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AN OVERVIEW OF THE IMMERSED INTERFACE METHOD
AND

ITS APPLICATIONS∗

Zhilin Li

Abstract. Interface problems have many applications. Mathematically,
interface problems usually lead to differential equations whose input data
and solutions are non-smooth or discontinuous across some interfaces.
The immersed interface method (IIM) has been developed in recent years
particularly designed for interface problems. The IIM is a sharp inter-
face method based on Cartesian grids. The IIM makes use of the jump
conditions across the interface so that the finite difference/element dis-
cretization can be accurate. In this survey paper, we will introduce the
immersed interface method for various problems, discuss its recent ad-
vances and related software packages, and some of its applications. We
also review some other related methods and references in this survey
paper.

1. INTRODUCTION

Interface problems are those problems in which the input data (such as the
coefficients of differential equations, source terms etc.) may be discontinuous
or even singular across one or several interfaces in the solution domain. The
solution to an interface problem, therefore, typically is non-smooth or even
discontinuous across the interfaces.

Interface problems have attracted a lot of attention from both theoretical
and numerical analysts over the years. Mathematically, interface problems
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usually lead to differential equations whose input data and solutions are non-
smooth or discontinuous across some interfaces. Many numerical methods
designed for smooth solutions do not work, or work poorly, for interface prob-
lems.

Interface problems occur in many physical applications, particularly for
free boundary/moving interface problems, for examples, the modeling of the
Stefan problem of solidification process and crystal growth, composite mate-
rials, multi-phase flows, cell and bubble deformation, and many others. We
present a model problem below to show the importance and characteristics of
the interface problems of our interest. More examples will be discussed later
in this paper.

1-1. A model problem and analysis

The heat equation

(1.1) ut = (βux)x + f(x, t)

describes many physical phenomena. For instance, u may represent the tem-
perature distribution in a material with heat conductivity β. If there are two
different materials that meets at x = α, then the coefficient β is discontin-
uous across the interface x = α between the different materials, see [52] for
an example. Physically, the temperature should be continuous, which means
[u] = 0 across the interface, where

(1.2) [ u ] = lim
x→α+

u(x)− lim
x→α−

u(x) = u+ − u−

denotes the jump of u(x) at the interface α. We distinguish the following
situations:

• The source term f(x, t) is continuous, but the coefficient β is not. Then
the heat flux is continuous, i.e., [βux] = 0, but ux is not unless it vanishes
at the interface α.

• The source term is singular with f(x, t) = C(t) δ(x− α), in other words
there is a point source at α. So the heat flux at α has a jump given
by the source strength C(t), i.e., [β ux] = −C(t). In this case, ux is
discontinuous even if β is continuous.

• The steady state case is: (βux)x = −f(x). In particular, suppose f(x) =
C δ(x − α) and β is constant on each side of the interface α, then the
solution is a piecewise linear function, see Fig. 2.1 for an example. Even
for this simplest example, special care has to be taken to deal with the
discontinuity in β and the delta function singularity when we want to
solve the problem numerically.
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The immersed interface method (IIM) has been developed for solving the
following problems:

• The differential equation/system has discontinuous but bounded coeffi-
cients.

• The differential equation/system has singular source term such as a Dirac
delta function.

• The interface can be fixed or moving with time.

• There are one or several interfaces.

• Problems that are defined on irregular domains.

In all of the cases above except for the last one, the solution can be dis-
continuous, for example, the pressure of the Navier-Stokes equations involving
interfaces (see Sec. 9.1), or non-smooth, for example, the temperature in the
heat equation involving interfaces.

For an elliptic interface problem of the form

(1.3) ∇ · (β(x)∇u)− κ(x) u = f(x), x ∈ Ω,

the solution u(x) generally is not in H2(Ω) if β(x) and κ(x) have discontinuities
even if f(x) ∈ L2(Ω). The existence and uniqueness of the weak solution
is discussed in [7, 12]. The conclusion is that the solution is in piecewise
H2(Ω). However, in many practical applications, it is reasonable to assume
that the solution is piecewise smooth in the neighborhood of the interface if
the interface is smooth.

To solve an interface problem numerically, usually we need to choose a grid
first. In general, there are two kinds of grids: (i) a body fitted grid that is
usually combined with a finite element (FE) method, see for example, [7, 12];
(ii) a Cartesian grid that is usually associated with a finite difference (FD)
discretization.

The immersed interface method is often based on a Cartesian grid and is
often associated with a finite difference method. However, it has been also
combined with finite element methods [43, 45].

1.2. Why Cartesian grids?

One of obvious advantages of using Cartesian grids is that there is almost
no cost for the grid generation. Also conventional numerical schemes can be
used at most grid points that are away from the interface since there are
no irregularities there. Only those grid points near the interface, which are
usually much fewer than regular grid points, need special attention.



4 Zhilin Li

Another advantage of using Cartesian grids is that we can take advantage of
many software packages or methods developed for Cartesian grids, for example,
the fast Poisson solvers [77], the Clawpack [35] and the Amrclawpack [4], the
level set method [61], the structured multigrid solvers [1, 14], the immersed
boundary method [64], and many others.

More importantly, we are interested primarily in time-dependent problems,
and the interfaces are typically moving. Although it is possible to develop
moving mesh methods that conform to the interfaces in each time step, this is
generally much more complicated than simply allowing the interface to move
relative to a fixed underlying grid.

1.3. Some commonly used methods for interface problems

In the discussion below, we assume a uniform Cartesian grid xi, i =
1, 2, · · · , with the step size h = xi − xi−1.

1.3-1. The smoothing method for discontinuous coefficients

In one space dimension, let β(x) be a function that has a finite jump at
x = α, i.e., [β] = lim

x→α+
β(x)− lim

x→α−
β(x) 6= 0. Define

(1.4) β−(x) =
{

β(x), if x < α,
0, if x > α,

β+(x) =
{

0, if x < α,
β(x), if x > α.

We can smooth β(x) using

(1.5) βε(x) = β−(x) + (β+(x)− β−(x))Hε(x− α),

where Hε is smoothed Heaviside function

(1.6) Hε(x) =





0, if x < −ε,

1
2

(
1 +

x

ε
+

1
π

sin
πx

ε

)
, if |x| ≤ ε,

1, if x > ε,

and ε > 0 is a small number depending on the step size of a numerical scheme,
see for example [76]. The coefficient in the front of the sine function is chosen
so that Hε(x) is both continuous and smooth at x = ±ε. The smoothing
method is not very accurate, see, for example, Fig. 2.1. It will smooth out the
solution as well.

For two or three dimensional problems, the smoothing method may not be
so easy to implement unless the interface is expressed as the zero level set of
a Lipschitz continuous function ϕ(x). For example, let the set {x, ϕ(x) = 0}



An Overview of the Immersed Interface Method and its Applications 5

be the interface, then the smoothing function of a discontinuous function β(x)
is simply βε(ϕ(x)).

1.3.2. The harmonic averaging for discontinuous coefficients

For elliptic interface problems, another method that is more accurate than
the smoothing method for discontinuous coefficients is the harmonic averag-
ing, see [3], [75] and [78]. Take the one dimensional expression (βux)x as an
example. The discrete form of (βux)x can be written as

1
h2

[
βi+ 1

2
(ui+1 − ui)− βi− 1

2
(ui − ui−1)

]
.

If β is smooth then we can take βi+ 1
2

= β(xi+ 1
2
), where xi+ 1

2
= xi + h/2, and

the discretization is second order accurate. If β is discontinuous in [xi−1, xi+1],
then the harmonic average of β(x) is

(1.7) βi+ 1
2

=
[

1
h

∫ xi+1

xi

β−1(x) dx

]−1

.

This can be justified by homogenization theory for problems where β(x) varies
rapidly on the scale of the grid cells. The method using the harmonic averaging
is second order accurate in the maximum norm for one dimensional elliptic
interface problems due to primarily the result of fortuitous cancellation, see
[39]. However, we need to calculate the integral (1.7) accurate enough to
guarantee second order accuracy, which is not so easy especially in the interval
where the discontinuity takes place.

In two space dimensions, the harmonic averaging is also commonly used to
deal with discontinuous coefficients [3], [75], now integrating over squares to
obtain the harmonic average of β(x, y). In this case, however, the method does
not appear to give second order accurate results because the cancellations are
very unlikely to take place for arbitrary interfaces. It is also not practical to
compute the integrals accurately near the interface in two space dimensions
when β is discontinuous.

1.3.3. Peskin’s immersed boundary (IB) method

This method was originally developed by Peskin [62, 63] to model blood
flow in the heart, and has since been applied to many other problems, par-
ticularly in biophysics. We refer the readers to the recent review article [64]
for the method and its applications. One of very important ideas in the IB
method is the use of a discrete delta function to distribute singular source to
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nearby grid points. There are several discrete delta functions in the literature.
The commonly used ones include the hat function

(1.8) δh(x) =
{

(h− |x|)/h2, if |x| < h,
0, if |x| ≥ h,

and Peskin’s original discrete cosine delta function

(1.9) δh(x) =
{

1
4h(1 + cos(πx/2h)), if |x| < 2h,
0, if |x| ≥ 2h.

The two discrete delta functions above are both continuous. The first one is
not smooth but the solution obtained by using it gives second order accuracy
for some one-dimensional problems [5]. The discrete cosine delta function
is smooth but the solution obtained by using it is only first order accurate.
The discrete delta function approach is robust and simple to implement. In
high dimensions, the discrete delta function used is often the product of one
dimensional discrete delta functions, for example, δh(x, y) = δh(x)δh(y).

The original motivation of the immersed interface method is to generalize
the results in [5] to two and three dimensional problems and try to improve
accuracy of Peskin’s IB method. However, it seems unlikely that the discrete
delta function approach can achieve second order or higher accuracy except in
a few special situations, e.g., when the interface is aligned with a grid line.

The rest of the paper is organized as follows. In the next section, we
introduce the IIM for one dimensional problems. The IIM for two dimensional
problems are introduced in Sec. 3. In Sec. 4, the fast IIM for piecewise constant
coefficients is briefly explained followed by the application to elliptic PDEs
defined on irregular domains. We mention some implementation details of the
IIM in Sec. 5. The IIM for three dimensional problems are also explained there.
Recent work on the IIM in the polar coordinates is discussed in Sec. 6. In
Sec. 7, the IIM using the finite element methods with modified basis functions
is presented. Some applications of the IIM to interesting physical problems
can be found in Sec. 8. Other methods that are related to the IIM is reviewed
in Sec. 10. We conclude the paper and point some future research directions
in Sec. 11.

