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THE POWER INDICES FOR MULTI-CHOICE MULTI-VALUED GAMES

Chih-Ru Hsiao

Abstract. We extend the simple multi-choice game to a multi-valued multi-
choice game. We prove that the Shapley value for multi-valued multi-choice
games is unique and coincides with the Shapley value for multi-choice coop-
erative games.

1. INTRODUCTION

The set of all traditional simple games is not close under addition, therefore
when we restrict the domain of the Shapley value to the set of all simple games,
the Shapley value becomes very complicated. It is well-known that Dubey solved
the problem in [2] (1975). In that paper, Dubey showed that the Shapley value for
simple games is unique and coincides with the Shapley value for cooperative games.

In chapter 2, 3, 4 in [3] (1991), we extended the traditional Shapley value to the
Shapley value for multi-choice cooperative games. For abbreviation, we call the
Shapley value for multi-choice cooperative games the multi-choice Shapley value.

In chapter 8 in [3] (1991), we extended Dubey’s result to simple multi-choice
games. In that chapter, we restricted the domain of the multi-choice Shapley value
to the set of all simple multi-choice games, and got a result analogous to Dubey’s
result in [2] (1975) i.e. we showed that the Shapley value for simple multi-choice
games is unique and coincides with the multi-choice Shapley value.

In this article, we will extended Dubey’s result to an even more complicated
game called the multi-valued multi-choice game. We will show that the Shapley
value for multi-valued multi-choice games is unique and coincides with the multi-
choice Shapley value. Therefore, we may use the multi-choice Shapley value as the
power indices for the players in a multi-valued multi-choice game.
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2. DEFINITIONS AND NOTATIONS

Following [5] (1993), we have the following definitions and notations.
Let N = f1; 2; : : : ; ng be the set of players. We allow each player to have

(m + 1) actions, say ¾0; ¾1; ¾2; : : : ; ¾m, where k is the level of action ¾k.
Let ¯̄̄ = f0; 1; : : : ; mg. The action space of N is defined by ¯̄̄n = f(x1; : : : ; xn) j

xi 2 ¯̄̄ ; 8i 2 Ng. Thus (x1; : : : ; xn) is called an action vector of N , and xi = k
if and only if player i takes action ¾k.

Definition 2.1. A multi-choice cooperative game in characteristic function
form is the pair (¯̄̄n; V ) defined by V : ¯̄̄n ! R, such that V (000) = 0, where
000 = (0; 0; : : : ; 0).

We can identify the set of all multi-choice cooperative games by: G ' R(m+1)n¡1.
As we allow players to have more than two choices, we should expect some

differences due to actions. Since we do not assume that action ¾2 is say, twice
as powerful as action ¾1, and since we do not assume that the difference between
¾k¡1 and ¾k is the same as the difference between ¾k and ¾k+1, etc., giving weights
(discrimination) to actions is necessary.

Let w : ¯̄̄ ! R+ be a non-negative function such that w(0) = 0, w(0) <
w(1) ∙ w(2) ∙ : : : ∙ w(m); then w is called a weight function and w(i) is said
to be a weight of ¾i.

Remark 2.1. In the real world, people used to estimate the value of an action
before the players execute the action in a game. Therefore we regard w(i) as a
prior value, or say prior power index of action ¾i, without discrimination on the
players.

We define the value, or say power index for multi-choice cooperative games by
Áw : G ! Mm£n such that

Áw(V ) =

0BBB@
Áw

11(V ) : : : Áw
1n(V )

Áw
21(V ) Áw

2n(V )
...

...
Áw

m1(V ) : : : Áw
mn(V )

1CCCA :

Here Áw
ji(V ) is the power index or the value of player i when he takes action

¾j in game V .

Remark 2.2. Player i has the value Áw
ji(V ) only after he executes ¾j in game

V . Therefore, we regard Áw
ji(V ) as the posterior value, or say posterior power

index of action ¾j for player i in game V .

In [5] (1993), we showed that when w is given, there exists a unique Áw

satisfying five axioms analogous to the axioms of the traditional Shapley value.
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Definition 2.2. Given x 2 ¯̄̄n, let

V x(y) =

(
1 if y ¸ x

0 otherwise;

then V x is called a multi-choice unanimity game.

