗ be a flat family of smooth projective curves of
genus g ≥ 2 over a punctured open disk ∆∗ degenerating to an irreducible curve
C0 ⊂ S0 with only one singular point P topologically equivalent to (y a−xb)(yp−
xq) with 2 ≤ p ≤ q. Suppose that S0 is smooth. Then this family can be extended
via stable reduction theorem to a flat family π̃ : S̃ → ∆, new central fiber of which
is a stable curve consisting of three components: the normalization C of C 0, Ē and
F̄ of genus, respectively,




g(Ē) =
1
2
{pq + aq − (p, q)− p − a − (q, a)}+ 1

g(F̄) =
1
2
{aq + ab − (a, b)− q − b − (a, q)}+ 1

for type A




g(Ē) =
1
2
{pq + pb − (p, q)− q − b − (p, b)}+ 1

g(F̄) =
1
2
{ab + bp − (a, b)− p − a − (p, b)}+ 1

for type B

g(C) = pa(C0) − δ(P0)

where g(C) is a genus of C, pa(C0) is an arithmetic genus of C0. Here, C meets
Ē and F̄ respectively at (p, q) and (a, b) points, and Ē and F̄ meet at (q, a) points.
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Using a genus formula of a connected nodal curve, one also gets

δ(P0) =




1
2
{ab− a − b + (a, b)} +

1
2
{pq − p − q + (p, q)}+ aq for type A

1
2
{ab− a − b + (a, b)} +

1
2
{pq − p − q + (p, q)}+ bp for type B

Note that δ(yp − xq) = 1
2{pq − p− q + (p, q)} and that, when P0 is a singular

point of a curve D in a surface, that δ(P0) can be computed as
∑

1
2mQ(mQ − 1)

taken over all infinitely near singular points Q lying over P0 including P0 where
mQ is a multiplicity at Q of some subsequent partial normalization of D. See [4]
for example.

2. EUCLIDEAN ALGORITHM

We introduce Euclidean algorithm of two pairs of integers p, q and a, b, respec-
tively:

(1)
s−1 = q, s0 = p, si−1 = siri+1 + si+1,

0 ≤ si+1 < si, sk+1 = 0 for 0 ≤ i ≤ k;

(2)
d−1 = b, d0 = a, di−1 = dici+1 + di+1,

0 ≤ di+1 < di, dh+1 = 0 for 0 ≤ i ≤ h.

Here sk = (p, q), dh = (a, b), where (a, b) denotes the greatest common divisor
of two integers a, b. Note c1 = 0 and d1 = b if a > b. Define four sequences
{pi}, {qi}, {ai}, {bi} of integers as follows:

(3) p−1 = 0, p0 = 1, · · · , pi = pi−2 + pi−1ri for 1 ≤ i ≤ k + 1;

(4) q−1 = 1, q0 = 0, · · · , qi = qi−2 + qi−1ri for 1 ≤ i ≤ k + 1;

(5) a−1 = 0, a0 = 1, · · · , ai = ai−2 + ai−1ci for 1 ≤ i ≤ h + 1;

(6) b−1 = 1, b0 = 0, · · · , bi = bi−2 + bi−1ci for 1 ≤ i ≤ h + 1.

Then as in [4],

(7) si = (−1)i(ppi − qqi) for − 1 ≤ i ≤ k + 1

(8) di = (−1)i(aai − bbi) for − 1 ≤ i ≤ h + 1



632 Pyung-Lyun Kang and Sun-Mi Sun

(9) (pi, pi+1) = (qi, qi+1) = (ai, ai+1) = (bi, bi+1) = 1.

Define m to be the largest integer between 0 and h such that

(10) ci = ri for all i ≤ m.

Then ai = pi and bi = qi for all i ≤ m. Note m = 0 if c1 �= r1.
We now briefly review the case of a toric singularity in [4].
Let X0 ⊂ S0 = SpecC[[x, y]] be given by yp − xq(= 0) and let fi : Si → Si−1

the i-th blow up from S0 at P0 = (0, 0) where Ei an exceptional curve of fi. Let
Xi the proper transform of X0 in Si and Pi = Xi ∩Ei. Write (i) =

∑i
l=1 rl. Then

we have

Lemma 1. [4, Lemma 2.4] X(i)+l is tangent to E(i) for 0 ≤ l < ri+1 and
on the minimal resolution S (k+1) of X0 ⊂ S0 the proper transform X of X 0 meets
only E(k+1) at (p, q) points transversely. Moreover all exceptional curves {E l|1 ≤
l ≤ (k + 1) =

