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OPTIMAL IMPULSIVE HARVEST POLICY
FOR AN AUTONOMOUS SYSTEM

Bai Ling, Shuai Zhisheng and Wang Ke

Abstract. In this paper, we consider an autonomous model with impulsive
harvest. We investigate the impulsive harvest policies for constant effort har-
vest and proportional harvest. For different harvest effort function, it is shown
that there exists an unique impulsive periodic solution which is semi-stable or
globally asymptotically stable. For the latter, the optimal harvest effort that
maximizes the sustainable yield per unit time is determined.

1. DERIVATION OF THE IMPULSIVE HARVEST MODEL

After the first results about the theory of impulsive differential equations (IDE)
are reported since 1960°s|1-2], many theoretical research on this subject had been
studied.

But the articles of which the IDE are applied practically in population dynamics
are relatively rare[3-6] though IDE are suitable many mathematical models to sim-
ulate evolution of real processes. In real evolutionary processes of the population,
the perturbation or the influence from out-side occur ”immediately” as impulses
not continuously, the duration of these perturbations is negligible compared to the
duration of the whole process. For instance, as we know, fisherman can not fish
day and night for 24 hours. Instead, they only fish in some time in a day. Besides,
seasons will also affect the fishing period. So the problem of impulsive harvest is
more practical and real compared to the continuous harvest.

However, to our knowledge, some results on impulsive harvest model[3-4] are
discussed using the explicit general solution of the corresponding ODE without
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perturbation. While for most of the models of single species dynamics which are
derived from differential equation in the following form

(1.1) &= flx,1),

(1.1) mostly does not have explicit solution. That is why we study a general optimal
impulsive harvest model in this paper.

Various choices of the functions f lead us to various models. Consider the
following classical logistic equations,

z = ra(l— £)
1.2 K
(2 { 2(0) = o,
(13) { z = r@t)z(l - —K(t)>
.%‘(to) = X0,

where (1.2) is an autonomous evolutionary model, and (1.3) is a non-autonomous
evolutionary model because the coefficients of (1.3) are dependent on the time £. In
this paper, we consider the following equation:

(14) {x?o) _ 50@)

Suppose the following hypotheses are valid:

1. K > 0 is the capacity of environment (saturation level), F' : RT — R is
continuous function, where F(0) = F(K) = 0; F(x) <0 for 2 > K;

2. there exists a unique point « € (0, K') such that F'(«) reach the maximum of
F(x) z € (0, K);

3. For each @ € [0, o] the function F'(x) is increasing while F'(x) is decreasing
function in [, K.

Considering the feasible operation, we suppose that we harvest once every fixed
time 7" for the population X, which obeys equation (1.4). We shall derive a mathe-
matical model of impulsive time harvest for equation (1.4):

AN
(1.5) -~ F(N) = 0(s(8) ER(N(2)),
N(to) = No-

Here, h(N(t)) is the function of general harvest; ¢ is the Dirac impulsive function,
which satisfies §(0) = oo and 6(s) = 0 for s # 0 and [ d(s)ds = 1; s(t) is
defined as follows:
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0, t=nT, ncN;
s(t) =
—1, t#nT, ne N.

By our interpretation, the population X which grows according to logistic equa-
tion without exploitation and the management of the resource will be harvested
Eh(N(t)) at time nT". For explaining the latter, we discuss the impulsive function
9 deliberately. The Heaviside function 6(t).

1, if t>0;
o(t) =
0, if t<O0.

Satisfies @ = §. Thus, if ¢ # nT, s(t) = —1 and 0(s(t)) = 0, namely, the
management does not harvest; if ¢ = nT, s(¢) = 0 and 6(s(¢)) = 1, the management
harvests QQ(nT'), which satisfies

(n—1)T

nT
Q(nT) — / 5(s(£)) Bh((t))di — / 5(s(t)) Bh((t))dt

— 0o — 0o

= FEh(x(nT)).

For biological considerations, we are only interested in positive solutions. In
this paper, we always assume Ny > 0.

2. OpTIMAL IMPULSIVE HARVEST PoLicY FOR CONSTANT EFFORT HARVEST

Now, we consider single population X of size N(t), which growth obeys the
equation (1.4) is impulsively harvested by means of a constant effort, h(N) = 1.
namely, every time /', the management harvest constant is /. Equation of the
impulsively harvested population reads

dN
o S = PV) = (s,
N(to) = No.

We denote the solution of (2.1) by N (¢, g, No), while x(¢, Ly, zg) is the solution of
(1.4) without harvest.