Axiom 1. Given an action space ¯̄̄n and the weights w(0); w(1); : : : ; w(m),
for each multi-choice unanimity game

V x(y) =

(
1 if y ¸ x

0 otherwise;

the value Áw
xi;i

(V x) is proportional to w(xi).
The above Axiom is similar to Shapley’s original Axiom of the weighted Shapley

value for unanimity games. However, we give weights to the actions rather than
the players. Therefore, our multi-choice Shapley value is symmetric in columns
(players) and asymmetric in rows(actions), please see [3] for detail.

Given two action vectors x = (x1; x2; :::; xn), y = (y1; y2; :::; yn), we define

x _ y = (maxfx1; y1g; maxfx2; y2g; :::; maxfxn; yng)

and
x ^ y = (minfx1; y1g; minfx2; y2g; :::; minfxn; yng):

Definition 2.3. An action vector x¤ 2 ¯̄̄n is called a carrier of V , if
V (x¤ ^ x) = V (x) for all x 2 ¯̄̄n. We call x0 a minimal carrier of V ifP

x0
i = minfP xi j x is a carrier of V g.
The following is a version of the usual efficiency axiom.

Axiom 2. If x¤ is a carrier of V then, for m = (m; m; : : : ; m) we haveX
x¤

i 2x¤
Áw

x¤
i ;i(V ) = V (m):

By x¤
i 2 x¤ we mean x¤

i is the i-th component of x¤.

Axiom 3. Áw(V 1 + V 2) = Áw(V 1) + Áw(V 2), where (V 1 + V 2)(x) =
V 1(x) + V 2(x).

Axiom 4. Given x0 2 ¯̄̄n if V (x) = 0, whenever x 6¸ x0, then for each
i 2 N , Áw

k;i(V ) = 0, for all k < x0
i .
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Remark 2.3. Given a multi-choice cooperative game (¯̄̄n; V ), suppose there
exist two different action vectors x0; y0 2 ¯̄̄n such that

V (x) = 0; whenever x 6¸ x0

and
V (x) = 0; whenever x 6¸ y0;

then it is trivial that

V (x) = 0; whenever x 6¸ x0 _ y0

Hence, Axiom 4 states that in games that stipulate a minimal exertion from
players, those who fail to meet this minimal level cannot be rewarded.

Let (x j xi = k) denote a vector with xi = k.

Definition 2.4. Player i is said to be a dummy player if V ((x j xi = k)) =
V ((x j xi = 0)) for all x 2 ¯̄̄n and for all k 2 ¯̄̄ .

An action ¾k with k 6= 0 is said to be a dummy action for player i if V ((x j
xi = k)) = V ((x j xi = k ¡ 1)) for all x 2 ¯̄̄n.

Axiom 5. Given (¯̄̄n; V ), if player i is a dummy player, then Áw
k;i(V ) = 0,

for all ¾k 2 ¯̄̄ .

Definition 2.5. Given S µ N , let b(S) be the binary vector with components
bi(S) satisfying

bi(S) =

(
1 if i 2 S

0 otherwise.

Let jSj be the number of elements of S.

Definition 2.6. Given ¯̄̄n and w(0) = 0, w(1); : : : ; w(m), for any x 2 ¯̄̄n,

we define kxkw =
nP

r=1
w(xr).

Definition 2.7. Given x 2 ¯̄̄n and j 2 N = f1; 2; : : : ; ng, we define
Mj(x) = fi j xi 6= m; i 6= jg.

From Theorem 2 in [5] (1993), we have an explicit formula for the Shapley
value as follows.

Áw
ij(V ) =

iX
k=1

X
xj=k
x 6=0
x2¯n

24 X
T µMj(x)

(¡1)jT j w(xj)

kxkw + [w(xr + 1)¡w(xr)]

35

¢[V (x)¡ V (x¡ b(fjg))]:

(2.1)
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Definition 2.8. A simple multi-choice game in characteristic function form
is the pair (¯̄̄n; V ) defined by V : ¯̄̄n ! f0; 1g, such that V (000) = 0, where
000 = (0; 0; : : : ; 0).

In a voting game, if each player has three choices namely, vote NO or vote NO
COMMENT or vote YES, then this is a typical example of simple multi-choice
game.