∑k+1
j=1 rj} on S(k+1) form a chain with E1 and Er1+1 as its two

end components. The exceptional curves E(i)+l where i is even and 1 ≤ l ≤ ri+1

lie between E1 and E(k+1), while E(i)+l where i is odd and 1 ≤ l ≤ ri+1 lie
between Er1+1 and E(k+1) in increasing order of subindex. The multiplicity of
each component is as follows:

(11) mPj (Xj) = si for
i∑

l=1

rl ≤ j <
i+1∑
l=1

rl

(12)

m(E(i)+l) = l{m(E(i)) + si} + m(E(i−1)) for 1 ≤ l ≤ ri+1

=

{
lppi + ppi−1 for even i

lqqi + qqi−1 for odd i

(13) m(E(i)) =

{
ppi for odd i

qqi for even i .

For the proof of proposition 1, we state the following lemma 2, the proof of
which is clear.

Lemma 2. Suppose that f : X ′ → X is a birational morphism of smooth
surfaces that is a blow-up at a point P lying on a chain F of rational curves in
X . Then f∗(F ) forms a chain if and only if either P is an intersection point of
two components of F or P lies on the end component of E .
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3. PROOFS OF THREE STATEMENTS IN SECTION 1

For the resolution part we assume that C0 ⊂ S0 = SpecC[[x, y]] is a union of
two curves yp − xq and ya − xb. We let P0 = (0, 0) and X0, Y0 the branches of
C0 given by yp − xq and ya − xb respectively. We now blow up S0 at P0 until we
resolve one component X0 of C0 completely as in Lemma 1. Let fi : Si → Si−1

be the blow-up of Si−1 at Pi−1, Ei the exceptional divisor of fi, Xi the proper
transforms of Xi−1 respectively, Pi = Xi ∩ Ei, f̃i = fi ◦ fi−1 ◦ · · · ◦ f1, and E i

the union of exceptional curves of f̃i. Suppose the proper transforms of X0 and
Y0 separate first time on Si0+1 (See the proof of Proposition 1 and equation (14)).
Then for 1 ≤ i ≤ i0 + 1, we let Yi be the proper transform of Yi−1 under fi and
Ci = Xi+Yi. For, i > i0+1, Yi0+1 remains unchanged under fi. Thus we still call
Yi0+1 for the inverse image of Yi0+1 under fi for i > i0 + 1. Then the exceptional
curves E(k+1) in S(k+1) form a chain by Lemma 1.

Remark. Consider the case that is excluded in Proposition 1: h = k, ci =
ri for all i ≤ k + 1. Then S(k+1) is a minimal resolution for both X0 and Y0

meeting each of their transforms only one exceptional curve E(k+1). Therefore
S(k+1) becomes a minimal resolution of C0 if and only if X(k+1) and Y(k+1) do
not meet along E(k+1). If this happens (ya − xb)(yp − xq) is analytically (and
topologically) equivalent to ya+p − xb+q and we have

b + q = (a + p)r1 + d1 + s1, di−1 + si−1 = (di + si)ri+1 + (di+1 + si+1).

If they meet, it produces triple points which are the intersection of X(k+1), Y(k+1)

and E(k+1). Therefore we need more blow-ups at these triple points to get a minimal
resolution and due to Lemma 2 we cannot have a chain of exceptional curves on a
minimal resolution.

Proof of Proposition 1. If m = h+1, then Y0 is resolved completely on S(h+1).
So, the minimal resolution space S of C0 is S(k+1) and E = E(k+1) forms a chain.
Now assume m ≤ h and cm+1 < rm+1, otherwise we exchange the roles of X0

and Y0. Since ri = ci for i ≤ m and cm+1 < rm+1, Xl and Yl are tangential to the
same exceptional curve by Lemma 1 for

(14) l <
m+1∑
i=1

ci =
m∑

i=1

ri + cm+1 = i0.

On Si0 , Xi0 and Yi0 meet at Pi0 while Xi0 is tangent to E(m) and Yi0 is tangent to
Ei0 . Therefore, Yi0+1 becomes separated from Xi0+1 but still passes the intersection
point of Ei0+1 and Ei0 . Now the minimal embedded resolution S of C0 is that of
Yi0+1 ⊂ S(k+1) and E is a union of (proper transforms if necessary) of Ei and Fj
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where 1 ≤ i ≤ (k + 1) and [m + 1] + 1 ≤ j ≤ [h + 1]. Therefore E is a chain due
to Lemma 1 and 2.

