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A GENERAL THEOREM FOR THE GENERALIZED WEYL
FRACTIONAL INTEGRAL OPERATOR INVOLVING THE
MULTIVARIABLE H-FUNCTION

S. P. Goyal and Ritu Goyal

Abstract. In this paper we establish a very general and useful theorem which
interconnects the Laplace transform and the generalized Weyl fractional inte-
gral operator involving the multivariable H-function of related functions of
several variables. Our main theorem involves a multidimensional series with
essentially arbitrary sequence of complex numbers. By suitably assigning dif-
ferent values to these sequences, one can easily evaluate the generalized Wey!I
fractional integral operator of special functions of several variables. We have
illustrated it for Srivastava-Daoust multivariable hypergeometric function. On
account of general nature of this function a number of results involving special
functions of one or more variables can be obtained merely by specializing the
parameters.

1. INTRODUCTION

() The generalized Weyl fractional integral operator occurring in this paper is
defined as follows
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provided that the integral on right-hand side of (1.1) converges absolutely.
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In (1.1) and elsewhere H |z, ..., z;] stands for the multivariable H-function
introduced by H. M. Srivastava and R. Panda through a series of research papers
([9], [10], [11]). This function is defined and represented in the following manner
(see, e.g. [8, p.251. Eqg. (C.1)]).
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More details of this function can be found in above cited book and research
papers. Also {mg,ny} stands for mq,nq;...; mg, ng and {( 5 ),fyj(k))l,pk} stands

for the sequence of % ordered pairs ( Cjs fyj)lpu e ( ﬁk), yj(k)) 1Lpg-

(b) The multivariable hypergeometric functlon introduced by Srivastava and
Daoust [6, p. 454] is defined as follows
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The multiple series (1.5 ) converges absolutely (see [7]) for all 24, ..., z;, where
Q; >0orfor@; =0and |z| < p;, (1 =1,2,....1) where, p; is defined by equation
(5.3) in [7, p. 157] and
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In this paper we shall establish a theorem which interconnects the well-known
multidimensional Laplace transform

Y(81, ey Sk) = L{f (21, ..., TL); S1, .., Sk}

o0 k
(1.8) = [ ... [ exp(— ) siz;)f(z1,..,zE)dx;...dx
Re(s;) > 0,i€{1,2,...,k}

o
0 -
and generalized Weyl FIO (defined by (1.1)) of related functions. This theorem is
then applied to evaluate generalized Weyl FIO of the Srivastava- Daoust multivari-
able hypergeometric function defined by (1.5). Several (known and new) special
cases of our results are mentioned briefly. Our findings may be useful in handling
the problems involving Weyl FIO, as our results involve certain special functions
that are highly useful in fractional calculus. It may be remarked here that much
more general multidimensional integral transformations than (1.8) were considered
in [11].

2. A GENERAL THEOREM AND ITS COROLLARIES

Theorem. Let {4, ., } be a sequence of arbitrary complex numbers,
Re(s;) > 0, Re(u;) > 0, 1 > 0, 9 € Ryi € {1,....,k}and j € {1,....1},
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and
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and the multiple series on the R.H.S. of (2.1) converges absolutely.

Proof. On substituting the value of h(xzq, ..., xg; u1, ..., u;) from (2.1) in (2.2)
and evaluating the multidimensional Laplace transform, we find that
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where Re(s;) > 0, Re()\;) > 0, ufj) eR,ie{l,.. k},je{1,...,1} and multiple
series on R.H.S. of (2.5) is absolutely convergent.

Again taking the multidimensional Laplace transform of the multivariable H-
function and replacing x; by (z; — ;) and using first shift rule therein, we get
(2.6)
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where H(x — v) is the well-known Heaviside Unit function and H [z, ..., 2] =
{H[z1, ..., z1]},— Also,
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The sufficient condition of validity for (2.6) are
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Now applying the multidimensional analogue of the Parseval-Goldstein theorem
for the Laplace transform for the pairs (2.2) and (2.6), we have
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Substituting the series form of h(xz1, ..., zg; u1, ..., u1) from (2.1), ¥ (1, ..., zk)
from (2.7) in the R.H.S. of (2.8) and interchanging the order of integration and
summation therein and then evaluating the x-integral thus obtained, we arrive easily
at the required result (2.3).