Lemma 2.1. Let the condition (1) — (3) hold. Then the equation
(2.2) Gx)=Flx+F)—F(x)=0

where E is a constant such that 0 < E < o < K — IV < K, satisfied the follows:
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(1) The equation (2.2) possesses a solution x=a;
<2> a < [Q_Eya];

(3) The solution x = a is unique.
Proof. Foragivenconstant I/, 0 < ' <a< K — F < K, let
G(x) = F(z + E) = F(),

thus from the conditions (1),(3) and 0 < ¥ < K, 0 < K — IY < K, we have

while
GIK-FE)=FK)-FK-FE)=-F(K—-FE)<0

It is easy to see that the equation (G(x) = 0 has at least one root = a from the
property that G(z) is continuous for z in the interval [0, K — FE|.
Claim a € [ — F, a]. From the condition (3), if a € [0, « — K], then a + F €
[E, o, then from the fact that the function F'(x) is increasing for = in [0, o], we
conclude that
G(a)=F(a+ E)—F(a) > 0.

Similarly, suppose a € [, K — E|, a + F € [a + F, K|, thus from the condition
(3), the function F'(z) is decreasing in [a, K|, and

G(a)=F(a+ E)—F(a) <0.

The above two inequalities imply that the roots of equation (2.2) locate the interval
[ — E, al.

Now we prove that the uniqueness of roots of equation (2.2). Assume that there
exist two different roots of equation (2.2), namely, G(a) = G(a*) = 0, Assume
oa—IF <a<a* <a. ltisobvious that o < a + F < a* + F < a + F. From the
monotonicity of F in [« — F, o] and [or, e + E|, we obtain that F'(a) < F(a*) and
F(a+ F) > F(a* + F). These two inequalities yield the contradiction

0=G(a) = F(a+ E) — F(a) > F(a* + E) — F(a*) = G(a*) = 0.

Therefore, we conclude that the equation G'(x) = 0 has only unique root z = a.
The proof is completed.

Lemma 2.2. For a given time I’ > 0, the initial value xo which maximizes
the increment of population of (1.4) in the time interval [0, T| satisfies the equation
F(x(T)) — F(2(0)) = 0, which follows that x(0) = 2o = a and (T) = a + F.
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Proof. Let x(t, 0, 20) be the solution of equation (1.4), denoted simply as x(t).
From the condition (1)-(3), it is obvious that 2:(¢) is a monotone increasing function
of ¢ in [0, 7). Define

g(wo) = 2(T, 0, 29) — 0.

Suppose on the contrary the conclusion of Lemma 2.2 does not hold.
Let F(2(0)) = m < F(2(T)) = n2. If At is small enough, then we can expand
the of solution of equation (1.4) as

(2.3) 2(,0,20) = 2o + mt + o(At) for t € [0, At]
and
24 @(t,0,20) = (T, 0,20) +n2(t = T) + o(Al) for t € [T, T + At].
From Equations (2.3) and (2.4) and 77 < 12, we have
(AL, 0,20) — g = mAL + o(At)
< neAt 4+ o(At) = «(T + At, 0, 20) — (T, 0, 20).
Denote Zg = x(At, 0, xg), then
9(xo) = (T, 0,%0) — o = (T + At, At, %) — To
= 2(T + At, 0, 20) — 2(At, 0, 20)
> (T, 0,20) — @0 = g(@0),

which shows that if F'(2(0))=F(xq)<F(2(T)),the increment g(xo) is not maximal.

Similarly, we can prove F'(2(0)) > F(2(T)) the increment g(xg) is also not
maximal. Therefore, the increment reaches its maxima if and only if the condition
F(2(0)) = F(2(T)) is satisfied, namely, F(«(T)) — F(2(0)) = 0. From Lemma
2.1 we have that G(x) = 0 has unique root = a, therefore we obtain xg =
a,2(T)=a+E.