2. THE IMMERSED INTERFACE METHOD FOR 1D ELLIPTIC INTERFACE

PROBLEMS

Consider a simple but typical 1D elliptic interface problem

(2.1) (βux)x − κu = f + Cδ(x− α), 0 < x < 1, 0 < α < 1,
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with specified boundary conditions on u at x = 0 and x = 1. The function
β(x) is allowed to be discontinuous at x = α but κ(x) and f(x) are smooth
functions for simplicity.

2.1. Reformulating the problem using the jump conditions

By integrating (2.1) from x = α− to x = α+, we can get

(2.2) [u]
∣∣∣
α

= u+ − u− = 0, [βux]
∣∣∣
α

= β+u+
x − β−u−x = C.

An alternative way to state the problem (2.1) is to require that u(x) satisfy
the equation

(2.3) (βux)x − κu = f, x ∈ (0, α) ∪ (α, 1),

excluding the interface α, together with the two internal boundary conditions
(2.2) at x = α. When f(x) is continuous, we also have

β+
x u+

x + β+u+
xx − κ+u+ = β−x u−x + β−u−xx − κ−u−.

Since we assume that κ+ = κ−, β−x = β+
x = 0, and u+ = u−, we can express

the limiting quantities from + side in terms of those from the − side to get,

(2.4) u+ = u−, u+
x =

β−

β+
u−x +

C

β+
, u+

xx = β−u−xx/β+.

2.2. The finite difference equations

The algorithm of the IIM for (2.3) and (2.2) is outlined below. The key
derivation is given in the next sub-section.

• Generate a Cartesian grid:

xi = ih, i = 1, 2, · · · , n

where h = 1/n. The point α will typically fall between the grid points,
say xj ≤ α < xj+1. The grid points xj and xj+1 are called irregular grid
points. The other grid points are called regular grid points.

• Determine the finite difference scheme at regular grid points. At a grid
points xi, i 6= j, j + 1, the standard finite difference approximation

(2.5)
1
h2

(
βi+ 1

2
(ui+1 − ui)− βi− 1

2
(ui − ui−1)

)
+ κi ui = fi,
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is used, where βi+ 1
2

= β(xi+ 1
2
), κi = κ(xi), fi = f(xi).

• Determine the finite difference scheme at irregular regular grid points
xj and xj+1. The finite difference equations are determined from the
method of undetermined coefficients:

(2.6)
γj,1uj−1 + γj,2uj + γj,3uj+1 − κjuj = fj + Cj ,
γj+1,1uj + γj+1,2uj+1 + γj+1,3uj+2 − κj+1uj+1 = fj+1 + Cj+1.

For the simple model problem in which κ ≡ 0, [f ] = 0, and β is piece-
wise coefficient, the coefficients of the finite difference have the following
closed form:

(2.7)
γj,1 = (β− − [β](xj − α)/h)/Dj , γj+1,1 = β−/Dj+1,

γj,2 = (−2β−+ [β](xj−1− α)/h)/Dj , γj+1,2 = (−2β++ [β](xj+2− α)/h)/Dj+1,

γj,3 = β+/Dj , γj+1,3 = (β+ − [β](xj+1 − α)/h)/Dj+1,
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where
Dj = h2 + [β](xj−1 − α)(xj − α)/2β−,

Dj+1 = h2 − [β](xj+2 − α)(xj+1 − α)/2β+.

It has been shown in [21, 39] that Dj 6= 0 and Dj+1 6= 0 if β−β+ > 0.
The correction terms are:

(2.8) Cj = γj, 3 (xj+1 − α)
C

β+
, Cj+1 = γj + 1, 1 (α− xj+1)

C

β−
.

• Solve the tridiagonal system of equations to get an approximate solution
of u(x).

Remark 2.1. Note that when [β] = 0, we recover the standard central
finite difference using the three-point stencil, and the correction terms are the
same as those obtained from the discrete delta function (1.8).

2.3. A brief derivation of the finite difference scheme at an irregular
grid point

We illustrate the idea of the IIM in determining the finite difference coeffi-
cients γj,1, γj,2 and γj,3 in (2.6). We want to determine the coefficients so that
the local truncation error is as small as possible in the magnitude. The main
idea is to expand the solution u(xj−1), u(xj), and u(xj+1) at the interface α,
then use the interface relation (2.2) to express them in terms of the quantities
from one particular side.

Using the Tailor expansion for u(xj+1) at α, we have

u(xj+1) = u+(α) + (xj+1 − α) u+
x (α) +

1
2

(xj+1 − α)2 u+
xx(α) + O(h3).

Using the jump relation (2.4), the expression above can be written as

u(xj+1) = u−(α)+(xj+1−α)
(

β−

β+
u−x (α) +

C

β+

)
+

1
2

(xj+1−α)2
β−

β+
u−xx(α)+O(h3).

The Taylor expansions of u(xj−1) and u(xj) at α have the following expression

u(xl) = u−(α) + (xl − α)u−x (α) +
1
2

(xl − α)2 u−xx(α) + O(h3), l = j − 1, j.
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Therefore we have the following

γj,1u(xj−1) + γj,2u(xj) + γj,3u(xj+1) = (γj,1 + γj,2 + γj,3)u−(α)

+
(

(xj−1 − α)γj,1 + (xj − α)γj,2 +
β−

β+
(xj+1 − α)γj,3

)
u−x (α) + γj,3(xj+1 − α)

C

β+

+
1
2

(
(xj−1 − α)2γj,1 + (xj − α)2γj,2 +

β−

β+
(xj+1 − α)2

)
u−xx(α) + O(max

l
|γj,l|h3),

after the Taylor expansions and collecting terms for u−(α), u−x (α) and u−xx(α).
By matching the finite difference approximation with the differential equa-

tion at α from the − side1, we get the system of equations for the coefficients
γj ’s below:

(2.9)

γj,1 + γj,2 + γj,3 = 0

−(α− xj−1) γj,1 − (α− xj) γj,2 +
β−

β+
(xj+1 − α)γj,3 = 0

1
2
(α− xj−1)2 γj,1 +

1
2
(α− xj)2 γj,2 +

β−

2β+
(xj+1 − α)2 γj,3 = β−.

It is easy to verify that the γ’s in the left column of (2.7) satisfy the system
above. Once those γ’s have been computed, it is easy to set the correction
term Cj to match the remaining leading terms of the differential equation.

2.4. The IIM for general 1D elliptic interface problems

For a general interface problem in which all the coefficients β(x), κ(x), and
f(x), can have a finite jump at x = α, and the solution itself can have a jump
[u] = Ĉ, in addition to the flux jump condition, [βux] = C, the IIM has been
developed in [39]. The finite difference scheme at x = xj is the solution of the
following linear system

(2.10)

γj,1 + γj,2 +
(

1 +
(xj+1 − α)2

2β+
[κ]

)
γj,3 = 0

(xj−1 − α)γj,1 + (xj − α)γj,2

+
{

β−

β+
(xj+1 − α) +

(
β−x
β+

− β−β+
x

(β+)2

)
(xj+1 − α)2

2

}
γj,3 = β−x

(xj−1 − α)2

2
γj,1 +

(xj − α)2

2
γj,2 +

(xj+1 − α)2 β−

2β+
γj,3 = β−.

1 1It is also possible to further expand at x = xj to
match the differential equation at x = xj . The order of convergence will be the same.
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The correction term at x = xj is
(2.11)

Cj = γj,3

{
Ĉ + (xj+1 − α)

C

β+
− (xj+1 − α)2

2

(
β+

x C

(β+)2
− κ+ Ĉ

β+
− [f ]

β+

)}
.

The linear system of equations for the coefficients of the finite difference equa-
tion at x = xj+1, and the correction term Cj+1 can be found in [39].
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FIG.
2.1.

Comparison of the computed solutions. The solid line is the exact solution.
The ‘*’ is the result from the IIM which is exact. The ‘o’ is the result
obtained from the smoothing method (1.5) with ε = 2h combined with
the discrete cosine delta function. The mesh size is h = 1/40.

2.5. A numerical example of comparison

In Fig. 2.1, we show a comparison of the numerical results obtained from
the IIM and the smoothing method with the discrete cosine delta function for
1D interface problem (2.1) with κ = 0. The source term is f(x) = δ(x − α).
The boundary condition is u(0) = u(1) = 0. It is easy to check that the exact
solution is

u(x) =
{

Bx(1− α), if 0 ≤ x ≤ α,
Bα(1− x), if α < x ≤ 1,

where B = − 1
β+α+β−(1−α)

. The parameters are α = 1/3, β− = 1, β+ = 100.
In this case, the IIM gives the exact solution while the result (little ’o’s)
computed from the smoothing method (1.5) with ε = 2h combined with the
cosine discrete delta function (1.9) is obviously first order accurate.

3. THE IMMERSED INTERFACE METHOD FOR TWO DIMENSIONAL PROBLEMS

In two space dimensions, an interface is a curve that we assume to be
smooth. For an elliptic interface problem (1.3), the two jump conditions gen-
erally are

(3.1) [u]
∣∣∣
Γ

= w(s), [βun]
∣∣∣
Γ

= v(s),

where w(s) and v(s) are two functions defined only along the interface Γ, s is
the arc-length of the interface, un = ∂u

∂n = ∇u ·n is the normal derivative, and
n is the unit normal direction, see Fig. 3.1(a) for an illustration. The original
IIM for two dimensional problems are proposed in [36, 39]. In the original
IIM, a six-point
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FIG.
3.1.

(a) A diagram of a rectangular domain Ω = Ω+ ∪ Ω− with an immersed
interface Γ. The coefficients such as β(x) etc. may have a jump across
the interface. (b) A diagram of the local coordinates in the normal and
tangential directions, θ is the angle between the x-axis and the normal
direction.

stencil is used at an irregular grid point. In [44], a new version of the IIM, the
maximum principle preserving scheme, is proposed. Using the discrete maxi-
mum principle, the convergence of the IIM has been proved by constructing a
comparison function. Before we explain the IIM for two dimensional problems,
we first provide some theoretical preparations.

3.1. The local coordinates in the normal and tangential directions

Let (x∗, y∗) be a point on the interface Γ, it is more convenient to use the
local coordinates in the normal and tangential directions:

(3.2)
ξ = (x− x∗) cos θ + (y − y∗) sin θ,
η = −(x− x∗) sin θ + (y − y∗) cos θ,

where θ is the angle between the x-axis and the normal direction, pointing to
the direction of a specified side.

In the neighborhood of (x∗, y∗), the interface Γ can be parameterized as

(3.3) ξ = χ(η), with χ(0) = 0, χ′(0) = 0.

The curvature of the interface at (x∗, y∗) then is χ′′(0).