Proof of Proposition 2. Call F i the exceptional curves we get from the resolution
of Yi0 (so, of Y0). Note that the subindex in Fi is the number of blow-ups when
we resolve the singularity of Y0. Since Cj = Xj + Yj and mPj (Cj) = mPj (Xj) +
mPj (Yj) for 1 ≤ j ≤ i0 = (m) + cm+1, we have, due to Lemma 1,

(15) m(E(i)) =
{

ppi + aai for odd i ≤ m

qqi + bbi for even i ≤ m

(16)

m(E(i)+l) = l{m(E(i)) + si + di} + m(E(i−1)) if i ≤ m

and 1 ≤ l ≤ ci+1

m(E(m)+l) = l{m(E(m)) + sm} + m(E(m−1)) + cm+1dm

+dm+1 if cm+1 < l ≤ rm+1.

Thus, we have

m(E(m)+1) = rm+1{m(E(m)) + sm}+ m(E(m−1)) + cm+1dm + dm+1

=
{

ppm+1 + bqm+1 if m is even
qqm+1 + apm+1 if m is odd

from (1)-(8), (12), (15) and (16). Note that

i ≥ m + 1 =⇒ m(E(i)+l) = l{m(E(i)) + si}+ m(E(i−1)), for 1 ≤ l ≤ ri+1.

So, we have

m is even and i ≥ m + 1 =⇒ m(E(i)) =
{

ppi + bqi for odd i

qqi + bqi for even i ;

m is odd and i ≥ m + 1 =⇒ m(E(i)) =
{

ppi + api for odd i

qqi + api for even i .

Let [i] =
∑i

l=1 cl. Then E(m)+cm+1
= F[m+1]. By (16) and (3)-(9),

m(F[m+1]) =
{

aam+1 + pam+1 if m is even
bbm+1 + qbm+1 if m is odd .

Since

m(F[m+1]+1) = m(F[m+1]) + sm + dm+1 + m(E(m))

m(F[m+1]+l) = l(m(F[m+1]) + dm+1) + m(E(m)) + sm for 1 ≤ l ≤ cm+2

m(F[i]+l) = l(m(F[i]) + di) + m(F[i−1]) for i > m + 1 and 1 ≤ l ≤ ci+1,
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we have

m is even and i ≥ m + 1 =⇒ m(F[i]) =
{

aai + pai for odd i
bbi + pai for even i;

m is odd and i ≥ m + 1 =⇒ m(F[i]) =
{

aai + qbi for odd i

bbi + qbi for even i.

For the remaining part of proof, we assume that m is odd. Recall from the proof of
Proposition 1, Yi0+1 becomes separated from Xi0+1 but still passes the intersection
point of Ei0+1 and Ei0 where i0 = (m)+cm+1. Since m is odd, Ei0 and Ei0+1 lies
between Er1+1 and E(k+1). Therefore all exceptional curves Ej between E1 and
E(k+1) will be remained untouched when we resolve Yi0+1 and F[h+1] which meets
the normalization of Y0 at (a, b) distinct points will lie between E i0 and Ei0+1. So,
if m is odd, we get a type A. Similarly, we get a type B if m is even.

We divide the chain as a sum of subchains G 1, G2, G3, G4, G5, where

G1 = {E(i)+l | i : even , 1 ≤ l ≤ ri+1}
G2 = {E(i)+l | i : odd , (i) + l ≥ (m) + cm+1 + 1, 1 ≤ l ≤ ri+1}
G3 = {F[i]+l | i : even, 1 ≤ l ≤ ci+1}
G4 = {F[i]+l | i : odd, 1 ≤ l ≤ ci+1}
G5 = {E(i)+l | i : odd, (i) + l ≤ (m) + cm+1, 1 ≤ l ≤ ri+1}

Note that G1 and G2 is connected by E(k+1) and that G3 and G4 by F[h+1]. When
we compute the greatest common divisors of two adjacent exceptional curves, we
use the easy fact

(a + bc, b) = (a, b), for every integer a, b, c.

