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GENERALIZED JORDAN DERIVATIONS ON PRIME RINGS
AND STANDARD OPERATOR ALGEBRAS

Wau Jing and Shijie Lu

Abstract. In this paper we initiate the study of generalized Jordan derivations

and generalized Jordan triple derivations on prime rings and standard operator
algebras.

1. INTRODUCTION

Motivated by the concept of generalized derivations (cf.[8]) we initiate the con-

cepts of generalized Jordan derivations and generalized Jordan triple derivations as
follows:

Definition 1.1. Let R be a ring and 6 : R — R an additive map, if there is a
Jordan derivation T : R — R such that

5(a*) = 6(a)a + at(a)

for each a € R, then § is called a generalized Jordan derivation, and T the relating
Jordan derivation.

Definition 1.2. Let R be a ring and 6 : R — R an additive map, if there is a
Jordan triple derivation T : R — R such that

d(aba) = é(a)ba + at(b)a + abr(a)

for every a,b € R, then § is called a generalized Jordan triple derivation, and T
the relating Jordan triple derivation.
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We refer the readers to [1] for a good account of the theory of Jordan derivations
and Jordan triple derivations. And we should mention that the generalized Jordan
derivation defined in [10] is a special case of our definition. In this present paper we
extend some results concerning Jordan derivations and Jordan triple derivations on
prime rings to generalized Jordan derivations and generalized Jordan triple deriva-
tions. Namely, we proved that every generalized Jordan derivation and generalized
Jordan triple derivation on 2-torsion free prime ring is a generalized derivation.

In section 4, we study the generalized Jordan derivations on standard operator
algebras in Banach space X. We will prove that every weak operator topology
continuous generalized Jordan linear derivation on standard operator algebra is a
generalized inner derivation.

By B(X) we denote the algebra of all bounded linear operators on X, and
F(X) denotes the algebra of all finite rank operators in B(X). Recall that a
standard operator algebra is any subalgebra of B(X) which contains F'(X). The
dual of X will be denoted by X*. For any x € X and f € X* we denote by z ® f
the bounded linear operator on X defined by (z ® f)y = f(y)x for y € X. Note
that every operator of rank one can be written in this form and every operator of
finite rank can be represented as a sum of operators of rank one.

In this paper R will represent an associative ring with center Z(R). Recall that
R is prime if aRb = {0} implies that either a = 0 or b = 0, and is semiprime if
aRa = {0} implies a = 0.

2. GENERALIZED JORDAN DERIVATIONS ON PRIME RINGS

Throughout this section, R will be a 2-torsion free ring. Let § : R — R be a
generalized Jordan derivation and 7 : R — R the relating Jordan derivation.

Lemma 2.1. For all a,b,c € R, the following statements hold:

(1) 6(ab+ ba) = 6(a)b + at(b) + d(b)a + br(a);

(2) 6(aba) = d(a)ba + at(b)a + abr(a);

(3) d(abc + cba) = d(a)be + at(b)c + abr(c) + d(c)ba + c7(b)a + cbr(a).

Proof. (1) §((a+b)?) = §(a+b)(a+b)+(a+b)T(a+b), however, §((a+b)?) =
§(a® + ab + ba + b?) = §(a)a + at(a) + 6(ab + ba) + 5(b)b + br(b).
Comparing these two expressions we obtain

d(ab+ ba) = §(a)b + at(b) + §(b)a + br(a).

(2) Let w = d(a(ab + ba) + (ab + ba)a).
On the one hand, using (1) we have

w = §(a)(ab + ba) + at(ab+ ba) + d(ab + ba)a + (ab + ba)7(a).



Generalized Jordan Derivations on Prime Rings and Standard Operator Algebras 607

On the other hand,
w = §(a’b + ba® + 2aba) = §(a*)b + a*7(b) + 5(b)a® + br(a?) + 25(aba).
Since R is 2-torsion free, we get
d(aba) = é(a)ba + at(b)a + abr(a).
(3) Linearizing (2) by replacing a by a + ¢ and we obtain
d(abc + cba) = d(a)be + at(b)c + abr(c) + d(c)ba + c7(b)a + cbr(a).
Lemma 2.2. ([1]) Let R be a semiprime ring, if axb = 0 for all x € R, then
bra = 0.