3.2. The interface relations

To derive the finite difference scheme at irregular grid points, we need
to use the interface relations so that we can express the quantities from one
side in terms of those from the other. The derivation is based on the original
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jump conditions (3.1), their derivatives along the interface, and the partial
differential equation itself. These relations are list below, see [36, 39] for the
derivation,

(3.4)

u+ = u− + w, u+
ξ = ρ u−ξ +

v

β+
, u+

η = u−η + w′,

u+
ξξ =

(
β−ξ
β+

− χ′′
)

u−ξ +

(
χ′′ −

β+
ξ

β+

)
u+

ξ +
β−η
β+

u−η −
β+

η

β+
u+

η

+(ρ− 1)u−ηη + ρu−ξξ − w′′ +
[f ]
β+

+
[κ] u− + κ+ [u]

β+
,

u+
ηη = u−η η + (u−ξ − u+

ξ ) χ′′ + w′′,

u+
ξ η =

β−η
β+

u−ξ −
β+

η

β+
u+

ξ + (u+
η − ρu−η )χ′′ + ρ u−ξ η +

v′

β+
,

where ρ = β−/β+. These interface relations are used in deriving the finite
difference equation.

3.3. An outline of the maximum principle preserving IIM

We assume the domain Ω is a rectangle, say [a, b]× [c, d]. The IIM can be
outline below.

• Generate a Cartesian grid

xi = a + ihx, yj = a + jhy, i = 0, 1, · · · ,m, j = 0, 1, · · · , n,

where hx = (b − a)/m and hy = (d − c)/n. We say (xi, yj) is a regular
grid point if (xi−1, yj), (xi+1, yj), (xi, yj−1), and (xi, yj+1) are all on the
same side of the interface as (xi, yj) is. Otherwise the grid point is called
irregular, see Sec. 5.1 for more information.

• Use the standard finite difference equation at regular grid points. For
example, at a regular grid point (xi, yj), the FD equation is

(3.5)

βi+ 1
2
,jui+1,j + βi− 1

2
,jui−1,j − (βi+ 1

2
,j + βi− 1

2
,j)uij

(hx)2
− κuij

+
βi,j+ 1

2
ui,j+1 + βi,j− 1

2
ui,j−1 − (βi,j+ 1

2
+ βi,j− 1

2
)uij

(hy)2
= fij .

The local truncation error at regular grid points is O(h2), where h =
max{hx, hy}.
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• If (xi, yj) is an irregular grid point, we use the method of undetermined
coefficients

(3.6)
ns∑

k=1

γk Ui+ik,j+jk
− κij Uij = fij + Cij

to determine the coefficients γk’s of the finite difference equation and
the correction term, where ns is the number of grid points in the finite
difference stencil. We usually take ns = 9. The sum over k involves
a finite number of points neighboring (xi, yj). So each ik, jk will take
values in the set {0,±1,±2 · · · }. The coefficients γk and the indices
ik, jk should depend on (i, j), but for simplicity of notation we drop the
dependence in the notation.

• Use a linear solver, for example, a multigrid method such as the struc-
tured multigrid solver MGD9V [14], or an algebraic multigrid solver
(AMG) [68] or the new multigrid solver in [1], to solve the system of the
finite difference equations.

3.4. Set-up the system of equations for the coefficients of the FD
scheme at an

irregular grid point

At an irregular grid point xij = (xi, yj), we want to determine the coeffi-
cients of the finite difference equation in such a way that the local truncation
error

(3.7) Tij =
ns∑

k=1

γk u (xi+ik , yj+jk
)− κij u(xi, yj)− f(xi, yj)− Cij ,

is as small as possible in the magnitude.
Using the immersed interface method, we choose a point x∗ij = (x∗i , y

∗
j )

on the interface Γ near (xi, yj). Usually, we take x∗ij either as the orthogonal
projection (explained in Sec. 5.2) of xij on the interface or the intersection
of the interface and one of axes. We use the Taylor expansion at x∗ij so that
(3.6) matches the partial differential equation (1.3) up to second derivatives at
x∗ij from a particular side of the interface, say the – side. This will guarantee
the consistency of the finite difference scheme. The Taylor expansion of each
u(xi+ik , yj+jk

) at x∗ij can be written as:

u(xi+ik , yj+jk
)= u(ξk, ηk)

= u± + ξku
±
ξ + ηku

±
η +

1
2
ξ2
ku±ξξ + ξkηku

±
ξη +

1
2
η2

ku
±
ηη + O(h3),



16 Zhilin Li

where the + or − superscript depends on whether (ξk, ηk) lies on the + or −
side of Γ. Therefore the local truncation error Tij can be expressed as a linear
combination of the values u±, u±ξ , u±η , u±ξξ, u±ξη, u±ηη

(3.8)

Tij =a1 u− + a2 u+ + a3 u−ξ + a4 u+
ξ + a5 u−η + a6u

+
η + a7 u−ξ ξ

+a8 u+
ξ ξ + a9 u−η η + a10 u+

η η + a11 u−ξ η + a12 u+
ξ η − κ−u−

−f− − Cij + O(max
k
|γk|h3).

The coefficients al depend only on the position of the stencil relative to the
interface. They are independent of the functions u, κ and f . If we define the
index sets K+ and K− by

K± = {k : (ξk, ηk) is on the ± side of Γ},

then the a2j−1 terms are given by

(3.9)

a1 =
∑

k∈K−
γk, a3 =

∑

k∈K−
ξkγk, a5 =

∑

k∈K−
ηkγk,

a7 =
1
2

∑

k∈K−
ξ2
kγk, a9 =

1
2

∑

k∈K−
η2

kγk, a11 =
∑

k∈K−
ξkηkγk.

The a2j terms have the same expressions as a2j−1 except the summation is
taken over K+.

Using the interface relations (3.4), we eliminate the quantities of one par-
ticular side, say, the + side, in (3.8) in terms of those from the other side, say,
the − side, and collect terms to get an expression below

Tij =
(
a1 +

a8 [κ]
β+

+ a2

)
u− +

{
a3 + a8

(
β−ξ
β+

− χ′′
)

+ a10χ
′′ + a12

β−η
β+

+ρ

(
a4 + a8

(
χ′′ −

β+
ξ

β+

)
− a10χ

′′ − a12

β+
η

β+

)
− β−ξ

}
u−ξ

(3.10) +

{
a5 + a6 + a8

(
β−η
β+

− β+
η

β+

)
+ a12(1− ρ) χ′′ − β−η

}
u−η

+ {a7 + a8ρ− β−} u−ξ ξ + {a9 + a10 + a8 (ρ− 1)− β−} u−η η

+ {a11 + a12ρ} u−ξ η − κ−u− − f− + (T̂ij − Cij) + O(h),
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where

(3.11)

T̂ij =a2 w + a12
v′

β+
+

(
a6 −

a8 β+
ξ

β+
+ a12χ

′′
)

w′

+a10 w′′ +
1

β+

(
a4 + a8

(
χ′′ −

β+
ξ

β+

)
− a10χ

′′ − a12

β+
η

β+

)
v

+a8

{
[f ]
β+

+
κ+w

β+
− w′′

}
.

We want to make the magnitude of the truncation error as small as possible
by choosing γk’s so that the coefficients of u−, u−ξ , u−η , · · · vanish. Therefore
we set the linear system of equations for the coefficients as

(3.12)

a1 + a2 + a8
[κ]
β+

= 0

a3 + ρa4 + a8

β−ξ − ρβ+
ξ − [β]χ′′

β+
+ a10

[β]χ′′

β+
+ a12

β−η − ρβ+
η

β+
= β−ξ

a5 + a6 − a8
[βη]
β+

+ a12(1− ρ) χ′′= β−η
a7 + a8 ρ= β−

a9 + a10 + a8(ρ− 1)= β−

a11 + a12 ρ= 0.

Once the γk’s are obtained, we set Cij = T̂ij , which is given by (3.11). If we
use a six-point stencil and (3.12) has a solution, then this leads to the original
IIM [36].

3.5. Enforcing the maximum principle using an optimization ap-
proach

The stability of the finite difference equations is guaranteed by enforcing
the sign constraint of the discrete maximum principle, see Morton and Mayers
[57]. The sign restriction on the coefficients γk’s in (3.6) are

(3.13) γk ≥ 0 if (ik, jk) 6= (0, 0), γk < 0 if (ik, jk) = (0, 0).

Note that at regular grid points, the standard central finite difference equa-
tions satisfy the sign constraints. We form the following constrained quadratic
optimization problem whose solution is the coefficients of the finite difference
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equation at the irregular grid point xij :

(3.14)
min

γ

{
1
2
‖γ − g‖2

2

}
, subject to

Aγ = b, γk ≥ 0, if (ik, jk) 6= (0, 0); γk < 0, if (ik, jk) = (0, 0),

where γ = [γ1, γ2, · · · , γns ]T is the vector composed of the coefficients of the
finite difference equation; Aγ = b is the system of linear equations (3.12); and
g ∈ Rns has the following components: g ∈ Rns ,

(3.15)
gk =

βi+ik,j+jk

h2
, if (ik, jk) ∈ {(−1, 0), (1, 0), (0,−1), (0, 1)};

gk = −4βi,j

h2
, if (ik, jk) = (0, 0); gk = 0, Otherwise.

If [β] = 0, then the solution to the optimization problem is the coefficients
of the standard central FD equation using the five-point stencil. The existence
of the solution to the optimization problem has been proved in [44]. We use
the QL program developed by K. Schittkowski [71] to solve the quadratic
optimization problem. The coefficient matrix of the finite difference approx-
imation to the PDE from the maximum preserving scheme is an M-matrix
which guarantees convergence of the multigrid methods that we used. The
additional cost in constructing the finite difference equations at irregular grid
points is usually less that 5% of the total CPU time. We refer the readers to
[44] for the detailed analysis and numerical examples.

4. THE FAST IMMERSED INTERFACE METHOD FOR INTERFACE PROBLEMS WITH

PIECEWISE CONSTANT BUT DISCONTINUOUS COEFFICIENT

For many application problems, the coefficient in the elliptic equation (1.3)
is piecewise constant. For example, it is reasonable to assume that the density
and viscosity are constants in each phase for a multi-phase flow problem. In
[42], a fast IIM method is proposed for this type of interface problems. One
of remarkable properties of the fast IIM for the interface problems is that the
number of iterations is independent of both the mesh size and the jump in
β. And with minor modifications, the method can be used for solving Poisson
equations on general domains, which have been applied to many applications
[15, 16, 19, 51, 22].

In this section, we briefly discuss the fast IIM for interface problems (1.3),
(3.1) with piecewise constant coefficient β and κ ≡ 0. Divided by the coefficient
in each sub-domain of Ω, the original problem (1.3) can be written as

(4.1) ∆u =
f

β
, if x ∈ Ω+ ∪ Ω− − Γ,



An Overview of the Immersed Interface Method and its Applications 19

along with the jump conditions (3.1) and the boundary condition on ∂Ω. The
Poisson equation above is only valid in the interior of the domain excluding
the interface Γ.