For two adjacent exceptional curves in G1 with i ≤ m,

(m(E(i)+l), m(E(i)+l+1)) = (m(E(i−1)), m(E(i)) + si + di)

= (ppi−1 + aai−1, ppi + aai)

= (p + a)(pi−1, pi)

= p + a;

(m(E(i)+l), m(E(i)+l+1)) = (m(E(i−1)), m(E(i)) + si)

= (ppi−1 + api−1, ppi + api)

= (p + a)(pi, pi−1)

= p + a.
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For two adjacent components of G2,

(m(E(i)+l), m(E(i)+l+1)) = (m(E(i−1)), m(E(i)) + si)

= (qqi−1 + api−1, qqi + api) = (qqi−1 + api−1, qqi−2 + api−2)

= · · · = (qq0 + ap0, qq−1 + ap−1) = (a, q); (m(E(m)+l), m(E(m)+l+1)) = (a, q).

Similarly, one can show

(m(Fl), m(Fl+1)) = (q, a) if Fl, Fl+1 ∈ G3

(m(Fl), m(Fl+1)) = q + b if Fl, Fl+1 ∈ G4

(m(El), m(El+1)) = q + b if El, El+1 ∈ G5

by (3)-(9). Also, one has to compute (m(E(i), m(E(i+1)+1)) whenever they meet.
Finally, we know, by Lemma 1, that the proper transforms of X0 and Y0 meet only
E(k+1) and F[h+1] respectively. Put

E = E(k+1), F = F[h+1].

Proof of Theorem. We explain only type A. Let π′ : S → S0 → ∆ be a
composition of π and all blow-ups we have taken for the resolution of C0. Note
that in this theorem C0 is connected and π−1(0) = C+

∑
E∈E m(E)E . Note that C

is the proper transform of C0 which is the normalization of C0. Since a new central
fiber is not reduced, we take a base change of order of the least common multiple of
all components of E and a normalization S′ to make the central fiber reduced. Note
that as far as the multiplicities of two adjacent components are relatively prime the
intersection points are always ramified. Because of this reason, S′ is ramified over
C and, on each component G of E , only the base change of degree m(G) will make
something happen to G. Therefore, except the components E and F , we have p+a

copies of E1, (q, a) copies of G2 and G3, and q +b copies of G4 and G5; while each
copy of E1 meets the curve Ē over E , one end of each copy of G2 meets Ē , one
end of each copy of G3 meets F̄ over F , and one end of each copy of G4 meets F̄ .
We always use Hurwitz formula to compute g(X) of a finite morphism f : X → Y

of curves. Remember that X is rational if f : X → P
1 is completely branched at

two points.
Since C is ramified under this base change, we have Ē → E is a degree q′(p+a)

morphism totally ramified at sk points, evenly (p+a)-ramified at one point, evenly
(q, a)-ramified at one point; F̄ → F is a degree a′(q+b) morphism totally ramified
at dh points, evenly (q+b)-ramified at one point, evenly (q, a)-ramified at one point
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Therefore, by Hurwitz formula, we have

g(Ē) =
1
2
{pq + aq − sk − p − a − (q, a)}+ 1

g(F̄ ) =
1
2
{ab + aq − dk − q − b − (q, a)}+ 1

For the formula of δ(P0), we recall the genus formula ([2], p.48) of a connected
nodal curve which extends the arithmetic genus of an irreducible nodal curve: if
D has δ nodes and ν irreducible components D1, D2, · · · , Dν of geometric genera
g1, g2, · · · , gν, then

g(D) =
( ν∑

i=1

gi

)
+ δ − ν + 1.

Since genera of all fibers of a flat family of curves are constant, we have

g = g(π̃−1(0)) = g(C) + g(Ē) + g(F̄ ) + (p, q) + (a, b) + (q, a)− 3 + 1

Since g(C) = pa(C0)− δ(P0) = g − δ(P0), we have

δ(P0) = g(Ē) + g(F̄) + (p, q) + (a, b) + (q, a)− 2

=
1
2
{ab − a − b + (a, b)}+

1
2
{pq − p − q + (p, q)}+ aq

Contracting all copies of rational exceptional curves from S′, we get π̃ : S̃ → ∆
in Theorem. Note that the contraction of (q, a) copies of G2 and G3 makes that Ē

and F̄ intersect at (q, a) points.
Similarly, we get type B if m is even. If this happens, we have that Ē → E is

a degree q′(p + a) morphism totally ramified at sk points, evenly (q + b)-ramified
at one point, evenly (p, b)-ramified at one point; F̄ → F is a degree a′(q + b)
morphism totally ramified at dh points, evenly (p+a)-ramified at one point, evenly
(p, b)-ramified at one point. So, Hurwitz gives the answer.

Remark. As in [4], one can describe tails Ē and F̄ as plane curves from the
information of ramifications. If we have a singular point that is a union of several
toric singularities, we get the similar formulas according when each component
becomes separated from the others.
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