Definition 2.9. A multi-choice cooperative game is called a non-decreasing
multi-choice cooperative game if x ¸ y ) V (x) ¸ V (y).

Let NSMG denote the set of all non-decreasing simple multi-choice games.
Since NSMG is not closed under addition, if we restrict G to NSMG then, we
encounter a complicated problem as Dubey did in [2] (1975).

The following axiom is a well-known axiom proposed by Dubey in [2] (1975),
however, it is also a well-known concept in Reliability Theory.

Axiom 3¤¤ When the weight function w is given then

Áw(V 1 _ V 2) + Áw(V 1 ^ V 2) = Áw(V 1) + Áw(V 2);

where
(V 1 _ V 2)(x) = max

©
V 1(x); V 2(x)

ª
;

and
(V 1 ^ V 2)(x) = min

©
V 1(x); V 2(x)

ª
;

for all x 2 ¯̄̄n.
In chapter 8 in [3] (1991), we showed that if w is given,then there exists a

unique value or say power index Ãw defined on NSMG such that Ãw satisfies
axioms 1, 2, 3¤¤,4 and 5, and Ãw coincides with the multi-choice Shapley value Áw

given by formula (2.1). In this article, we will extend the above result to an even
more complicated game called the multi-valued multi-choice game.

3. MULTI-VALUED MULTI-CHOICE GAMES

Given a natural number r, let E = fv0; v1; v2; :::; vrg be a set of (r + 1) real
numbers, such that 0 = v0 < v1 ∙ v2 ∙ ::: ∙ vr.

Definition 3.1. A multi-valued multi-choice game in characteristic function
form is the pair (¯̄̄n; V ) defined by V : ¯̄̄n ! E, such that V (000) = 0, where
000 = (0; 0; : : : ; 0).

we can identify the set of all multi-valued multi-choice games by: MMG '
E(m+1)n¡1. Let NMMG be the set of all non-decreasing multi-valued multi-choice
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games, since a multi-valued multi-choice game is not necessarily non-decreasing,
we will consider MMG and NMMG respectively.

Given ¯̄̄n, for any x 2 ¯̄̄n, we define jxj =
nP

r=1
xr.

Given a (r + 1)-valued (m + 1)-choice game V and a constant c, we define

(c ¢ V )(x) = c ¢ V (x); for all x 2 ¯̄̄n:

Lemma 3.1. Suppose w(0); w(1); : : : ; w(m) are given. If V is of the form

V (y) =

(
c > 0 if y ¸ x

0 otherwise;

then Áw(V ) is uniquely determined by axioms 1, 2, 4, and 5.

Proof. Trivial!
The set of all multi-valued multi-choice games MMG is not closed under

addition. We consider the following to make this article self-contained.
If we replace axiom 3 by

Axiom 3¤:

Áw(V 1 + V 2) = Áw(V 1) + Áw(V 2) for all V 1; V 2 2MMG

such that V 1 + V 2 2 MMG. Then we have the following Theorem.

Theorem 3.1. When w is given, there exists a unique Áw defined on MMG
such that Áw satisfies axioms 1, 2, 3¤, 4 and 5. Moreover, Áw is also given by
(2:1).

Proof. By lemma 3.1, the proof of this theorem is similar to the proof of
theorem 8.2 in [3] (1991).

Since NMMG is not closed under addition, if we restrict G to NMMG, then
we encounter a much more complicated problem than Dubey did in [3] (1975) .
Now, we will solve the problem by some concepts in Reliability Theory.

Here, we give an example to justify the importance of solving the problem.

Example 1. In a mathematics competition, a team has 3 students (players),
each student individually may win a golden medal, a sliver medal, a coper medal, or
nothing. The award for the whole team is the worst award among the three players’
awards.
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We may model the game as follows. The players may have 4 options, say, ¾0:
win nothing, ¾1: win a coper medal, ¾2: win a silver medal, ¾3: win a golden
medal. Note: If a player win nothing, then ¾1, ¾2, ¾3 are dummy actions for the
player. Furthermore, if there is an action ¾k which player i can not make it, then
¾k is a dummy action for player i.

The characteristic function is V ((x1; x2; x3)) = minfx1; x2; x3g. People may
ask what is the power index of the first student when he win a medal? Without a
well-known property in Reliability Theory, which is the Dubey’s axiom 3¤¤in Game
Theory, the multi-choice Shapley value does not work for the above question.