As we mentioned earlier in Sec. 3.5, for a Poisson equation with jumps
[u] = w and [un] = v, the finite difference equations using the IIM are the
standard central five-point discrete Laplacian plus correction terms at irregular
grid points. The resulting linear system of equations can be solved with one
call to a fast Poisson solver. However, if [β] 6= 0, the second jump condition is
in the flux [βun] = v instead of [un] = v. We can not divide β from the flux
jump condition [βun] = v because β is discontinuous. As described in [42], the
idea of the fast IIM is to augment an unknown [un] = g to have the following
system

(4.2)
∆u =

f

β
, if x ∈ Ω+ ∪ Ω− − Γ,

[u] = w, [βun] = v, [un] = g.

Note that g is also an unknown. The system is still closed because of an
additional equation [un] = g.

In the discretization, we represent the unknown jump g = [un] only at
certain projections x∗l (l = 1, 2, · · · ) of irregular grid points from a particular
side of the interface. So now there are two steps discretizations:

• The system of the finite difference equations, which is obtained from the
IIM with given jumps [u] = w and [un] = g, can be written as (in the
matrix-vector form)

(4.3) AU + BG = F + Fw = F1,

where U is the approximation to u(x) at all grid points, G is a discrete
form of g(s) at the chosen points on the interface, A is the matrix ob-
tained from the standard five point discrete Laplacian, F is the vector
formed from the source term; Fw is the part of the correction terms cor-
responding to the jump [u] = w, and −BG is the part of the correction
terms corresponding to the jump [un] = g.

• The discretization of the flux jump condition [βun] = v in terms of u,
[u] = w, and [un] = g using an interpolation scheme, can be written as

(4.4) EU + DG = F2,
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where E, D, are two matrices.

If we put the two systems (4.3) and (4.4) together, we get

(4.5)

[
A B

E D

][
U

G

]
=

[
F1

F2

]
.

Since the dimension of G, which is defined at a number of points on the
interface, is much smaller than the dimension of U , which is defined at all grid
points, it is advantageous to focus on the Schur complement

(4.6) (D − EA−1B)G = F2 −EA−1F1

for the unknown G. The Schur complement system can be solved using the
GMRES method [69]. Each iteration involves a call to a fast Poisson solver
and an interpolation scheme of (4.4) for the flux jump condition [βun] = v
to get the residual vector. When the convergence criteria is met, we not only
have an approximate solution to the PDE, but also the normal derivatives of
the solution from each side of the interface, see [42].

In Table 4.1, we show a grid refinement analysis of the fast IIM with
different jump in β. The interface is

{
X = r(θ) cos θ + xc,
Y = r(θ) sin θ + yc,

r(θ) = r0 + 0.2 sin(ω θ), 0 ≤ θ < 2π.

We shifted the center of the interface from the origin to avoid any advantages
of symmetry. The source term is

f(x, y) =
{

4, if x ∈ Ω−,
16 r2 if x ∈ Ω+,

where r =
√

x2 + y2. The exact solution is chosen as

u(x, y) =





r2

β−
, if (x, y) ∈ Ω−,

r4 + C0 log(2r)
β+

+ C1

(
r2
0

β−
− r4

0 + C0 log(2r0)
β+

)
, if (x, y) ∈ Ω+.

The jump conditions [u] and [βun] are obtained from the exact solution. In
Table 4.1, E1, E2, and E3, are the errors in the maximum norm for the solution
u, the normal derivatives u−n , and u+

n respectively. For a second order method,
the ratio ri should approach number 4. In the last column of Table 4.1, k is
the number of iterations of the GMRES iteration. We see clearly second order
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accuracy for all the quantities, and the number of iterations is independent of
both the mesh size n and the jump in β.

TABLE
4.1.

A grid refinement analysis for the fast IIM. The parameters are
r0 = 0.5, xc = yc = 0.2/

√
20, ω = 5, and m = nb = n. The

number of iterations of the GMRES iterations is independent of
both the mesh size n and the jump in the coefficient β.

n β+ β− E1 E2 E3 r1 r2 r3 k

40 2 1 2.285 10−3 2.23 10−3 7.434 10−3 7
80 2 1 5.225 10−4 5.956 10−3 1.987 10−2 4.37 3.74 3.74 7
160 2 1 1.269 10−4 1.827 10−4 6.101 10−4 4.12 3.26 3.26 7
320 2 1 2.988 10−5 5.038 10−5 1.678 10−4 4.25 3.63 3.64 7

n β+ β− E1 E2 E3 r1 r2 r3 k

40 10000 1 6.552 10−5 6.331 10−4 2.110 10−4 8
80 10000 1 7.847 10−6 8.366 10−5 2.785 10−5 8.35 7.57 7.58 8
160 10000 1 5.988 10−7 9.192 10−7 3.033 10−6 13.1 9.10 9.18 8
320 10000 1 5.859 10−8 2.058 10−7 6.887 10−7 10.2 4.47 4.40 7

4.1. An application of the fast IIM for Helmholtz/Poisson
equations on

irregular domains

The idea of the fast interface IIM described in the previous section can be
used with a little modifications to solve Helmholtz/Poisson equations of the
form

(4.7)
∆u− λu= f(x), x ∈ Ω,

q(u, un) = 0, x ∈ ∂Ω,

defined on an irregular domain Ω (interior or exterior), where q(u, un) is a
prescribed linear boundary condition along the boundary ∂Ω. We will demon-
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strate the idea for interior problems with a Dirichlet boundary condition
u|∂Ω = u0(x).

We embed Ω into a cube R and extend the PDE and the source term to
the entire cube R

(4.8)

∆u− λu =

{
f, if x ∈ Ω,

0, if x ∈ R− Ω,
u|∂Ω = u0(x),





[u] = g, on ∂Ω,

[un]= 0, on ∂Ω,

u = 0, on ∂R,

or





[u] = 0, on ∂Ω,

[un]= g, on ∂Ω,

u = 0, on ∂R.

Again, the solution u is a functional of g. We determine g(s) such that the
solution u(g) satisfies the boundary condition u(g)|∂Ω = u0(x). This can be
solved using the GMRES iteration exactly as we discussed earlier. The only
difference is the way in computing the residual vector.

There are other fast elliptic solvers for elliptic PDEs defined on irregular
domains using embedding or fictitious domain techniques. The earlier ones
include the capacitance matrix method [66], the integral equation approach
[55, 56], and the recent finite volume method [24].

In [83], an immersed interface method for boundary value problems (IIMB)
on irregular domains is developed, particularly for Dirichlet boundary condi-
tions. It was shown in [83] that the IIMB method is second order accurate
in the maximum norm and the Schur complement system is well-conditioned.
The IIMB method was applied to underground water simulations using the
stream-vorticity function in [83].

Forgelson and Keener [18] have developed an embedding method for Lapla-
cian equations on irregular domains with a Neumann boundary condition in
two and three dimensions. With careful selection of the stencils, the method
is second order accurate and produces a matrix that is stable (diagonally
semi-dominant). Dumett and Keener [17] have also extended the embedding
method to anisotropic elliptic boundary value problems on irregular domains
in two space dimensions when β(x) in (1.3) is an anisotropic matrix.

5. SOME IMPLEMENTATION DETAILS OF THE IIM

5.1. Interface expressions

To solve an interface problem numerically, we need the information of the
interface such as the tangential and normal directions, the curvature etc. We
list some common approaches used to express interfaces below.
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•Analytic expressions. If the interface is fixed, we may have an analytic
expression for the interface, see for example [40]. However, it usually does not
work for moving interface and free boundary problems.

• The Lagrangian formulation. This approach is also called the parti-
cle method. In this approach, a number of control points on the interface, say
Xk, k = 1, 2, · · · , are given. Other interface information such as the normal
and the tangential derivatives, the curvature etc., can be obtained from those
control points. In [39], a cubic spline interpolation package was developed for
a closed interface in 2D. The package can be used to compute the arc-length,
the first and second tangential derivatives of any given function defined on the
interface.

• The level set method, an Eulerian approach. In this approach, the
interface is the zero level set of a Liptschiz continuous function ϕ(x) defined
on the entire domain. For example, if the interface is the unit circle in 2D,
then one choice of a level set function is ϕ(x, y) =

√
x2 + y2−1. For a general

interface, the level set function is often chosen as the signed distance function.
Note that with a level set function, the interface is explicitly defined by

a grid function ϕij = ϕ(xi, yj) in 2D. The unit normal direction is simply
∇ϕ/|∇ϕ|, and the curvature is∇· ∇ϕ

|∇ϕ| . All these information can be calculated
using the central finite difference schemes at grid points. For a non-grid point,
the information can be computed in terms of the information at the four
neighboring grid points using the bi-linear interpolation, see [19].

If the interface is expressed as the zero level set of a function ϕij , then
it is easy to classify a grid point as regular or irregular for elliptic interface
problems. Let (xi, yj) be a grid point, define

(5.1)
ϕmax

i,j = max{ϕi−1,j , ϕi,j , ϕi+1,j , ϕi,j−1, ϕi,j+1},
ϕmin

i,j = min{ϕi−1,j , ϕi,j , ϕi+1,j , ϕi,j−1, ϕi,j+1}.

We call (xi, yj) an irregular grid point if ϕmax
i,j ϕmin

i,j ≤ 0. Otherwise the grid
point is a regular one.

5.2. Finding the orthogonal projection of an irregular grid point
on the

interface

Using the IIM, we often need to find a point x∗ on the interface near an
irregular grid point, say x. If the interface is expressed as the zero level set of a
function ϕ(x) that is twice differentiable in the neighborhood of the interface,
then we can easily find an accurate approximation of the orthogonal projection
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of the irregular grid point on the interface using

(5.2) x∗ = x + αp, p =
∇ϕ

|∇ϕ| ,

where α is determined from the quadratic equation below:

(5.3) ϕ(x) + |∇ϕ|α +
1
2

(pT He(ϕ)p) α2 = 0,

and He(ϕ) is the Hessian matrix of ϕ. The projection computed using this
procedure has third order accuracy. Note that the formula is valid in both two
and three dimensions.

5.3. Some issues for three dimensional problems

The IIM developed for 3D problems in [39, 40] assumes an analytic expres-
sion of the interface. Recently, the maximum principle preserving IIM and the
fast IIM for interface problems with piecewise constant coefficient have been
developed in [15] for three dimensional problems in which the interface is ex-
pressed in terms of a level set function. While the main ideas are similar,
the implementation and derivation may be substantial different. We mention
below some crucial components of the IIM for three dimensional problems.