It will be convenient to denote a® = §(ab) — 6(a)b— at(b) and [a,b] = ab— ba.
We can easily have

(1) a® = —b%

) at+9) = @b + a°;

(3) (a +b)° = a° + b°.

Theorem 2.3. If R is semiprime, then a’x[a,b] = 0 for arbitrary a,b,x € R.
Proof. Let w = 0(abxba + bazxab), then we get

w = §(ab)xba + abr(x)ba + abxT(ba) + §(ba)xab + bat(x)ab + baxT(ab).
On the other hand,

w = §(a)bzba + at(bxb)a + abxbr(a) + d(b)azab + br(aza)b + bazat(b).

Since R is a semiprime ring, by [2], 7 is a derivation. Comparing the above
two expressions we have a’rba + b?zab = 0 and hence a’z[a,b] = 0.

Corollary 2.4. If R is semiprime, then a® € Z(R).

Proof. For arbitrary a, b, ¢,z € R, by Theorem 2.3, we have a(*t9)z[a, b+ ] =
0, and so a’z[a, c] + a®z[a,b] = 0. By Theorem 2.3 ay[a, c] = 0 for every y € R,
by Lemma 2.2, we have [a, cJya® = 0, and so

(abz]a, d])y(a’za, ¢]) = —alz]a, cya‘z]a, b] = 0.

This implies that a’z[a, ] = 0.
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Similarly, we have a’z[d,c] = 0 for all d € R.

In particular,
[a®, c]z[a®, ¢] = (aPc — cab)xz[a®, ] = a®(cx)[a®, ¢] — caz[a®, c] = 0.

This yields that [a®,c] =0, i. e., a® € Z(R).
Now we are in a position to prove

Theorem 2.5. Let R be a 2-torsion free prime ring, then every generalized
Jordan derivation on R is a generalized derivation.

Proof. Suppose that § : R — R is a generalized Jordan derivation and 7 is
the relating Jordan derivation on R. By the proof of Corollary 2.4, we have that
a’z[c,d) = 0 for all a,b,c,d,z € R. We have two cases:

Case 1. R is not commutative.
Then there exist ¢,d € R such that [c,d] # 0, by the primeness of R, we
conclude that a® =0, 1. e. § is a generalized derivation.

Case 2. R is commutative.
Let w = 6(a?b + ba?), then

w = §(a)ab+at(ab)+6(ab)atabr(a) = 6(a)ab+ar(a)b+a’7(b)+5(ab)atabr(a).
On the other hand,
w = §(a?)b+ a®7(b) + 6(b)a® + br(a?)
= §(a)ab + at(a)b + a®7(b) + §(b)a® + br(a)a + bat(a).
These two equations yield that
(6(ab) — do(b)a — br(a))a = b%a = 0.
A linearization of the above expression with repect to a gives
b°a+b%c = 0.

Then (b%c)z(b%c) = —bCaxb®c = —(b°c)x(b%a) = 0, hence b*c = 0. Furthermore,
we have b%cb® = 0, and so b* = 0.

To conclude this section, we conjecture that every generalized Jordan deriva-
tion on 2-torsion free semiprime ring is a generalized derivation since every Jordan
derivation on 2-torsion free semiprime ring is a derivation. But to our knowledge-
ment we can not prove it.
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3. GENERALIZED JORDAN TRIPLE DERIVATIONS ON PRIME RINGS

In this section, R will be a 2-torsion free ring. Let 6 : R — R be a generalized
Jordan triple derivation and 7 : R — R the relating Jordan triple derivation.

Lemma 3.1. For arbitrary a,b,c € R we have

d(abc + cba) = d(a)be + at(b)c + abr(c) + d(c)ba + c7(b)a + cbr(a).

Proof. In a similar argument as in the proof of Lemma 2.1 we compute w =
d((a+c)b(a+c)). On the one hand we have w = §(a+c)b(a+c)+ (a+c)7(b)(a+
¢) + (a+ ¢)br(a + ¢) and on the other hand w = §(aba) + §(cbc) + §(abe + cba).
Comparing two expressions we obtain the assertion of the lemma.