Mathematically, it is trivial that a + b = maxfa; bg + minfa; bg for any real
numbers a, b. Here, a, b are not necessarily zero or one.

Even when V 1 and V 2 are both multi-valued multi-choice games, it is still
trivial that

(V 1 _ V 2)(x) + (V 1 ^ V 2)(x) = V 1(x) + V 2(x);

for all x 2 ¯̄̄n.
The above arguments assure that we may use Dubey’s axiom even if the range

of the characteristic function is not f0; 1g.

Definition 3.2. Given two action vectors x, y 2 ¯̄̄n, we say that y is strictly
less than x, denoted by y < x, if and only if y ∙ x and yi < xi for some
i 2 N .

Definition 3.3. Given a non-decreasing (r + 1)-valued (m + 1)-choice game
(¯̄̄n; V ) an action vector x 2 ¯̄̄n is called a critical vk-valued action vector if
V (x) = vk and V (y) < vk whenever y < x.

Please note that we define a critical vk-valued action vector only for a non-
decreasing multi-valued multi-choice game.

Definition 3.4. Given x 2 ¯̄̄n, and vk 2 E, define

W x
k (y) =

(
vk if y ¸ x

0 otherwise;

then W x
k is called a vk-valued basic game.

Remark 3.1. Of course, x is the only critical vk-valued action vector of the
vk-valued basic game W x

k . Furthermore, for each k = 1; 2; :::; r and each x 2 ¯̄̄n,
Áw(W x

k ) is uniquely determined by axioms 1, 2, and 4.
The following Lemmas are easy to see.

Lemma 3.2. Given a V 2 NMMG, let x and y be two distinct critical
vk-valued action vectors of V , then x 6< y and y 6< x.
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Lemma 3.3. Given a V 2 NMMG and an action vector x 2 ¯̄̄n, suppose
V (x) = vk 2 E, then x is either a critical vk-valued action vector or greater than
a critical vk-valued action vector.

Lemma 3.4. Given a V 2 NMMG and a vk 2 E, suppose V has a finite
number of distinct critical vk-valued action vectors, say, x(k;1); x(k;2); :::; x(k;sk),
then

V (y) = vk if y = x(k;i) for some i 2 f1; 2; :::; skg
and

V (y) < vk if y < x(k;i) for some i 2 f1; 2; :::; skg.

Theorem 3.2. If w is given, then there exists a unique Áw defined on NMMG
such that Áw satisfies axioms 1, 2, 3¤¤, 4 and 5. Moreover, Áw is also given by
(2:1).

Proof. Given V 2 NMMG, for each vk 2 E, V has a finite number of
critical vk-valued action vectors, say, x(k;1); x(k;2); :::; x(k;sk), then by Lemmas 3.2,
3.3, and 3.4, we can easily see that

V =

µ
W x(1;1)

1 _W x(1;2)

1 _ : : : _W x(1;s1)

1

¶
_µ

W x(2;1)

2 _W x(2;2)

2 _ : : : _W x(2;s2)

2

¶
_µ

W x(3;1)

3 _W x(3;2)

3 _ : : : _W x(3;s3)

3

¶
_ ::: _ :::

::: _ ::: _
µ

W x(r;1)

r _W x(r;2)

r _ : : : _W x(r;sr )

r

¶
where the right hand side is defined associatively.
Define C(V ) = maxfk j k 2 Z+ such that V has at least one vk-valued action
vector g.
We will prove this Theorem by mathematical induction on C(V ).

Case 1. Suppose C(V ) = 1, let n(1;1)(V )= minfp 2 Z+ : there exists a
critical v1-valued action vector y of V such that jyj = pg; and let

n(1;2)(V ) = the number of critical v1-valued action vector y of V

such that
P

yi = n(1;1)(V ).
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For n(1;1)(V ) = m£ n, V = W m
1 , in which case Áw(V ) is obviously unique.

Step 1.1. Suppose Áw(V ) has been shown to be unique for all V such that
n(1;1)(V ) = k + 1, k + 2; : : : ; m£n, we should claim that Áw(V ) is unique when
n(1;1)(V ) = k and n(1;2)(V ) = 1.

