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VECTOR SUPERIOR AND INFERIOR

Y. Chiang

Abstract. Let (Z , C) be an ordered Hausdorff real topological vector space.
Some conditions for assuring that a nonempty set K ⊂ Z has a nonempty supe-
rior or inferior are established. Ordering-conically compact ordered Hausdorff
real topological vector spaces are introduced so that in such a space every
nonempty bounded below (respectively, bounded above) set has a nonempty
inferior (respectively, superior).

1. INTRODUCTION

In this paper, all topological vector spaces are assumed to be real topological
vector spaces. Let Z be a topological vector space. A cone C in Z is called proper
if it is not the whole space Z . Note that a closed convex cone C ⊂ Z is proper if
and only if IntC does not contain the zero vector, where IntC denotes the interior
of C.

Let C be a proper closed convex cone in Z with IntC �= ∅. Then C induces a
reflexive and transitive order �C on Z defined by x �C y whenever x, y ∈ Z with
y − x ∈ C. When there is no confusion, we shall simply write x � y or y � x
if x �C y. We shall also write x ≺ y or y � x whenever y − x ∈ IntC. Let
(Z , C) denote the space Z together with the order induced by C, called an ordered
topological vector space. The cone C is called an ordering cone in Z .

Let X be a Hausdorff topological space, and let K be a nonempty subset of X .
A real valued bifunction f on K×K is called topologically pseudomonotone [2, p.
410] if for any net {xα} staying in a compact subset of K and converging to x̂ with

lim inf
α

f(xα , x̂) ≥ 0 ,

its limit x̂ satisfies
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lim sup
α

f(xα , y) ≤ f(x̂ , y) for all y ∈ K .

The notion of topological pseudomonotonicity has been generalized in [3] to bifunc-
tions f of K × K into an ordered topological vector space.

In a very recent paper, Chadli, Schaible and Yao established an existence result
for regularized equilibrium problems with the corresponding real functions topolog-
ically pseudomonotone. See Theorem 3.1 in [4]. The motivation for this work was
an attempt to prove a vector version of the theorem. Topological pseudomonotonic-
ity, in both scalar and vector cases, is essentially based on the notions of superior
and inferior. This paper is devoted to studying vector superior and inferior. The
work for properties of vector topologically pseudomonotone functions will appear
elsewhere.

Let K be a subset of an ordered topological vector space (Z , C). Several kinds
of vector superior Sup (K, C) and vector inferior Inf (K, C) of K with respect to
C have been defined in literature. See [1, 6, 7, 10, 11] and references therein.

In [1, 6, 10, 11], Sup (K, C) and Inf (K, C) are defined to be subsets of the
closure K of K. While in [7], Sup (K, C) and Inf (K, C) could be disjoint from K
[7, Example 1.7]. The definitions of Sup (K, C) and Inf (K, C) given in [1, 6, 11]
are essentially the same. In [10], the points of vector inferior of K are called strictly
C-infimal points of K, and the set of strictly C-infimal points of K is written by
Inf s(K, C).

In this paper, we shall consider vector superiors and inferiors defined in [1].
From now on, Sup (K, C) and Inf (K, C) are respectively used for the vector
superior and inferior of K defined in [1]. In [8], elements of the inferior of K
are called weakly efficient points of K with respect to C. See [8] Chapter 2,
Proposition 2.3. We shall prove in Remark 2.1 that Inf s(K, C) ⊂ Inf (K, C) and
Inf s(K, C) may not coincide with Inf (K, C).

Let K be a subset of an ordered topological vector space (Z , C).

(i) K is called bounded below with respect to C if there is a z ∈ Z such that
K ⊂ z + C.

(ii) K is called bounded above with respect to C if there is a z ∈ Z such that
K ⊂ z − C.

If K is nonempty, then K is bounded below with respect to C if and only if there
is a z ∈ Z such that z � x for all x ∈ K, and K is bounded above with respect to
C if and only if there is a z ∈ Z such that x � z for all x ∈ K.