• The local coordinates transformation and the choice of the tan-
gential directions. Given a point (x∗, y∗, z∗) on the interface Γ, let ξ be the
normal direction of Γ, and η, τ , be two orthogonal directions tangential to Γ,
then the local coordinates transformation is given by

(5.4)




ξ
η
τ


 = A




x− x∗

y − y∗

z − z∗


 , A =




αxξ αyξ αzξ

αxη αyη αzη

αxτ αyτ αzτ


 ,

where αxξ represents the directional cosine between the x-axis and ξ, and so
forth. For any differentiable function p(x, y, z), we have

(5.5)




p̄ξ

p̄η

p̄τ


 = A




px

py

pz


 ,

where p̄(ξ, η, τ) = p(x, y, z), and

(5.6)




p̄ξξ p̄ξη p̄ξτ

p̄ηξ p̄ηη p̄ητ

p̄τξ p̄τη p̄ττ


 = A




pxx pxy pxz

pyx pyy pyz

pzx pzy pzz


AT ,
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where AT is the transpose of A. It is easy to verify that AT A = I, where I is
the identity matrix.

If the interface is expressed as the zero level set of a function ϕ(x, y, z),
then the normal direction ξ, the two tangential directions η and τ can be
selected as

(5.7) ξ =
∇ϕ

|∇ϕ| = (ϕx, ϕy, ϕz)T /
√

ϕ2
x + ϕ2

y + ϕ2
z,

(5.8) η = (ϕy, −ϕx, 0)T /
√

ϕ2
x + ϕ2

y ,

if ϕ2
x + ϕ2

y 6= 0. Otherwise we choose

(5.9) η = (ϕz, 0, −ϕx)T /
√

ϕ2
x + ϕ2

z.

The corresponding second tangential direction is

(5.10) τ =
ξ × η

|ξ × η| =
s
|s| , where s = (ϕxϕz, ϕyϕz, −ϕ2

x − ϕ2
y)

T ,

if ϕ2
x + ϕ2

y 6= 0. Otherwise we choose

(5.11) τ =
t
|t| , where t = (−ϕxϕy, ϕ2

x + ϕ2
z, −ϕyϕz)T .

5.4. Related software packages

Several packages (collections of Fortran subroutines) have been developed
and are available to the public through anonymous ftp 2. The interface (closed
surfaces within the solution domain) can be expressed as a set of ordered points
(Lagrangian formulation) or a level set function (Eulerian formulation). We
briefly describe the packages available and choices of the packages.

• It is recommended that the maximum principle preserving IIM be used
for self-adjoint elliptic interface problems with variable and discontinu-
ous coefficient, for example, non-linear interface problems whose coeffi-
cient depending on the solution.

• For self-adjoint elliptic interface problems with piecewise constant coef-
ficient, the fast IIM method is recommended.

2 2ftp.ncsu.edu under the directory
/pub/math/zhilin/Packages.
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• Packages for Poisson or Helmholtz equations on irregular domains, ei-
ther interior or exterior, are available. The boundary (can be multi-
connected) of the domain should be expressed in terms of a level set
function. Like other elliptic solvers, the method may not work very well
for Helmholtz equations that behave like hyperbolic equations.

6. THE IMMERSED INTERFACE METHOD IN POLAR COORDINATES

Polar, cylindrical, and spherical coordinates are widely used for many ap-
plications especially in electro-magnetics, and problems with an infinite do-
main. The IIM developed for Cartesian grids can not be applied directly for
polar coordinates because the jump relations of the solution and its derivatives
are not as useful and informative in polar coordinates as those derived in [36,
39] for Cartesian coordinates.

In [50], the authors have proposed a new formulation and a new algorithm
for following elliptic interface problems

(6.1) ∆u = f, x ∈ R− Γ, [u]Γ = w(s), [un]Γ = v(s),

with a prescribed boundary condition along r = rmax, where R is a circular
domain 0 ≤ r ≤ rmax, and Γ ∈ R is an interface. We assume that w ∈ C2(Γ)
and v ∈ C2(Γ).

In the neighborhood of the interface Γ, which is the zero level set ϕ = 0,
we extend w(X(s)) and v(X(s)) along the normal line (both directions) using
the formulae

(6.2) we(x) = we (X(s) + αn) = w(X(s)),

(6.3) ve(x) = ve (X(s) + αn) = v(X(s)),

for all α ∈ R such that the normal lines do not intersect. We then construct
the following function based on the extensions

(6.4) ũ(x) = we(x) + ve(x)
ϕ(x)
|∇ϕ(x)| .

Note that ũ(x) ∈ C2 in the neighborhood of the interface Γ since we assume
that w(s), v(s), and Γ(s) are all in C2. Define also

(6.5) û(x) = H(ϕ(x))ũ(x) =





0, if ϕ(x) < 0,

1
2 ũ(x), if ϕ(x) = 0,

ũ(x), if ϕ(x) > 0,
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in the same neighborhood in which ũ(x) is well defined. We have the following
theorem.

Theorem 6.1. Let u(x) be the solution of (6.1), û(x) be defined in (6.5).
Define q(x) = u(x) − û(x). Then in the neighborhood of the interface where
we(x) and ve(x) are well defined, q(x) is the solution of the following problem

(6.6) ∆q(x) = f(x)−H(ϕ(x)) ∆û(x), x ∈ R− Γ,

(6.7) [q]Γ = 0, [qτ ]Γ = 0, [qn]Γ = 0,

where τ is the unit tangent direction. In other words, the new function q(x)
is a smooth function across the interface Γ.

The proof can be found in [50] and will be omitted here. Since q(x) is
smooth, we can use the standard finite difference scheme with minor modifi-
cations (to take care of the jump in the second order derivatives) to get an accu-
rate q(x), and then recover the solution u(x) according to u(x) = q(x)+ û(x).
The fast solver for elliptic interface problems with piecewise constant coeffi-
cients based on the new formulation above has also been developed in polar
coordinates and the method is similar to the discussions in Sec. 4. We refer
the readers to [50] for the detailed algorithms and numerical results.

7. THE IMMERSED INTERFACE METHOD USING FINITE ELEMENT

FORMULATIONS

In the previous sections, we have been focused on finite difference meth-
ods for interface problems because they are usually simple to understand and
implement. However, sometimes a finite element formulation is preferred be-
cause it is relatively easier to prove the convergence. Finite element methods
have less regularity requirements for the coefficients, the source term, and the
solution than finite difference methods do. In fact, the weak form for elliptic
interface problems (1.3) is
(7.1)∫∫

Ω
β∇u∇φdx +

∫∫

Ω
κuv dx = −

∫∫

Ω
f φ dx +

∫

Γ
vφds, ∀φ(x) ∈ H1

0 (Ω),

which does allow the discontinuity in the coefficient β, we refer the readers to
[45] for the derivation.

7.1. The modified basis functions for one dimensional problems

Unless the interface α in (2.1) itself is a node, the solution obtained from
the standard finite element method using the linear basis functions is only first
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order accurate in the maximum norm. In [43], modified basis functions which
are defined below

(7.2) φi(xk) =
{

1, if k = i,
0, otherwise,

(7.3) [φi] = 0, [βφ′i] = 0,

were constructed. Obviously, if xj < α < xj+1, then only φj and φj+1 need
to be changed to satisfy the second jump condition. Using the method of
undetermined coefficients, we can conclude that

φj(x) =





0, 0 ≤ x < xj−1,

x−xj−1
h , xj−1 ≤ x < xj ,

xj−x
D + 1, xj ≤ x < α,

ρ (xj+1−x)
D , α ≤ x < xj+1,

0, xj+1 ≤ x ≤ 1,

φj+1(x) =





0, 0 ≤ x < xj ,

x−xj

D , xj ≤ x < α,

ρ (x−xj+1)
D + 1, α ≤ x < xj+1,

xj+2−x
h , xj+1 ≤ x ≤ xj+2,

0, xj+2 ≤ x ≤ 1.

where

ρ =
β−

β+
, D = h− β+ − β−

β+
(xj+1 − α).

Fig. 7.1 shows several plots of the modified basis functions φj(x), φj+1(x), and
some neighboring basis functions, which are the standard hat functions. At
the interface α, we can see clearly the kink in the basis function which reflect
the natural jump condition.

Using the modified basis function, it has been shown in [43] that the fi-
nite element solution obtained from the Galerkin method with the new basis
functions is second order accurate in the maximum norm.
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FIG.
7.1.

Plot of some basis function near the interface with different β− and β+.
The interface is at α = 2

3 .

For 1D interface problems, the FD and FE methods discussed here are
not very much different. The FE method likely perform better for self-adjoint
problems, while the FD method is more flexible for general elliptic interface
problems.

7.2. Modified basis functions for two dimensional problems

The similar idea above has been applied to two dimensional problems with
a uniform Cartesian triangulation [45]. The piecewise linear basis function
centered at a node is defined as:

(7.4) φi(xj) =

{
1, if i = j

0, otherwise,
[u]|Γ = 0,

[
β

∂φi

∂n

]∣∣∣∣
Γ

= 0, φi|∂Ω = 0.

We call the space formed by all the basis function φi(x) as the immersed finite
element space (IFE).

It is easy to show that the linear basis functions defined at a nodal point
exists and it is unique. It has also been proved in [45] that for the solution
of the interface problem (1.3), there is an interpolation function uI(x) in the
IFE space that approximates u(x) to second order accuracy in the maximum
norm.

However, as we can see from Fig. 7.2(b), a linear basis function may be
discontinuous along some edges. Therefore such IFE space is a non-conforming
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finite element space. Theoretically, it is easy to prove the corresponding
Galerkin finite
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(a) (b)

FIG.
7.2.

(a) A standard domain of six triangles with an interface cutting
through. (b) A global basis function on its support in the non-conforming
immersed finite element space. The basis function has small jump across
some edges.

element method is at least first order accurate, see [45]. In practice, it behav-
iors much better than the standard finite element without any modifications.
Numerically, the computed solution has super linear convergence.

A conforming IFE space is also proposed in [45]. The basis functions are
still piecewise linear. The idea is to extend the support of the basis function
along interface to one more triangle to keep the continuity. The conforming
immersed finite element method is indeed second order accurate. The trade-
off is the increased complexity of the implementation. We refer the readers to
[45] for the details.

8. THE IMMERSED INTERFACE METHOD FOR PARABOLIC INTERFACE PROBLEMS

The IIM method has been developed for parabolic interface problems with
fixed or moving interfaces.

8.1. The ADI method for the heat equation with a fixed interface

In [46], an alternating directional implicit (ADI) method was developed
for the heat equations with singular source along a fixed interface Γ:

(8.1) ut = (ux)x + (uy)y −
∫

Γ
v(s, t) δ(x−X(s)) δ(y − Y (s)) ds.

The solution is allowed to have a jump [u] = w, as well. The interface relations
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for the problem are:

(8.2)

[u] = w, [uη] = [u]η = wη(η, t),

[uξ] = [un] = v(η, t), [uξξ] = χ′′[uξ]− wηη + [f ] + wt,

[uηη] = −χ′′[uξ] + wηη, [uξη] = χ′′[uη] + vη.