Let x be the unique critical v1-valued action vector with jxj = k. If x is the
only critical v1-valued action vector of V then V = W x

1 and Áw(V ) is unique.
Otherwise let x(1;1); x(1;2); : : : x(1;t) denote all the critical v1-valued action vectors
of V apart from x.

NOTE: jx(1;j)j > k for 1 ∙ j ∙ t since n(1;2)(V ) = 1.

Now (W x(1;1)

1 _ W x(1;2)

1 _ : : : _ W x(1;t)

1 ) _ W x
1 = V , say V ¤ _ W x

1 = V .
It follows that n(1;1)(V ¤) > k. Therefore Áw(V ¤) is unique by the inductive
assumption. Further,
n(1;1)(W x

1 ^V ¤) > k. This is obvious from the definition of ^. Therefore Áw(W x
1 ^

V ¤) is also unique by the inductive assumption. Invoke axiom 3¤¤. Then

Áw(V ) = Áw(V ¤ _W x
1 ) = Áw(V ¤) + Áw(W x

1 )¡ Áw(V ¤ ^W x
1 ):

Since all the three matrices on the right hand side are unique, so is Áw(V ).

Step 1.2. Suppose Áw(V ) has been shown to be unique for all V such that
either

n(1;1)(V ) = k + 1; k + 2; : : : ; m£ n(1.1.1)

or

n(1;1)(V ) = k and n(1;2)(V ) = 1; 2; : : : ; j:(1.1.2)

We should claim that Áw(V ) is unique when n(1;1)(V ) = k and n(1;2)(V ) =
j + 1.

Let x(1;1); x(1;2); : : : ; x(1;j+1) be the critical v1-valued action vectors of V with
jx(1;i)j = k for all i = 1; 2; : : : ; j + 1. And let y(1;1); : : : ; y(1;t) be all the other
critical v1-valued action vectors of V .

By the conditions on n(1;1)(V ) and n(1;2)(V ) it is clear that jy(1;i)j > k for
1 ∙ i ∙ t

Now

(W y(1;1)

1 _W y(1;2)

1 _ : : : _W y(1;t)

1 _W x(1;1)

1 _ : : : _W x(1;j)

1 ) _W x(1;j+1)

1 = V

Say V ¤¤ _W x(1;j+1)

1 = V .
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Clearly V ¤¤ satisfies (1.1.2) and V ¤¤ ^ W x(1;j+1)

1 satisfies (1.1.1). Therefore
Áw(V ¤¤) and Áw(V ¤¤ ^W xj+1

1 ) are both unique by the inductive assumption.
By Axiom 3¤¤,

Áw(V ) = Áw(V ¤¤_W x(1;j+1)

1 ) = Áw(V ¤¤)+Áw(W x(1;j+1)

1 )¡Áw(V ¤¤^W x(1;j+1)

1 )

which proves the uniqueness of Áw(V ).
Putting together step 1.1 and step 1.2 we get the uniqueness of Áw(V ) for any

feasible number n(1;1)(V ) and n(1;2)(V ), i.e. Áw(V ) is unique for all V 2 NMMG
with C(V ) = 1.

Case 2. Suppose C(V ) = 2, let n(2;1)(V ) = minfp 2 Z+ : there exists a
critical v2-valued action vector y of V such that jyj = pg; and let

n(2;2)(V ) = the number of critical v2-valued action vector y of V

such that
P

yi = n(2;1)(V ).
If n(2;1)(V ) = m£ n, then m is the unique critical v2-valued action vector for

V . Then there exists W 2 NMMG with C(W ) ∙ 1 such that V = W _W m
2 . It

is clear that C(W ^W m
2 ) ∙ 1, hence Áw(W m

2 ), Áw(W ) and Áw(W ^W m
2 ) are

unique. Invoke Axiom 3¤¤. Then Áw(V ) = Áw(W _W m
2 )=Áw(W ) +Áw(W m

2 )¡
Áw(W ^W m

2 ), therefore Áw(V ) is unique.

Step 2.1. Suppose Áw(V ) has been shown to be unique for all V such that
n(2;1)(V ) = k + 1, k + 2; : : : ; m£n, we should claim that Áw(V ) is unique when
n(2;1)(V ) = k and n(2;2)(V ) = 1.