Theorem 2.1.  For the impulsive harvest equation (2.1), if the initial value
is the unique root x = a of equation (2.2), then there exists a unique positive
impulsive periodic solution £(t) of (2.1), which satisfies £(nT) = a, where T can
be estimated by T = [**

e estimated by I F)
that N (t,0, No) — &(t) if No > a, but N(t,0, Ng) — 0if Ny < a.

dx. In addition, £(t) is semi-stable in the sense

Proof. For the equation without impulsive perturbations

@) { z = F(x)
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After finite time T, the solution of equation (2.5) evolves from initial 2(0) = a
into 2(T) = a + E. It is casy to see that the directions of vector field of equation
(2.5) are the same as at the time { = 0 and ¢{ = I’ from the fact that x = a is the
unique root of the equation G(z) = F(xz + F) — F(x) = 0. Integrating the equality

% = dt, from 0 to 7T’ yields
at+FE du
(26) T L W

where F(x) # 0,a <2 < a+ F.
In the following, we shall show that N (¢, 0, a) is an impulsive periodic solution
of (2.1). Since

N(T,0,a)=2(T,0,a) —E=a+F—F=a=N(0,0,a)

and
N(2T,0,a) = N2T,T,N(T,0,a)) = x(2T,T,a) — E

=2(T,0,a)—-F=a+FE—FE =a,
we obtain inductively,

N(nT,0,a) = a for Yn € N.

Let N(t,0,a) = £(¢), then £(¢) is an impulsive periodic solution of (2.1) with
&(nT) = a for ¥n € N.

Next, we study the stability of the solution £(t).

Suppose that Ny > a. For convenience, we denote N,, = N(nT’, 0, Ny). From
Lemma 2.2, it follows that

Ny = N(T,0,Np) = 2(T,0,Ng) — E = g(Ng) — E + Ny < Ny
On the other hand, Ny > « implies that
Ny =2(T,0,Ng) — E > «(T,0,a) — E = N(T,0,a)=&(T) = a.
Similarly, we have
Ny = N(2T,0,Nog) = N(2T, T, N7) = (2T, T, N,) — E = 2(T,0, N;) — E
=g(N1) — E+ Ny < Ny,

and
Ny =2a(T,0,Ny) — E > 2(T,0,a) — F = a.
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By the same arguments we can obtain a monotone decreasing sequence { N, } with
a lower bound a. It is obvious that the sequence {/V,} has a limit, suppose the
limit is 3, then G > a.

If 8 > a, then

Npi1 — N, = N((n+1)T,0,Ng) — N, = N((n+1)T,nT, N,) — N,

(n+1)T,nT,N,) — E — N,, = (T, 0, N,) — E — N,

x

(
thus letting n — oo yields g(3) = E. Because g(xg) = (T, 0,29) — g = F has

only one root 2y = a, we get a contradiction. Thus 3 = «, thatis lim N, = 8 = a.
n—0o

From the continuous dependence of solution on initial value, for any given = > 0
there is a ¢ € (0, ), such that 0 < |xg—al < d implies |« (¢, 0, x0) —x(¢,0,a)| < &
for t € [0, 7). Since lim N,, = 3, there exists a nature number N such that n > N

n—0o0 —
implies that 0 < N,, — a < ¢, and then for any n > N and ¢ € [nT, (n+1)T'), we
have

|N<t7 0, NO) - £<t>| - |N<t7 0, NO) - N<t7 0, a)| - |N(t,7’LT7 Nn) - N<t7 nTy a)|
- |$<t, nT, Nn) —.%‘(t, nT, a)|
= |a(t —nT,0,N,) —2(t —nT,0,a)| < &

for ¢ € [nT, (n+ 1)T), which implies that
|N(,0, No) — £(t)| < & fort > NT.

Hence |N(t,0, No) — &(t)] — 0 as £ — oo for Ny > a.

If 0 < Ny < a, we can also get a monotone decreasing sequence { N, }, suppose
the harvest effort is constant E, N (¢, 0, Ny) — 0 for 0 < Ny < a. We complete the
proof.

From Theorem 2.1, we know there exists unique positive impulsive periodic
solutions &£(t), it follows that ¢(¢) is “semi-stable”. The assumption in section 2
that the harvesting effort is a constant leads to that we can not control exploitation for
dangerous region and also we can not have feasible sustainable policy. Therefore, in
this situation there exists no optimal harvest effort and maximal sustainable output.

3. OpTiMAL IMPULSIVE HARVEST PoLICY FOR PROPORTIONAL HARVEST

In this section, we will use the phrase “catch-per-unit-effort hypothesis” to
describe an assumption that calc—per —unit— effort, is proportional to the stock
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level, or that h(N) = N, E denotes effort and satisfies 0 < F < 1. In other word,
the management harvests Q(nT) = EN(nT) in nT. Equation of the impulsively
harvested population takes the form

dN
G.1) —r = FIN) = 4(s())EN,
N<t0) — No.

In this section, the solution of (4.1) is still denoted by N (¢, g, No).