It is well known that any nonempty bounded below (respectively, bounded above)
subset of IR has an infimum (respectively, supremum), where IR is the set of all real
numbers. The main work of the paper is to find conditions on a nonempty bounded
above (respectively, bounded below) subset K of an ordered Hausdorff topological
vector space for assuring that K has a nonempty superior (respectively, inferior).
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The rest of the paper is organized as follows. In Section 2, we recall the
definitions of vector superior and inferior, and establish some preliminary results.
In Section 3, we state the main theorems (Theorems 3.3, 3.4 and 3.7). Also, in
Section 3, we define a family of ordered Hausdorff topological vector spaces, called
ordering-conically compact, so that in such a space every nonempty bounded below
(respectively, bounded above) set has a nonempty inferior (respectively, superior),
(see Theorem 3.7). The proofs of the main theorems are given in Section 4.

In the sequel, for any subset A of a topological space X , we shall denote by Ac

the complement of A in X , A the closure of A in X , IntA the interior of A in X ,
and ∂A the boundary of A.

2. VECTOR SUPERIOR AND INFERIOR

Throughout this section, let (Z , C) denote an ordered topological vector space.
For a subset K of Z , the superior of K with respect to C is defined by

Sup (K , C) = {x ∈ K : (x + IntC) ∩ K = ∅} ,

and the inferior of K with respect to C is defined by

Inf (K , C) = {x ∈ K : (x− IntC) ∩ K = ∅} .

Remark 2.1. For any K ⊂ Z , according to Tanaka, a point x ∈ Z is a strictly
C-infimal point of K if and only if x ∈ K and (x − C) ∩ K = {x}. Since x is
not in x − IntC, we have x ∈ Inf (K, C) if x is a strictly C-infimal point of K .
Therefore, Inf s(K, C) ⊂ Inf (K, C).

The following example illustrates that Inf s(K, C) may not equal to Inf (K, C).
Let Z = IR2, let C = {(x, y) ∈ IR2 : x ≥ 0 and y ≥ 0} and K = {(x, y) ∈ IR2 :
x > 0 or y > 0}. Note that the origin lies in Inf (K, C) but not in Inf s(K, C).

In the rest of this section, we shall consider the superior and inferior of subsets
of Z with respect to a fixed ordering cone C. Therefore, we shall simply write

Sup (K , C) = Sup K and Inf (K , C) = Inf K .

Remark 2.2. For any subset K of Z , one proves easily that

(i) Inf (−K) = −Sup K and Sup (−K) = −Inf K;

(ii) Inf K = Inf K and Sup K = Sup K.

For a proof of (ii), see [3, Proposition 2.1].
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Proposition 2.3. Assume that Z is Hausdorff. If K ⊂ Z , then Sup K and
Inf K are closed.

Proof. By Remark 2.2 (i), it suffices to show that Inf K is closed. Assume
that Inf K is nonempty. Let x be any point in the closure of InfK, and let {xα}
be a net in Inf K converging to x. Note that x ∈ K since xα ∈ K for all α. To
complete the proof, we have to show that (x − IntC) ∩ K = ∅.

Suppose on the contrary that there is a point v ∈ IntC such that x − v ∈ K.
Since lim

α
(x−v−xα) = −v ∈ −IntC, there is an α such that x−v−xα ∈ −IntC.

Thus

x − v = xα + (x − v − xα) ∈ (xα − IntC) ∩ K .

This is a contradiction to the definition of xα. Hence, (x − IntC) ∩ K = ∅.
In the following proposition, we give a necessary condition for a point lying in

the inferior or superior of a nonempty subset of an ordered Hausdorff topological
vector space.

Proposition 2.4. Assume that Z is Hausdorff, and let K be a nonempty subset
of Z .

(i) If x ∈ Inf K, and if v ∈ IntC, then (x + v − IntC) ∩K �= ∅, i.e., there is a
xv ∈ K such that xv ≺ x + v.