Let x be the unique critical v2-valued action vector with jxj = k. If x is the
only critical v2-valued action vector of V Then there exists W 2 NMMG with
C(W ) ∙ 1 such that V = W _ W x

2 . It is clear that C(W ^ W x
2 ) ∙ 1, hence

Áw(W x
2 ), Áw(W ) and Áw(W ^W x

2 ) are unique. Therefore, by Axiom 3¤¤, Áw(V )
is also unique.

If V has more than one critical v2-valued action vector, let x(2;1); x(2;2); : : : x(2;t)

denote all the critical v2-valued action vectors of V apart from x.

NOTE: jx(2;j)j > k for 1 ∙ j ∙ t since n(2;2)(V ) = 1.

Now (W x(2;1)

2 _W x(2;2)

2 _ : : :_ W x(2;t)

2 ) _(W _W x
2 ) = V , say V ¤_ (W _W x

2 ) =
V . It follows that n(2;1)(V ¤) > k. Therefore Áw(V ¤) is unique by the inductive
assumption. Further, n(2;1)((W _ W x

2 ) ^ V ¤) > k. This is obvious from the
definition of ^. Therefore Áw((W _W x

2 ) ^ V ¤) is also unique by the inductive
assumption. Invoke axiom 3¤¤. Then

Áw(V ) = Áw(V ¤_ (W _W x
2 )) = Áw(V ¤)+Áw(W _W x

2 )¡Áw((W _V ¤)^W x
2 ):
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Since all the three matrices on the right hand side are unique, so is Áw(V ).

Step 2.2. Suppose Áw(V ) has been shown to be unique for all V such that
either

n(2;1)(V ) = k + 1; k + 2; : : : ; m£ n(1.2.1)

or

n(2;1)(V ) = k and n(2;2)(V ) = 1; 2; : : : ; j:(1.2.2)

We should claim that Áw(V ) is unique when n(2;1)(V ) = k and n(2;2)(V ) =
j + 1.

Let x(2;1); x(2;2); : : : ; x(2;j+1) be the critical v2-valued action vectors of V with
jx(2;i)j = k for all i = 1; 2; : : : ; j + 1. And let y(2;1); : : : ; y(2;t) be all the other
critical v2-valued action vectors of V .

By the conditions on n(2;1)(V ) and n(2;2)(V ) it is clear that jy(2;i)j > k for
1 ∙ i ∙ t

Now there exists W 2 NMMG such that C(W ) ∙ 1 and

(W _W y(2;1)

2 _W y(2;2)

2 _ : : :_W y(2;t)

2 _W x(2;1)

2 _ : : : _W x(2;j)

2 )_W x(2;j+1)

2 = V

Say V ¤¤ _W x(2;j+1)

2 = V .
Clearly V ¤¤ satisfies (1.2.2) and V ¤¤ ^ W x(2;j+1)

2 satisfies (1.2.1). Therefore
Áw(V ¤¤) and Áw(V ¤¤ ^W x(2;j+1)

2 ) are both unique by the inductive assumption.
By 3¤¤,

Áw(V ) = Áw(V ¤¤_W x(2;j+1)

2 ) = Áw(V ¤¤)+Áw(W x(2;j+1)

2 )¡Áw(V ¤¤^W x(2;j+1)

2 )

which proves the uniqueness of Áw(V ).
Putting together step 2.1 and step 2.2 we get the uniqueness of Áw(V ) for any

feasible number n(2;1)(V ) and n(2;2)(V ), i.e. Áw(V ) is unique for all V 2 NMMG
with C(V ) = 2.

Continuing in this way, we can prove Case 1, Case 2,...., Case r. Therefore
Áw(V ) is unique for all V 2 NMMG.

It is clear that the multi-choice Shapley value Áw on G satisfies axiom 1, 2, 3¤¤,
and 4 when it is restricted to NMMG. Indeed V 1 +V 2 = (V 1 _V 2) +(V 1 ^V 2)
where we regard the + as taking place in the vector space G. Hence by axiom 3

Áw(V 1) + Áw(V 2) = Áw(V 1 _ V 2) + Áw(V 1 ^ V 2):

Therefore the multi-choice Shapley value is the unique Áw on NMMG.

Remark 3.2. By Theorem 3.2, we may use the multi-choice Shapley value as
the power indices for the players in Example 1.
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