For the purpose of this section we shall write A(abc) = §(abc) — d(a)be —
at(b)ec — abr(c) and B(abc) = abc — cba. We list a few elementary properties of
A and B:

(1) A(abc) + A(cba) =

(2) A((a+Db)cd) = A( ) A(bed) and B((a + b)ed) = B(acd) + B(bed);
(3) A(a(b+ ¢)d) = A(abd) + A(acd) and B(a(b+ c)d) = B(abd) + B(acd);
(4) A(ab(c+ d)) = A(abc) + A(abd) and B(ab(c + d)) = B(abc) + B(abd).

Lemma 3.2. Let R be a semiprime ring, then for arbitrary a,b,c,x € R we
have
A(abc)xB(abc) = 0.

Proof. Since R is a semiprime ring, it follows from Theorem 4.3 of [1] that
7 is a derivation. Let w = d(abczcba + cbaxabe), and compute w in two ways.
Then the lemma follows easily.

Theorem 3.3. Let R be a semiprime ring, then A(abc)zB(rst) = 0 holds for
all a,b,c,x,r,s,t € R.

Proof. By Lemma 3.2 we have A((a+7)bc)zB((a+r)bc) = 0, which implies
that A(abc)xB(rbe) + A(rbe)zB(abe) = 0, and so

A(abc)zB(rbe)yA(abe)zB(rbe) = — A(abe)xzB(rbe)yA(rbe)xB(abe) = 0,Vy € R.

By the semiprimeness of R, we have that A(abc)xB(rbc) = 0, similarly we can
get that A(abc)xB(rsc) = 0 and furthermore A(abc)xB(rst) = 0.

Corollary 3.4. If R is a prime ring and Z(R) # {0}, then A(abc) € Z(R)
for all a,b,c € R.
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Proof. For arbitrary a,b, c,xz,r,s € R we have
B(A(abe)rs)xB(A(abe)rs) = (A(abc)rs — srA(abe))xB(A(abe)rs)
= A(abc)rszB(A(abc)rs)—srA(abe)zB(A(abe)rs)
= 0.

The primeness of R yields that B(A(abc)rs) =0, i. e. A(abc)rs = srA(abe).
Choose nonzero ry € Z(R), then A(abc)ros = sroA(abc) = sA(abc)rg, which
implies that A(abc)ro € Z(R). Since R is prime, we can easily conclude that
A(abc) € Z(R).
Now we are ready to prove

Theorem 3.5. Let R be a 2-torsion free prime ring, then every generalized
Jordan triple derivation on R is a generalized derivation.

Proof. Suppose that § : R — R is a generalized Jordan triple derivation and 7
is the relating Jordan triple derivation on R. Let a, b, c,x be arbitrary element of
R. We have two cases:

Case 1. There exist 7, s,t € R such that B(rst) # 0.
Theorem 3.3 and the primeness of R yield that A(abc) = 0.

Case 2. B(rst) =0 holds for all r,s,t € R, i. e. rst = tsr.

Let Q be the central closure or the Martindale right quotient ring (see [9] for
the definitions) of R, then () is a prime ring with identity and contains R. By [5],
Q satisfies the same generalized polynomial identities as R. In particular rst = tsr
for all r, s,t in ). Taking s = 1 yields the commutativity of () and R.

Now let w = §(a®be+cba?), then w = §(a®)be+a®7(b)c+abr(c) +(c)ba’ +
cr(b)a®+cbr(a?) and w = 6(abcaa+ aaabe) = §(abc)a® +aber(a)a+abeat(a) +
§(a)a?be+at(a)abe+a?T(abe). These two expressions yield that [§(abc)—d(c)ba—
cr(b)a — cbr(a)]a® =0, i. e.

A(abc)a® = 0.

Then we have (A(abe)a)x(A(abc)a) = A(abc)a’zA(abc) = 0, hence A(abc)a =
0, furthermore, with the same approach as in the proof of Theorem 2.5, we obtain
A(abe)z = 0 and so A(abc)zA(abe) = 0, which implies that A(abc) = 0.

It remains to prove that J is a generalized derivation.

Again, let a,b,c,d,z,y be arbitrary elements of R and w = d(abzab). On
one hand we have w = d(ab)xab + abr(z)ab + abxT(ab), on the other hand w =
d(a)bzab+ at(bra)b+ abxat(b). Then we have (§(ab) —d(a)b— ar(b))xab = 0.
By the notation a® = §(ab) — d(a)b — ar(b), we get abrab = 0. Furthermore
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(a + ¢)’xz(a + c)b = 0, this shows that a®zchb = —clzab, and (a’zcb)y(abzch) =
—abx(chyc)zab = 0, hence abzch = 0. Similarly we have a®zcd = 0, in particular,
abexabe = 0, and so alec = 0, which leads to a® = 0.