(ii) If x ∈ SupK, and if v ∈ IntC, then (x − v + IntC) ∩ K �= ∅, i.e., there is a
xv ∈ K such that xv � x − v.

Proof. We shall prove (i). By Remark 2.2 (i), the statement (ii) will follow.
Note that x + v − IntC is open in Z , and that

x = x + v − v ∈ (x + v − IntC) .

Since x ∈ K, there is a net {xα} in K converging to x. Thus, x + v − IntC must
contain some xα. This completes the proof.

The following theorem is important to our later discussion.

Theorem 2.5. Let Z be Hausdorff, and let K be a nonempty subset of Z . If
x ∈ K, then

Inf (K ∩ (x − C)) ⊂ Inf K and Sup (K ∩ (x + C)) ⊂ Sup K .

Proof. For every x ∈ K, let LK(x) = K∩(x−C) and UK(x) = K∩(x+C).
Note that LK(x) and UK(x) are closed and satisfy :
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x ∈ LK(x) ∩ UK(x) and LK(x) ∪ UK(x) ⊂ K .

We shall prove Inf LK(x) ⊂ Inf K. By a similar argument, one proves SupUK(x) ⊂
Sup K.

There is nothing to prove if Inf LK(x) = ∅. Let z ∈ Inf LK(x) be arbitrary. By
definition, z ∈ LK(x) ⊂ K and (z − IntC) ∩ LK(x) = ∅. We claim that

(z − IntC) ∩ K = ∅ .

This implies z ∈ Inf K = Inf K, and completes the proof.
Suppose on the contrary that there is a v1 ∈ IntC such that y = z − v1 ∈ K.

Since z ∈ LK(x) ⊂ x − C, then z = x − v2 for some v2 ∈ C, and

y = x − (v1 + v2) ∈ x − C .

Thus, y ∈ LK(x) ∩ (z − IntC). This is a contradiction.

3. THE MAIN THEOREMS

To state our main results, we first relate an ordered Hausdorff topological vector
space (Z , C) to a continuous (real) linear functional on Z .

From [5] Theorem IV.3.3 and its proof, we obtain :

Proposition 3.1. If (Z , C) is an ordered Hausdorff topological vector space,
there is a continuous linear functional ϕ : Z −→ IR such that IntC ⊂ {z ∈ Z :
ϕ(z) > 0}. Consequently,

−IntC⊂ {z∈Z :ϕ(z)<0}, C⊂{z ∈ Z :ϕ(z)≥0} and −C ⊂ {z∈Z :ϕ(z)≤0}.

Let Cϕ = {z ∈ Z : ϕ(z) ≥ 0}. The set Cϕ is a closed half space bounded by
the hyperplane kerϕ. Thus ∂Cϕ = kerϕ. Note that (Z , Cϕ) is also an ordered
Hausdorff topological vector space.

Proposition 3.2. Let (Z , C) be an ordered Hausdorff topological vector
space, and let ϕ and Cϕ be given above. Then C = Cϕ if and only if (IntC)c is a
convex cone in Z .

Proof. I f C = Cϕ, then (IntC)c = −C is a convex cone. Since C = Cϕ if
and only if

IntC ={z ∈ Z : ϕ(z)>0}, −IntC={z ∈ Z : ϕ(z)<0} and ∂C = ker ϕ = ∂(−C) ,

it remains to show that if (IntC)c is a convex cone, then the above assertions hold.
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First, we prove that Z = C ∪ (−C). This implies that kerϕ ⊂ ∂C ∪ ∂(−C)
by Proposition 3.1. Since (IntC)c is a proper closed convex cone, we have

Int(IntC)c ∩ [−Int(IntC)c] = ∅ .

By definition, Cc = Int(IntC)c and −Cc = −Int(IntC)c. Therefore,

(C ∪ (−C))c = Cc ∩ (−Cc) = ∅ and Z = C ∪ (−C) .

Next, we prove that ∂C ⊂ ker ϕ. This implies that ∂C ∪ ∂(−C) = kerϕ, and
that

IntC = {z ∈ Z : ϕ(z) > 0} and − IntC = {z ∈ Z : ϕ(z) < 0} .