These jump relations can be easily decomposed into the x- and y-directions:

(8.3)

[ux] = [uξ] cos θ − [uη] sin θ, [uy] = [uξ] sin θ + [uη] cos θ,

[uxx] = [uξξ] cos2 θ − 2[uξη] cos θ sin θ + [uηη] sin2 θ,

[uyy] = [uξξ] sin2 θ + 2[uξη] cos θ sin θ + [uηη] cos2 θ,

where the θ is the angle between the normal direction and the x-axis. The
finite difference equation is carefully constructed by incorporating the jump
conditions in each direction as well as the cross derivative in the splitting:
(8.4)

u
n+ 1

2
ij − un

ij

∆t/2
= δxu

n+ 1
2

ij − (Cx)
n+ 1

2
ij −Qn

ij −Rn
ij + δyu

n
ij − (Cy)

n
ij − f

n+ 1
2

ij ,

un+1
ij − u

n+ 1
2

ij

∆t/2
= δxu

n+ 1
2

ij − (Cx)
n+ 1

2
ij −Qn

ij −Rn
ij + δyu

n+1
ij − (Cy)

n+1
ij − f

n+ 1
2

ij ,

where ∆t is the time step size and

δxun
ij =

(
un

i−1,j − 2un
ij + un

i+1,j

)
/h2, δyu

n
ij =

(
un

i,j−1 − 2un
ij + un

i,j+1

)
/h2.

At regular grid points, the standard ADI method is used, in which

(Cx)
n+ 1

2
ij = Qn

ij = Rn
ij = (Cy)

n
ij = Qn

ij = (Cy)
n+1
ij = 0.

At an irregular grid point, these correction terms are:

(8.5)

(Cx)ij =
[u]
h2

+ [ux]
(xi+1 − x∗)

h2
+ [uxx]

(xi+1 − x∗)2

2h2
,

Qn
ij =

1
2

(
(Cx)n

ij + (Cx)n+1
ij

)
− (Cx)

n+ 1
2

ij ,

Rn
ij = ± [uyy]n+1 − [uyy]n

4∆t
,

where x∗ is the intersection of the interface and the grid line y = yj . The term
(Cy)ij is similar to (Cx)ij . The sign in the last expression above is determined



An Overview of the Immersed Interface Method and its Applications 33

by the relative position of (xi, yj) and Γ. The method is accurate in the sense
that it has global h2 accuracy. It is efficient in the sense that it only needs to
solve a sequence of tridiagonal system of equations at each time level.

The generalization of the ADI method for piecewise constant coefficient
can be found in [74].

8.2. The maximum principle preserving scheme and a new multi-
grid method

for diffusion and convection equations with an interface

The ADI method is difficult to extend to interface problems with discon-
tinuous and variable coefficients because the flux jump condition usually can
not be easily decomposed in the x- and y- directions. In [2], Adams and Li
have developed the maximum principle preserving scheme for the following
two dimensional problems

(8.6)

ut + a(x, t) · ∇u = ∇ · (β∇u) + f, x ∈ Ω = Ω+ ∪ Ω−, x /∈ Γ,

[u]|Γ = w(s), [βun]|Γ = v(s),

u(x, 0) = u0(x), u(x, t)|∂Ω = g(x, t).

The diffusion term is discretized implicitly so that we can take large time
steps, while the advection term is discretized explicitly so that second order
accuracy can be achieved without affecting the discretization of the diffusion
part. The discretization has the following form
(8.7)

un+1 − un

∆t
+ (a · ∇hu)n+ 1

2 =
1
2

(
(∇h · β∇hu)n + (∇h · β∇hu)n+1

)
+ fn+ 1

2 ,

where

(8.8) (a · ∇hu)n+ 1
2 =

3
2
(a · ∇hu)n − 1

2
(a · ∇hu)n−1,

∇h is the discrete gradient, and tn+ 1
2 = tn + ∆t/2. This discretization is

second order accurate both in time and space. The CFL time step restriction
is

∆t ≤ h√
2 ‖a‖2

.

The spatial discretization at irregular grid points is done through the maxi-
mum principle preserving IIM scheme discussed in Sec. 3. The implicit linear
system of equations for un+1 is solved using the new multigrid method designed
for interface problems. We refer the readers to [2] for more details.
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8.3. The IIM for 1D moving interface problems

In [41], the IIM was developed for the following non-linear moving interface
problem

(8.9)
ut + λuux = (βux)x − f(x, t), x ∈ [0, α)

⋃
(α, 1],

dα

dt
= w

(
t, α; u−, u+, u−x , u+

x

)
, t > 0,

with three different interface conditions listed below.
• The solution u(α, t) = r(t) is given at the interface. This is the case of

1D solidification problems.
• The jump conditions [u] = q(t) and [βux] = v(t) are given at the inter-

face.
• The interface conditions u(α, t) = u0 and dα

dt = σ(t)[βux] are given. This
kind of problems is called the Stefan problems.

The discretization is the Crank-Nicholson scheme for the governing equation
and the trapezoidal rule for the motion

(8.10)

un+1
i − un

i

∆t
−Q

n+ 1
2

i +
λ

2

(
un

i un
x,i + un+1

i un+1
x,i

)

=
1
2

(
(βux)n

x,i + (βux)n+1
x,i

)
− 1

2
(
fn

i + fn+1
i

)
,

αn+1 − αn

∆t
=

1
2

(
wn + wn+1

)
.

The spatial discretization for ux and (βux)x is done through the IIM discussed

in the previous sections, see also [41] for the details, the correction term Q
n+ 1

2
i

is added when the interface α(t) crosses the grid line x = xi meaning that
(xi, t

n) and (xi, t
n+1) are on the different sides of the interface. The correction

term is determined from

(8.11) Q
n+ 1

2
j =

[u];τ
∆t

+
1

∆t

(
tn+ 1

2 − τ
)

[ut];τ ,

where the crossing time τ is estimated from the following equation

(8.12)
xj − αn

τ − tn
− αn+1 − xj

tn+1 − τ
=

1
2

(
wn − wn+1

)
.

The IIM has also been developed by Kandilarov for the following non-linear
problems

(8.13) ut − (βux)x + c(t)δ(x− ξ(t))f(u) = F (x, t),

where ξ(t) is a moving boundary, see [28].



An Overview of the Immersed Interface Method and its Applications 35

9. APPLICATIONS OF THE IMMERSED INTERFACE METHOD FOR

MOVING INTERFACE/FREE BOUNDARY PROBLEMS

For moving interface/free boundary problems, it is not enough just to
solve the differential equations with discontinuous coefficients and/or singular
sources. We also need to locate moving interfaces to certain accuracy. There
are three types of evolution schemes. The first one is the Lagrangian for-
mulation that uses a set of ordered marked particles Xk, k = 1, 2, · · · . The
position of these marked points are updated according to some physical laws,
typically dX

dt = u, where u is the velocity. This method is also called the front
tracking method and has many applications. But it may suffer from topo-
logical changes, e.g., when two “bubbles” merge or a single “bubble” splits,
ad-hoc techniques are required. The entire system may become stiff when the
particles become clustered together. On the other hand, the accuracy of the
moving interface is easier to control since the interface is independent of the
underlying grid. Also particle method has less grid orientation effects and can
preserve the area better for the incompressible flow.

Another class of algorithms are the “volume of fluid” techniques, which
track the motion of the interior region [6, 67]. These methods are more adapt-
able to topological changes but may lack the ability to compute geometrical
quantities such as the curvature of the front, accurately.

The third method is the level set method originally proposed in [61]. If
the interface at time t is the zero level set ϕ(x, t) = 0, where ϕ(x, t) is defined
on the entire domain, then we differentiate ϕ(x, t) = 0 with respect to time t
to get

(9.1)

ϕt +∇ϕ · dx
dt

= 0,

or ϕt +
( ∇ϕ

|∇ϕ| · u
)
|∇ϕ| = 0,

or ϕt + V |∇ϕ| = 0,

where V is the normal velocity. The equation above is referred to as a
Hamilton-Jacobi equation which can be solved efficiently using numerical meth-
ods for the conservation laws.

There are many advantages of the level set method. It is robust and simple
to implement in any dimensions. It can easily handle topological changes. It
often regularize a problem as well. The increased computational cost due to
the embedding the interface into a higher dimensional space is relieved by the
local level set method. It has been well known that a re-initialization process
is crucial to the success of the level set method. We refer the reader to [60,
73] for more recent development in the level set method.
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9.1. The IIM for the Stokes flow and the Navier-Stokes equations
with a

moving interface

The Stokes equations model the creeping flow of a highly viscous fluid, in
the limit where the Reynolds number goes to zero and both the inertial accel-
eration and convection terms are dropped from the Navier-Stokes equations.
The governing equations take the form

(9.2)

∇p = ∇ · µ∇u + F,

∇ · u = 0,
dX
dt

= u,

where X gives the location of the interface at time t. The time dependence of
this problem is the driven force F(x, t).

For an elastic boundary, following Peskin’s immersed boundary method
[79], the singular force can be written as

(9.3) F(x, t) =
∫

Γ
f(s, t)δ(x−X(s, t)) ds,

and the force density f is given by the Hooke’s law

(9.4) f =
∂

∂s
(T (s)τ ) ,

where τ = ∂X
∂s /|∂X

∂s |, and T (s) = T0(|∂X
∂s | − 1) is the tension of the immersed

boundary. We assume periodic boundary conditions for u and the pressure.
The problem is well-posed 3 except that the pressure can differ by a constant.
We assume that µ is a constant.

As explained in [64, 79], the problem is very stiff. Explicit methods will
suffer because of very small time step constraint due to the non-linearity asso-
ciated with (9.2)-(9.4). Implicit or semi-implicit methods have been developed
for this problem, see [64] for an overview.

This problem seems to be an ideal application of the IIM. Applying the
gradient operator to the first equation in the interior domain excluding the
interface Γ, and from the incompressibility condition, we get a Laplacian equa-
tion for the pressure. The Laplacian equation can be solved easily using the
IIM. The cost is about one call to a fast Poisson solver. In this case, the
pressure itself, and its normal derivative, are both discontinuous. Once the
pressure is computed, the velocity can be computed by solving the two Poisson

3 3If a Dirichlet boundary condition is prescribed for
the velocity, then there should be no boundary condition for the pressure.
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equations for the velocity. For the isothermal flow, the velocity is continuous.
But the other jump conditions are not explicitly given. In [39], using the
distribution theory and the Green’s theorem, the following jump conditions

(9.5)
[p](s) = f̂1(s, t), [pn](s) =

∂

∂s
f̂2(s, t),

[u] = 0, [un](s) = f̂2(s, t) τ ,
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(a) (b)

FIG.
9.1.