Now we investigate the optimal impulsive harvest policy, namely, the optimal
harvesting effort, the maximum sustainable yield and the corresponding optimal
population level.

Definition 3.1. ([7]) A solution & (t) of (3.1) is globally attractive for positive
initial value if any solution N (%, 0, Np) of (3.1) with Ny > 0 satisfies

lim |N(t, 0, No) — £(t)| = 0.
t—+o0

Lemma 3.1. Let conditions (1) — (3) be hold. Then the equation

= X

(3.2) Gla) = F(——

) — F(z) =0,

where 0 < Iv < 1 and % < K satisfies the followings:
(1) The equation (3.2) possesses a solution x = &;
(2)ac|(l—E)a,ay
(3) The solution x = & is unique.
Proof. For a given constant F/ such that 0 < ¥ < 1 and % < K, let

5 X

G(z) =: F<1—E

)—F(.%‘),

and F'(c) be the maximum of F(«) in [0, K|. Then we have

& [0

G(oz):F(l_E

) — F(a) <0,

and

G((1 = B)a) = F(a) — F((1 = E)a) > 0.

Since /() is continuous in the close interval [(1 — F)a, o], G(x) = 0 has at least
one root x = a € [(1 — E)a, .
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Next, we prove that the uniqueness of roots of equation (3.2).
Assume that there exist two different roots of equation (3.2), namely,

G(a) = G(a*) = 0.

. a*

a__ . @
1-F 107 rF 1-F
From the monotonicity of F(z) in [(1 — F)a, o] and |, ﬁ]’ we obtain that

Let(1-E)a < a < @* < a. Itis obvious that o < < K.

= P

F(a) < F(a*) and F(ﬁ) > F(1 E) These two inequalities yield the
following contradiction
0=G@) = P(y-2m) ~ F(@) > F(r2—) — F(@*) = G(a) = 0
=G(a) = F(— a T a*) =G(@a*) =o.

Therefore, we conclude that the equation G/(2) = 0 has unique root @ = . The
proof is completed.

Lemma 3.2. For a given time I’ > 0, the initial value xo which maximizes
the increment of population of (1.4) in the time interval [0, T| satisfies the equation

Fa(T)) — F(2(0)) = 0, 2(0) = a9 = & «(T) = ﬁ and the maximal
FEa

increment is

The proof is similar to Lemma 2.2, so we omit it.

Theorem 3.1.  There exists a unique positive impulsive periodic solution
N(t,0,a) =: &(t) of (3.1), which satisfies E(nT) = a. In addition, () is globally
attractive for positive initial value.

Proof. At first, we want to show that N(¢,0,a) is impulsive periodic solution
of (3.1).
For the equation without impulsive perturbations

z = F(x)
3.3
G3) { 2(0) =a

After finite time T, the solution of equation (3.3) evolves from initial 2(0) = & into

x(T) = % 1t is obvious that the direction of vector ficld of equation (3.3) are
1-F

the same as ¢ = 0 and ¢ = I". From the fact that = & is the unique root of the

equation G'(z) = F/( ; i E) — F(x) = 0. It is obvious that

N(T,0,a) = (1 — E)a(T,0,a) = (1 — E)
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and
N(2T,0,a) = N(2T,T,N(T,0,a)) = N(2T,T,a)

— (1 - E)e(2T, T,3) = (1 — B)a(T, 0,d) = &.

Inductively, we prove that
N(nT,0,a) = a for ¥Yn € N.

Therefore, (3.1) has a unique impulsive periodic solution N(Z,0,4a) : = £(t) with
&(nT) = a for ¥n € N. .
In the following, we shall prove the global attractiveness of £(¢).
Suppose Ny > a and N,, := N(nT,0, Ny), n € N. From Lemma 3.2, we
Fa
5 1—E

. . - Fa .
reach its maxima at xg = a. Hence g(xg) < 1T- & when zy # a, and we have

conclude that the increment which is expressed g(xg) = «(T, 0, xg) — 2o =

N1 = N(T, O, No) — (1 - E).%‘(T, O, No)
= (1= E)(g(No) + No)
= (1= E)g(No) — ENo + No

FEa
1—-FE)—— — EN, N
<( = o+ No
<E<d—No)+No<No

and
Ny = N(T,0, No) = (1 — E)2(T, 0, Ng) > (1 — E)x(T,0,a)