Suppose on the contrary that ϕ(v0) �= 0 for some v0 ∈ ∂C. If ϕ(v0) > 0, then
by the continuity of ϕ there is a neighborhood U of v0 such that ϕ(v) > 0 for all
v ∈ U . Thus U ∩ (−IntC) = ∅. Since Z = C ∪ (−C), Cc is an open subset of
−C. Thus

Cc = −IntC and U ∩ Cc = ∅ .

This is a contradiction to the definition of v0. By a similar argument, one is led to
a contradiction if ϕ(v0) < 0.

Finally, we have to show that kerϕ ⊂ ∂C. Let v ∈ ker ϕ be arbitrary, and let
U be an arbitrary open neighborhood of v. Since a non-constant linear functional
on a Hausdorff topological vector space is an open map [9, (8.3.2), p.153], ϕ(U)
is an open neighborhood of 0 ∈ IR. There is an ε > 0 such that (−ε , ε) ⊂ ϕ(U).
This implies that

U ∩ IntC �= ∅ and U ∩ (−IntC) �= ∅ .

Since −IntC = Cc, we obtain v ∈ ∂C. Therefore, kerϕ ⊂ ∂C.

For C and Cϕ given above, let N be the vector in IntCϕ such that ϕ(N ) = 1.
It is well known that Z = 〈N 〉 ⊕ ∂Cϕ, where 〈N 〉 is the vector subspace of Z
spanned by N . Let Π : Z −→ 〈N 〉 and Π0 : Z −→ ∂Cϕ be the canonical
projections.

Now, we state our main theorems as follows.

Theorem 3.3. Assume that (Z , C) is an ordered Hausdorff topological vector
space. Let ϕ : Z −→ IR be the linear functional given in Proposition 3.1, and let
K ⊂ Z be nonempty.

(i) If K is bounded below with respect to C, and if there is an x 0 ∈ K such
that the set ϕ(K ∩ (x0 − C)) is closed in IR, then Inf (K , C) is nonempty.
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(ii) If K is bounded above with respect to C, and if there is an x 0 ∈ K such
that the set ϕ(K ∩ (x0 + C)) is closed in IR, then Sup (K , C) is nonempty.

Theorem 3.4. Let (Z , C) be an ordered Hausdorff topological vector space,
let ϕ : Z −→ IR be the linear functional given in Proposition 3.1, let Π 0 be the
canonical projection of Z onto kerϕ, and let K ⊂ Z be nonempty. Assume that
Z is locally convex.

(i) If K is bounded below with respect to C, and if there is an x 0 ∈ K such
that the set Π0(K ∩ (x0 − C)) is compact, then Inf (K , C) �= ∅.

(ii) If K is bounded above with respect to C, and if there is an x 0 ∈ K such
that the set Π0(K ∩ (x0 + C)) is compact, then Sup (K , C) �= ∅.

The following two corollaries are immediate consequences of Theorem 3.3.

Corollary 3.5. Assume that (Z , C) is an ordered Hausdorff topological vector
space, and let K ⊂ Z be nonempty.

(i) If K is bounded below with respect to C, and if there is an x 0 ∈ K such
that K ∩ (x0 − C) is compact, then Inf (K , C) is nonempty.

(ii) If K is bounded above with respect to C, and if there is an x 0 ∈ K such
that K ∩ (x0 + C) is compact, then Sup (K , C) is nonempty.

Corollary 3.6. Assume that (Z , C) is an ordered Hausdorff topological vector
space. If K is a nonempty compact subset of Z , then Inf (K , C) and Sup (K , C)
are nonempty.

We end this section by introducing ordering-conically compact spaces. Let K

be a nonempty subset of an ordered Hausdorff topological vector space (Z , C),
and assume that K is bounded below with respect to C. Let z ∈ Z be such that
K ⊂ z + C. Clearly,

K ∩ (x − C) ⊂ (z + C) ∩ (x − C) for any x ∈ K .