As in section 2, we also conjecture that every generalized Jordan triple derivation

on 2-torsion free semiprime ring is a generalized derivation.

4. GENERALIZED JORDAN DERIVATIONS ON STANDARD OPERATOR ALGEBRAS

Theorem 4.1. Let M,,(C) denote the algebra of all n x n complex matrices and
B be an arbitrary algebra over the complex field C. Suppose that § : M, (C) — B
is a linear mapping such that 6(P) = 6(P)P + P7(P) holds for all idempotent
P in M,(C), where T : M,(C) — B is a linear mapping satisfying 7(P) =
T(P)P + P1(P) for any idempotent P in M, (C), then ¢ is a generalized Jordan
derivation. Moreover, § is a generalized derivation.

Proof. By Theorem 2.3 of [3], 7 is a derivation.

Pick a Hermitian matrix H € M,(C). Then H = > ; t;P; where t; € R
and P; are idempotents such that P, P; = P;P; = 0 for i # j. Since P; + P; is an
idempotent if ¢ # j, we have §( P+ P;) = §(P;+P;)(P;+P;)+(P;+P;)T(P;+P;).
This yields that §(P;)P; + P;7(P;) + 6(P;)P; + PjT(P;) = 0. Using this relation
we see that 6(H?) = 6(H)H + HT(H).

Now replacing H by H + K where H and K are both Hermitian, we get
J(HK+KH)=46H)K+H7(K)+(K)H+ K7(H). Since an arbitrary matrix
A € M, (C) can be written in the form A = H +iK with H, K Hermitian, the last
relations imply that 6(A?) = §(A)A + A7(A), by Theorem 2.5, § is a generalized
derivation.

Theorem 4.2. Let B be a F(X)—bimodule and § : F(X) — B be a linear
mapping such that §(P) = §(P)P + P7(P) for any idempotent P € F(X), where
7 : F(X) — B is a linear mapping satisfying 7(P) = 7(P)P + Pt(P) for any
idempotent P € F(X), then ¢ is a generalized derivation. Furthermore, § is
a generalized inner derivation, i.e. there exist S,T € B(X) such that §(A) =
SA — AT for every A € F(X).

Proof. By Theorem 3.6 in [3], 7 is a derivation. Pick A, B € F(X), then
there exists an idempotent ) € F(X) such that QAQ = A and QBQ = B.
Let {1,229, - ,z,} be a basis of the range of (). Define linear functionals
fi, f2,-++, fn on X by

fi(xj) = 8,
fi(z) =0 for all z € KerQ.
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Let C C F(X) be the algebra of all operators of the form C' = szzl tijTi ® fj,
ti; € C and note that C is isomorphic to M, (C) via the isomorpmism C' — (%;;).
Thus, for the restriction of ¢ to C, Theorem 4.1 can be applied, hence, §(AB) =
d(A)B + At (B).

To complete the proof, it remains to prove that d is a generalized inner derivation.

Let g € X and fy € X* be chosen such that fy(xg) = 1. Define two operators
S: X —>XandT: X — X by Sz = d(z® fo)xg and Tz = 7(z ® fo)zo
respectively.

For arbitrary A € F(X), we have

0(Az ® fo) =0(A)z ® fo + AT(z ® fo).
Applying both operators in this equation to xg, we get
§(A)r = SAz — ATz, Vz € X.

Hence §(A) = SA — AT.

It is easy to see that both S and T have closed graphs, and hence both are
bounded. This completes the proof.

Since F'(X) is dense in the weak operator topology in every standard operator
algebra, we have the following

Theorem 4.3. Let A be a standard operator algebra. Suppose that linear
mappings 0 : A — B(X) and 7 : A — B(X) satisfying 6(P) = 6(P)P + P1(P)
and T(P) = 7(P)P + P7(P) for every idempotent P in A. If § and T are
continuous in the weak operator topology, then there exist S,T € B(X) such that
0(A)=SA—- AT, VAec A
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