= N(T,0,a) = a.
Similarly, we can prove that @ < N2 < N;. Thus we obtain a monotone decreasing
sequence {N,,} with a lower bound G. Assume that the sequence {V,,} has a limit
0, it is obvious 8 > a. Using the similar argument in Section 2, suppose 3 > a,
then
Npt1 — N, = N((n+1)T,0,Nog) — N, = N((n+ 1)T,nT, N,,) — N,
=(1-E)x((n+1)T,nT,N,) — N, = (1 — E)x(T,0,N,) — N,

= (1= E)g(Nn) — ENp,

Let n — oo, we obtain that (1 — E)g(3) — EG = 0, and
N o = Hf
9(3) = a(T,0,) = 2
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this contradicts to the fact that the above equation has a unique root @. Thus 8 = @
and we have proved that .
o N = =
Therefore, for any given £ > 0, there is a 6 € (0, ) such that n > N implies
0 < N, —a < ¢, then from the continuous dependence of solution on initial
value, we have |x(¢,0, N,,) — 2(¢,0,a)| < € for t € [0,7). Thus n > N and
te[nT,(n+1)T). Note that 1 — F < 1 and

- |1 - E||$<t, nT, Nn) - .%‘(t, nT, (~J,)|
< |a(t —nT,0,N,) —a(t —nT,0,a)| < «.

That is, .
tlim |N(t,0, Ng) —&(t)| = 0 for Ny > a.
— 00

By the similar argument, if 0 < Ny < a, we can write
(1 — E)x(T, 0, No) > Ny (1 == E)(g(No) Sl No) > Ny

— (1 - E)g(Ny) > ENg

Ea ENo
— % S 4N
g W) > 15

<~ a > Ny.
thus the following holds
Ny = .%‘(T, 0, No) = (1 = E).%‘(T, 0, N()) > No.

Therefore, we have a monotone increasing sequence { N, } with a upper bound a.
We can prove

Jlim [N(£,0, No) — £(t)| = 0 for 0 < Np < .
— 00

Thus we have shown that the impulsive periodic solution £(¢) is globally attractive
for positive initial value. The proof is complete.
In real world, fishers would like to make a decision how to obtain maximum

harvest. From Theorem 3.1, the sustainable yield per unit time is
Ka
34 Y(E)= /.

The relation of T and E can be estimated as

&/(1-E)
(3.5) T = / du
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Our object is to find an E* such that Y(FE) reaches its maximum at £/ = F*
Further we apply Lemma 3.1 and Lemma 3.2, we know 2*(T") = a. If we suppose
impulsive harvest moment T is fixed, equation (3.5) means to

E* can be solved, thus we obtain optimal sustainable yield Y (E£*).

Example 1 Logistic model (general solution is explicit)

Let us consider logistic equation (1.2), it is obvious that condition (1)-(3) are
satisfied. The function F(x) = ra(1 — #/K) has a unique maximum at 2 = 1 K.
From Lemma 2.1 we obtain a = %(K — F) which satisfies the equation

G(a)=F(a+ F)— F(a) =0.

From Lemma 3.1 we solve

1-F
s L=8
Y- E
which is the root of the equation
~ ®
(2) = F(3) — F() =0

So in the case of proportional impulsive harvest, we conclude that

1—FK
3.6 a=a"(T)= ——K
o) i—a(T) = =2 K,
meanwhile,
U
a/(1— In(——
3.7 po [0 A "G |ke-n)
(3.7) =/ T (1-E)K/(2—E) *
a ru(l — =) o
K
suppose T is a constant (every T time From (3.7), we have
—rT
(3.8) Er=1-¢ 2
Substituting (3.8) into (3.6) yields that
K
* _
(T o
1+e2
Furthermore we have
rT
e?2 —1
*
Y(E*) = T K
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These results coincide with the conclusions in [3].

Example 2 A generalized Logistic equation (general solution can not expressed
explicitly)
In this example, we study a model which take the following form:

(3.9 a W:

where 3 > 0 is a parameter of level of that which the population utilize the en-
vironment, it is obvious that equation (3.9) possesses first integral but its solution
can not be expressed explicitly. Let F((z) = %, it is not difficult to see that
a = 7%[(71 is the maximum of F(x) in [0, K]. F'(0) = F(K) = 0, the condition
(1)-(3) are satisfied. According to Lemma 2.1 and 3.1, we can compute

. V4 + BE? + 48K — (2 + BE)
_ -

and

V2 —E2+48K(1-FE)—(2-E)
20 '
If T is fixed, we use the same method as example 1 to solving E* and Y (E*)

although it is more complicated than classical logistic equation. Therefore our
results are valid.

G = x(T%) =
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