If (z + C)∩ (x−C) is compact, then so is K ∩ (x−C). It follows from Corollary
3.5 that Inf (K , C) is nonempty. This leads to the following definition.

Definition of ordering-conically compact space An ordering-conically com-
pact space is an ordered Hausdorff topological vector space (Z , C) with the property
that for any two x, y ∈ Z , the set (x− C) ∩ (y + C) is compact.

For instance, (IR , IR+) is ordering-conically compact, where IR+ is the set of
non-negative real numbers. For one more example, let C be any proper closed
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convex cone in IR2 with nonempty interior. If C is pointed, i.e., C ∩ (−C) = {0},
then (IR2 , C) is ordering-conically compact.

Theorem 3.7. Let (Z , C) be an ordering-conically compact space, and let
K ⊂ Z be nonemtpty.

(i) If K is bounded below with respect to C, then Inf (K, C) is nonempty.
(ii) If K is bounded above with respect to C, then Sup (K, C) is nonempty.

4. PROOFS OF MAIN THEOREMS

This section is devoted to proving Theorems 3.3 and 3.4. Throughout this
section, (Z , C) is an ordered Hausdorff topological vector space.

We shall use the notation given in Section 3. In the rest of the paper, we simply
write x � y for x �Cϕ y whenever x, y ∈ Z . Note that x � y or y � x for x,
y ∈ Z since Z = Cϕ ∪ (−Cϕ).

Lemma 4.1. Let K ⊂ Z be nonempty, and let x ∈ Inf (K, Cϕ) and x̂ ∈
Sup (K , Cϕ). Then the following statements hold.

(i) x � x � x̂ for all x ∈ K.
(ii) If x′ � x for all x ∈ K, then x′ � x.
(iii) If x � x′ for all x ∈ K, then x̂ � x′.

Proof. By Remark 2.2 (i), we only have to show that x � x for all x ∈ K ,
and that x′ � x whenever x′ � x for all x ∈ K .

Suppose that there is an x0 ∈ K such that x0 − x = −v for some v ∈ IntCϕ.
Then we are led the contradiction x0 = x−v ∈ (x− IntCϕ)∩K. Therefore, x � x

for all x ∈ K.
By assumption, −x′ + K ⊂ Cϕ. Since the map z �−→ −x′ + z is a home-

omorphism of Z onto itself, −x′ + K = (−x′ + K) ⊂ Cϕ. This implies that
−x′ + x ∈ Cϕ and x′ � x.

Remark 4.2. By Lemma 4.1, if Inf (K, Cϕ) (respectively, Sup (K, Cϕ)) is
nonempty, then K is bounded below (respectively, bounded above) with respect to
Cϕ.

This is not true for any ordered Hausdorff topological vector space. For instance,
let Z = IR2, let C = {(x, y) ∈ IR2 : x ≥ 0 and y ≥ 0}, and let K = {(0, y) : y ∈
IR}. Then K = Inf (K, C) = Sup (K, C). But K is neither bounded above nor
bounded below.

Corollary 4.3. Let K ⊂ Z be nonempty, and let x̂ ∈ K .
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(i) x̂ ∈ Inf (K , Cϕ) if and only if x̂ � x for all x ∈ K .
(ii) x̂ ∈ Sup (K , Cϕ) if and only if x̂ � x for all x ∈ K .

Proof. We only prove (i). By Lemma 4.1, it remains to show that x̂ ∈
Inf (K , Cϕ) if x̂ � x for all x ∈ K. Since K ⊂ x̂ + Cϕ,

(x̂ − IntCϕ) ∩ K ⊂ (x̂ − IntCϕ) ∩ (x̂ + Cϕ) = ∅ .

Therefore, x̂ ∈ Inf (K , Cϕ).

Corollary 4.4. Let K ⊂ Z be nonempty. If x ∈ K , then

Inf (K, Cϕ) = Inf (K ∩ (x− Cϕ), Cϕ) and Sup (K , Cϕ) = Sup (K ∩ (x + Cϕ) , Cϕ) .