(a) A stretched elastic membrane is relaxing to its equilibrium, a circle with
r = 0.3. (b) A bubble rising. Both simulations are done using a 160 ×
160 grid. The break-up of the bubble was captured easily with the level set
method.

have been derived, where f̂1 and f̂2 are the projections of the force strength
in the normal and the tangential directions respectively. With the jump con-
ditions, the IIM can be used to solve the three Poisson equations at each time
step to get the pressure and the velocity.

In Figure 9.1(a), we show a numerical simulation of the relaxation process
of a stretched elastic membrane, the dotted line is the resting equilibrium
membrane. Note that even in the equilibrium state, there is still a jump in
the pressure which is balanced by the surface tension due to the stretch. In
the simulation, we use a quasi-Newton method based on the BFGS (Broyden-
Fletcher-Goldfarb-Shanno) rank-2 update to approximate the Jacobian matrix
for the new location X to treat the stiff system. The combination of the IIM
and the quasi-Newton method worked very well [37]. Each step only took
about 5 ∼ 6 iterations.

If the gravitational force is involved, and the force strength along the inter-
face is f(t) = τ0κn, where κ is the curvature, the Stokes equation can be used
to simulate a bubble motion within another fluid, see [37, 48]. However, the
particle approach is not adequate to treat topological changes and the level
set method is used in the simulation, see Figure 9.1(b).

The immersed interface method has also been developed [31] for the full
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Navier-Stokes equations involving interface:

(9.6)
ρ

(
∂u
∂t

+ (u · ∇)u
)

+∇p = µ∆u + G + F, x ∈ Ω,

∇ · u = 0,

u|∂Ω = ub, BC, u(x, 0) = u0, IC,

where G is bounded and may have a finite jump across the interface. Here we
write F and G separately to distinguish different irregularities. The singular
force F is the same as in (9.3). When µ is a constant, then the jump conditions
(9.5) are still true in additional to the following:

(9.7)
[uη] = 0, [µuηη] = κf̂2 τ , [µuξη] = −∂f̂2

∂η
τ − κf̂2 n,

[µuξξ] = −[µuηη] + [pξ]n + [pη] τ + [uξ]u · n− [G],

see [31, 32] for the derivation. The projection method for the Navier-Stokes
equations is described below:
(9.8)

u∗ − un

∆t
+ (u · ∇h u)n+ 1

2 = ∇h pn− 1
2 +

µ

2
(∆h u∗ + ∆h un) + Gn+ 1

2 + Cn
1 ,

u∗|∂Ω = un+1
b ,

where (u · ∇h u)n+ 1
2 is approximated by

(9.9) (u · ∇h u)n+ 1
2 =

3
2
(un · ∇h)un − 1

2
(un−1 · ∇h)un−1 + Cn

2 .

The projection step is the following:

(9.10)

∆h φn+1 =
∇h · u∗

∆t
+ Cn

3 ,
∂φn+1

∂n

∣∣∣∣
∂Ω

= 0,

un+1 = u∗ −∆t∇h φn+1 + Cn
4 ,

∇hpn+1/2 = ∇hpn−1/2 +∇hφn+1 + Cn
5 .

All the correction terms Cn
l are determined from the IIM using the jump

relations which can be decomposed in the x- and y- directions.
The IIM method for the Navier-Stokes equations have been well tested

both against the exact solutions and common flow problems. In Fig. 9.2, we
show an example of a fixed interface. The driven force of the flow is a fixed
tangential force. Therefore the steady state solution of the flow is a steady
rotation along the circular interface. In Fig. 9.2 (a), we plot the x- component
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of the velocity −u(x, y) at t = 10 computed using a 64 by 64 grid. We can see
clearly the non-constant jump in the normal derivative. In Fig. 9.2 (b), we
plot the velocity field at t = 10 which shows the rotation due to the uniform
tangential force.

9.2. Simulations of the Hele-Shaw flow and crystal growth

In the oil industry, water (less viscous fluid) sometimes is injected to oil
(more viscous fluid) wells to increase the pressure for higher yield of oil. The
interaction
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(a) (b)

FIG.
9.2.

The computed steady state velocity with a 64 × 64 grid, see Example 4 in
[31]. The interface is a fixed circle r = 0.5. Other parameters are G = 0,
f̂1 = 0, f̂2 = 10, and µ = 0.02. The time step size is ∆t = h. (a) Plot of
−u(x, y) at t = 10 which is not smooth. (b) The plot of the velocity field
at t = 10, the flow approaches a steady rotation along the interface.

between the less viscous and more viscous fluids can be modeled as a Hele-
Shaw flow, see [70]. In the Hele-Shaw flow, the shape of the interface is well
known to exhibit a fingering phenomenon. The velocity field u of the flow is
proportional to the gradient of the pressure p

(9.11) u = −β∇p, ∇ · u = φ,

where β is a piecewise constant associated with the viscosity µ, which is very
different inside and outside the interface separating the two fluids. The source
term φ is the result of the injection of the less viscous fluid into the Hele-
Shaw cell. Usually φ has a compact support. The jump conditions across the
interface are

(9.12)
[p]= τκ, the Laplace-Young Condition,

[β pn]= 0, the kinematic interface condition,

where τ is the surface tension and κ is the curvature of the interface.
From the linearization analysis, we have obtained a Mullins-Sekerka type

instability in [19], which shows the competition between the de-stabilizing
effect due to the injection and the stabilizing effect due to the surface tension.
The analysis revealed very interesting discovery that the very high or very low
frequency modes are actually stable, but some middle frequency modes can
be unstable. Usually it is relatively easier to control high frequency noises.
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But it is more difficult to control the round-off errors of low to intermediate
frequency modes.
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FIG.
9.3.

The numerical simulation of an expanding Hele-Shaw bubble with initial
interface: ρ = 0.2 + 0.05 sin(3θ) , 0 ≤ θ ≤ 2π, the surface tension is
1.257× 10−3. The grid size is 320 by 320.

This problem can be easily solved using the IIM since (9.11) can be written
as

(9.13) ∇ · (β∇p) = −φ,

and we know the jump conditions (9.12). We can apply the fast IIM discussed
in Sec. 4 to solve the pressure, then use an interpolation scheme to compute
the gradient of the pressure to get the velocity. After applying the fast IIM
again to get the velocity, the interface is evolved by the fast level set method.
We show one example of an expanding Hele-shaw bubble in Fig. 9.3 which is
similar to the one computed in [20]. While the boundary integral method can
be more accurate if there are enough control points, the IIM combined with
the level set method gives reasonable good result in much shorter time. More
important, topological changes can be handled easily. Other examples and
more details can be found in [19].

The Stefan problems for solidification process and unstable crystal growth
are among many important free boundary/moving interface problems. In [33],
Langer has given an easily understood, but insightful description of the prob-
lem which we briefly explain below. Consider two typical cases involving the
same substance but at different states, liquid and solid states, as shown in
Fig. 9.4. In both cases, a pure fluid is contained in a vessel whose walls are
held at some temperature TW which is less than the melting temperature TM .
In the first case, the liquid is initially at a temperature T ≥ TM , and the solid
is allowed to start forming at the walls. In this case, the process is completely
stable. The solidification front Γ moves smoothly and uniformly toward the
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center. Such a process is often referred to as a stable Stefan problem. The
second case, Fig. 9.4 (b), is more interesting. Now the liquid is initially under-
cooled to a temperature T < TM , and the solidification is initiated
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(a) (b)

FIG.
9.4.

Schematic illustration of solidification occurring in a stable configuration
(a); in an unstable configuration (b), see [33].

at a seed crystal at the center. The situation is intrinsically unstable. The
moving front Γ develops unstable dendrites. Such processes have wide appli-
cations in the aerospace, semi-conductor, and medical industries.

There are primarily two kinds of mathematical models for Stefan problems
and crystal growth. One is the phase field model that introduces an additional
field variable to track the phase, and the interface is represented by a region
of nonzero thickness, see Kobayashi [30], Braun [8], and the references therein.
Another type of models is the sharp interface models in which the interface
between two phases is represented by a curve in two space dimensions, and a
surface in three dimensions. Each model has its merits and limitations and
corresponds to certain applications. A variety of methods have been reported
in the literature. We refer the reader to [27] for a complete review of the
different methods.

A simple but widely accepted sharp interface model consists of the heat
equation for the temperature

(9.14) ρc
∂T

∂t
= ∇ · (β∇T ),

where ρ is the density, c is the heat capacity, and β is the thermal conductivity,
respectively, see [13]. Generally these quantities are discontinuous across the
moving front. The normal velocity of the moving front is coupled by the
change in the heat flux

(9.15) ρLV = −
[
β

∂T

∂n

]
,

where L is the latent heat of solidification. For the classical Stefan problems,
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the temperature at the front is a constant

(9.16) T (x, t) = TM ,

which is the melting temperature. For problems involving crystal growth, we
should consider the Gibbs-Thomson relation

(9.17) T (x, t) = −εCκ− εV V,

where κ is the curvature, εC is the surface tension coefficient, and εV is the
molecular kinetic coefficient. In the isotropic case, both εC and εV are con-
stants. For the anisotropic case, they have the following form

(9.18)
εC = ε̄C(1−A cos(βAθ + θo)),

εV = ε̄V (1−A cos(βAθ + θo)),

where θ is the angle between the x- axis and n, and θo controls the angle of
the symmetry axis upon which the crystal grows. The constant A, βA, θo, ε̄C

and ε̄V depend on materials involved.
In [49], we have developed a second order alternating directional implicit

(ADI) method coupled with the level set method for the Stefan problems and
crystal growth. We use the standard ADI scheme away from the interface, and
the backward Euler scheme at irregular grid points near or on the interface.
The global error in the maximum norm still has second order convergence.
It is necessary to add a correction term when the interface crosses the grid
lines between different time levels. Theoretically we have shown that the ADI
method is asymptotically stable. The weighted least squares interpolation
(WLSI) scheme is used to restrict the information of a grid function to the
interface. The information on the interface, for example, the normal velocity
which is only defined on the interface, is extended to the grid points.

In Fig. 9.5, we show several simulations of crystal growth with difference
surface tension and latent heat. The simulation results agree with those results
in the literature and experiments. The method has also been checked against
the exact solutions.

9.3. The surface Laplacian and the simulation of electro-migration
of voids

In many physical problems, mass transport along interfaces such as surface
diffusion and grain boundary diffusion becomes increasingly important as the
characteristic length scale is reduced. The diffusional mass transport is gov-
erned by a relevant chemical potential along the interface. The dynamics of
these processes is of great interest to material scientists and biologists. There
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is a large literature on this topic. We refer the readers to two recent survey
articles by Mullins [58], and Cahn and Taylor [9] and the references therein.
In [51], a mathematical model has been developed for the surface diffusion
involving the evolution of voids under electro-migration in a conducting metal
line. The normal velocity of the void surface is given by
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(a) (b)

(c) (d)

FIG.
9.5.