(i) Taking | = k and choosing, ui(j) =0,%# j and ui(i) = y; in our main
theorem, we immidiately get
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provided that the conditions (modified appropriately) given with the main theorem
are satisfied.

(i) Lettingp=q¢q=0,m; =1, n=p;, ¢ > ¢+ 1,0, =1 Vi=1,2, ..k,
all v ’s and ¢’s equal to unity in (2.3) and using the known result [8, p.18, Eq.
(2.6.3)] therein, we have after a little simplification

Corollary 2.
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where h(z1,...zk;u1,,...,uw) and g(z1,...zk;u1,, ..., ;) are given by (2.1) and
(2. 2) respectively. The conditions of validity for (2.12) are
(a) v; > 0, Re(y;) > 0 and v, ) ¢ R, (j=1,2,..,1)
(b) pz<qzorpz—qz—i—1W|th]zZi<116{1 Lk}
(c) the multiple series on the R.H.S. of (2.12) converges absolutely.

(iii) Further, taking p; = 1, ¢; = 0, z; = v; and replacing pu; +¢; by p; (i=1,...,k)
in Corollary 2 and using known results [5, p. 74, Eq. (1); 8, p. 91, Eq. (6.4.19)]
we arrive at the following interesting result contained in

Corollary 3.

WD (g (@ e T ULy ey UL); ULy eey VR

(oo} (oo} k
) —
//H{(i))xt 7’}g(x1,..,xk; ULy eeey Up)ATT ... AT,
Uk

V1 T i=1 F (Mt

0 l . L@ l
2.13 e - 2 v e .
eR (M {w POy )
i J A =

j=1 j=1

—1
! !
DN = pi + ¢ + Z V,-(J)Tj) (F()‘i +ci+ Z V,-(J)Tj))



The Generalized Weyl Fractional Integral Operator Involving the Multivariable H-Function 565

If we take £ = [ and ufj) =0 for ¢ # j and ui(i) = y; in Corollary 3, we get
result due to Goyal and Garg [3, p.274, Theorem 2]. Again taking I = 2, &k = 1,
vy = v = 11in (2.13), we arrive at the known Theorem 3 due to Jain and Pathan
[4, p.53, Eq. (29)] and for I =2, k =1, v; = 0, v, = 1, the Corollary 3 reduces
to Theorems 1 and 2 due to them. Also for k = 1, the main Theorem reduces to a
result recently given by the authors [2].

3. FURTHER CONSEQUENCES AND APPLICATIONS

If we choose {A4,, .} as given by (1.6), then from (1.5), (2.1) and (2.2) we

-----
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provided that Re(s;) > 0, Re(\;) > 0, z/fj) eR", (i=1,..,k;j=1,..1) and
the conditions mentioned with (1.6) are satisfied.

Substituting the value of {4, .} and g(z1, ...z u1,, ...,) in (2.3) of the
main theorem, then using (1.2), (1.5) and [8, p. 254, Egq. (C.9)] therein and
reinterpreting the expression so obtained in terms of H-Function of (k+I) variables,
we finally obtain
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The conditions of validity of (3.3) are

() v; >0, 0; > 0,09 e R, i € {1,2,.k}, j € {1.2,...1}
RE()\Z‘)—FJZ‘ min Re(dj/éj)>1 and
1<j<m;
Re(pi)—o; max Re{(c;—1)/v;} >0,
1<j<n;

(i) ©; >0, |argz| < 1Q;m, where Q; is defined by (2.4)
Vie {1,2,..k}
(iii) the conditions (modified appropriately ) which are given just below (1.6).
Next we mention certain interesting special cases of the aforementioned result
by considering following examples:
(i) Ifweletl=1andt=w =0 in (3.3) and use a known result (c.f., e.g. [8, p.

19, Eq. (2.6.11)]) therein, we obtain the following result involving the Fox-Wright
Psi- function.
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The conditions of validity for results (3.4) and (3.5) are easily obtainable from

the main result (3.3), however we prefer to omit them.
(if) Also on taking £ = 1, [ = 2 in (3.5) we arrive at a known result due to Jain

and Pathan [4, p.54, Eqg. (3.4)], which also contains another two results (3.6) and

(3.8) due to them. Finally on taking [ = k, u(J) =0 for i # j and v, @ — Vi, We
get the result (4.5) due to Goyal and Garg [3] as a special case of our result (3.5).
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