Proof. It follows from Corollary 4.3 that

Inf (K , Cϕ) ⊂ Inf (K ∩ (x − Cϕ) , Cϕ) and Sup (K, Cϕ) ⊂ Sup (K ∩ (x + Cϕ), Cϕ).

Now, the corollary follows immediately from Theorem 2.5.

Lemma 4.5. If z, z′ ∈ Z , then

(i) z � z′ if and only if ϕ(z) ≤ ϕ(z ′), and
(ii) z ≺ z′ if and only if ϕ(z) < ϕ(z ′).

Proof. Since ϕ(z ′ − z) = ϕ(z′) − ϕ(z),

z � z′ ⇐⇒ z′ − z ∈ Cϕ ⇐⇒ ϕ(z′) − ϕ(z) ≥ 0 ;
z ≺ z′ ⇐⇒ z′ − z ∈ IntCϕ ⇐⇒ ϕ(z′) − ϕ(z) > 0 .

From Corollary 4.3 and Lemma 4.5, we obtain :

Corollary 4.6. Let K ⊂ Z be nonempty.

(i) Inf (K , Cϕ) �= ∅ if and only if there is an x̂ ∈ K such that ϕ(x̂) ≤ ϕ(x) for
all x ∈ K.

(ii) Sup (K , Cϕ) �= ∅ if and only if there is an x̂ ∈ K such that ϕ(x̂) ≥ ϕ(x)
for all x ∈ K.

Lemma 4.7. If K ⊂ Z , then Inf (K, Cϕ) ⊂ Inf (K , C) and Sup (K, Cϕ) ⊂
Sup (K , C).
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Proof. We assume that K is closed, and prove that Inf (K, Cϕ) ⊂ Inf (K, C) as
follows. Let x ∈ K. If x ∈ Inf (K , Cϕ), then (x− IntC)∩K ⊂ (x− IntCϕ)∩K =
∅. Therefore, x ∈ Inf (K, C).

Now, we are ready to prove Theorems 3.3 and 3.4.

Proof of Theorem 3.3 (i). We assume that K is closed. By Theorem 2.5, it
suffices to show that Inf (K0 , C) �= ∅, where K0 = K ∩ (x0 −C). By assumption,
there is a z0 ∈ Z such that K ⊂ z0 + C. Since

K0 ⊂ (z0 + C) ∩ (x0 − C) ⊂ (z0 + Cϕ) ∩ (x0 − Cϕ) ,

we have ϕ(z0) ≤ ϕ(x) ≤ ϕ(x0) for all x ∈ K0 by Lemma 4.5. This proves that
ϕ(K0) is compact in IR since it is closed in IR. There is an x̂ ∈ K0 such that

ϕ(x̂) = min
x∈K0

ϕ(x) .

Thus, x̂ ∈ Inf (K0 , Cϕ) by Corollary 4.6. The proof is complete by Lemma 4.7.

Proof of Theorem 3.4 (i). We assume that K is closed. Let K0 = K∩(x0−C)
and let A = Π0(K0). There is a z0 ∈ Z such that K ⊂ z0 + C. Recall that Π is
the orthogonal projection of Z onto 〈N 〉, and that ϕΠ(z) = ϕ(z) for all z ∈ Z .
By writing ϕ(x0) = t and ϕ(z0) = r, we have

Π(K0) ⊂ {λN : λ ∈ IR with r ≤ λ ≤ t} .

This implies that K0 ⊂ IB = {λN + z : r ≤ λ ≤ t and z ∈ A}. Note that IB is
the image of set [r , t]×A mapped by the continuous function Ψ : IR×∂Cϕ −→ Z
defined by

Ψ(λ , z) = λN + z for λ ∈ IR and for z ∈ ∂Cϕ.

Since [r , t]× A is compact, IB is compact, and so is K0. This implies that ϕ(K0)
is closed. Now, the theorem follows from Theorem 3.3.
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