Crystal growth with different surface tension and latent heat. The heat
conductivity is β+ = β− = 1. The initial boundary of the seed in the polar
coordinates is r = 0.5 + 0.03 cos(lθ), 0 ≤ θ ≤ 2π with l = 4 for (a)-(c),
and l = 5 for (d). All the simulations are computed using a 320 by 320
grid. The latent heat is L = 1/0.8 = 1.25 for (b)-(d) except for (a) which
is L = 1/0.5. (a) εC = 0.0051, εv = 10−5; (b) εc = 0.01, εv = 0, (c)
εC = 0.001, εv = 0.001; (d) εC = 10−4, εv = 0. As the surface tension εC

decreases, we see that more dendrites are formed.

(9.19) Un = ∆s(C1φ + C2κ),

where ∆s is the surface Laplacian, φ is the potential associated with an applied
electric field, and κ is the mean curvature along the boundary corresponding
to the chemical potential. The potential function φ satisfies a Poisson equation
in the exterior of the voids with a homogeneous Neumann boundary condition
along the boundary of the voids. The time evolution equation for the curvature
κ with respect to the arc length s is
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(a) (b)

FIG.
9.6.

A void evolution with different electric and chemical potentials. (a) The
chemical potential constant, C2 = 3.9062× 10−4, is small compared to that
of electrical potential constant, C1 = 1.875, and the motion is less stable.
(b) The coefficients are C1 = 1.875 and C2 = 0.3.90625 10−3. The motion
is relatively stable because C2 is larger than that in (a).

(9.20) κt = −κ2κss − κssss.

In [51], the fast Poisson solver for irregular domains discussed in Sec. 4.1
was used to solve the electric potential outside the voids. The surface Lapla-
cian of a two dimensional function f is computed as

∆sf =
d2f

ds2
=

d

ds
(τ · ∇f) = κn · ∇f + τT He(f)τ = κ

∂f

∂n
+ ∆f − ∂2f

∂n2
.

In Fig. 9.6 we show two simulations of electro-migration of voids. The first
one is a single void with small chemical potential compared to the electrical
potential. Our simulation has gone beyond the results obtained in [82]. The
evolution process seems to agree with the results in that paper up to some
time. In the second simulation, we investigate the effect of initial shape of a
void. While the surface tension force tends to smooth the void shape into a
circle, the electrical potential causes a protrusion of the void with a relatively
large curvature at the frontal tip of the void. This sharp tip moves rapidly
under the electro-migration forces and drags the rest of the void along. Such
a worm-like motion of void demonstrates another delicate balance between
surface tension and electro-migration forces. More examples and analysis can
be found in [51].
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9.4. Other applications of the IIM

We list below other applications of the IIM without too much elaborations.
In [47], the IIM is used to the calculate the temperature profile of a growing
continental ice sheet. In that problem, there is one fixed interface between
the ice sheet and the rock, and a free boundary which is the height of the ice
sheet. In [52], the IIM method was used to solve a thermoelastic system which
models a homogeneous and isotropic bar made of two distinct materials. The
system contains a parabolic equation and is coupled with a hyperbolic equa-
tion. A new transformation was proposed to analyze and solve the problem
numerically.

Another important application of the IIM is an inverse problem in electri-
cal impedance tomography. We have developed a mathematical model and a
numerical method to identify unknown objects within a body from the mea-
sured data in narrow strip of the boundary [44]. The fast Poisson solver for
irregular domains once again is used. The problem is equivalent to identify
the coefficient of the conductivity in the potential equation and is modeled
as a variational form which is ill-imposed. The use of the level set function
actually is a regularization factor. The three dimensional simulations can be
found in [15, 16].

Recently, the IIM has been developed for non-linear elliptic interface prob-
lems of the form

(9.21) −∇ · (β(x, |∇u|)∇u) = f,

where β(x, |∇u|) may be discontinuous across interfaces in the solution do-
main, see [23]. The non-linearity is the dependency of the coefficient β on
the gradient of the solution. This kind of non-linear PDEs have many ap-
plications, for example, the magneto-rhological (MR) fluids that contain iron
particles [54], and the minimal surface problems etc. To solve the equation
(9.21), an substitution method

(9.22) −∇ · (β(x, |∇uk|)∇uk+1) = f,

(9.23) [uk+1] = wk(s),
[
β(x, |∇uk|) uk+1

n

]
= vk(s),

for uk+1 is used, where wk(s) and vk(s) are determined from the physical
problems. The convergence of the substitution method for certain non-linear
problems is proved in [23]. The linearized problem is solved using the maxi-
mum principle preserving IIM method.

In Fig. 9.7, we show some numerical solution to the non-linear equation
used to model the MR-fluid containing metal particles. We want to find out
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how the metal particles line-up under different electric field. Boundary inte-
gral methods can not be applied because there is no green function for the
non-linear problem. Finite element methods with body fitted grid are very
expensive because the mesh generation and the computation of the non-linear
coefficient. Our substitution method coupled with
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(a) (b)

FIG.
9.7.

The contour plots of potential function of magneto-rhological (MR) fluid
containing metal particles obtained from the substitution method. (a) Sin-
gle particle with different applied electric fields. The figure at the bottom
has stronger field. Dirichlet boundary condition is used. The mesh size is
256×128. (b) Multi-particles with different applied electric fields. The plot
to the right has stronger field. A periodic boundary condition is used. The
mesh size is 320× 640.

the maximum principle preserving scheme as the linear solver is efficient and
accurate. In Fig. 9.7 (a), we show the equi-potential of a single particle with
different applied field. Our results agree with those in the literature [54]. In
Fig. 9.7 (b), we show the results under different electric applied fields with
multi-particles and more realistic but more difficult boundary conditions.

10. OTHER NUMERICAL METHODS RELATED TO THE IMMERSED INTERFACE

METHOD

The IIM has been well recognized because of its merits. Several new meth-
ods based on the IIM have been developed. In this section, we give an incom-
plete review of those related methods.

10.1. The IIM for hyperbolic equations

LeVeque and Zhang extended the IIM for hyperbolic equations including
one and two dimensional acoustic wave equations, two dimensional elasticity
equations [38, 84]. Interface relations have been derived for those systems
and used in constructing the finite difference schemes. Non-smooth interfaces
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are allowed in their methods. Although the techniques that they used are
based on finite difference discretizations, some of the techniques have been
successfully merged with the finite volume implementation in the Clawpack
[35]. Such combination is also used to solve the incompressible Navier-Stokes
equations for two phase flow [34], and on irregular domains using the vorticity
stream-function formulation [10, 11].

Recently, Piraux and Lombard [65] have proposed an explicit simplified in-
terface method (ESIM) for hyperbolic interface problems. The finite difference
equations at irregular grid points are constructed implicitly through an explicit
modification of numerical values used for time-stepping. The modification is
based on the spring-mass conditions satisfied at the interface.

Jovanović and Vulkov have studied parabolic and hyperbolic equations
with unbounded coefficients of the following form
(10.1)
[
c(x) + K δ(x− ξ)

]∂2u

∂t2
− ∂

∂x

(
a(x)

∂u

∂x

)
= f(x, t), (x, t) ∈ (0, 1)× (0, T ),

where 0 < c1 ≤ a(x) ≤ c2, 0 < c3 ≤ c(x) ≤ c4, and ci and K > 0 are con-
stants. An abstract operator method is proposed for studying these equations.
Estimates for the rate of convergence of the averaging operator difference
schemes on special energetic Sobolev’s norms, compatible with the smooth-
ness of the solutions, are obtained, see [25, 26] and the reference therein.

10.2. The explicit jump immersed interface method (EJIIM)

Motivated by the fast IIM discussed in Sec. 4, Bube and Wiegmann de-
veloped the EJIIM for elliptic interface problems [80, 81]. The EJIIM works
by focusing on the jumps in the solution and their derivatives, rather than
on finding coefficients of a new finite difference scheme. As we mentioned
earlier in this paper, if we know the jumps in [u], [ux], [uy], [uxx], [uyy], etc.,
then we can use the standard finite difference method at all grid points plus
some correction terms at irregular grid points. The EJIIM takes advantage
of this property and expresses all the quantities in term of the original jump
conditions and the limiting values from a particular side, say, u−, u−x , u−y ,
u−xx etc. These quantities are used as augmented unknowns. The bigger sys-
tem of equations that involves the solution of the PDE at grid points and
those limiting values at the interface is solved by the GMRES method. The
EJIIM has been applied to two dimensional elastic equation in shape design
in conjunction with the level set method [72].

10.3. The ghost fluid method (GFM)

The GFM was first used to properly treat the boundary conditions and re-
move the spurious oscillations for hyperbolic system. Liu, Fedkiw, and Kang
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developed the GFM for elliptic interface problems in [53]. One of the mo-
tivations of the GFM is to simplify and symmetrize the IIM. The GFM is
a sharp interface method because it builds in the jump conditions in the fi-
nite difference scheme. However, the GFM is generally first order accurate in
the maximum norm if the coefficient is discontinuous. Essentially the GFM
decomposes the flux jump in each axis direction so that the problem can be
treated dimension by dimension. The main error of the GFM comes from the
decomposition of the flux jump conditions because it is hard to do it accu-
rately. The main advantage of the GFM is that it is simple, and is relatively
easier to implement, and the system of finite difference equations is symmetric
for self-adjoint elliptic problems. The GFM has been applied to multiphase
incompressible flow [29], two phase incompressible flames simulations [59], and
other applications.

11. OPEN PROBLEMS AND ACKNOWLEDGMENTS

The immersed interface method is an efficient sharp interface method
for PDEs that involve discontinuities in the coefficients, the solution and its
derivatives, and the Dirac delta function in the source term. The IIM is based
on Cartesian grids with second order accuracy. It can be, and has been cou-
pled with evolution schemes such as particle methods, the level set method,
for free boundary and moving interface problems in two and three dimensions.

There are still some challenging problems for the IIM. (1) It is desirable
to develop a second order conservative finite difference scheme for self-adjoint
elliptic and parabolic interface problems based on Cartesian grids. (2) It is
desirable to have the system of finite difference equations to be symmetric
positive definite. (3) It is desirable to simplify the immersed interface method
further and/or develop a reliable IIM software package. (4) It is desirable to
have a simple and accurate (second order accurate) finite element method for
interface problems. (5) It is not clear how to apply the IIM for problems in
which the jump conditions are not explicitly given, or coupled together through
some non-linear relations. (6) Theoretically, the convergence properties of the
IIM need further investigation for moving interface/free boundary problems.

The author would like to thank the National Center for Theoretical Sci-
ences (NCTS) of Taiwan for their support during his visit there (May 8, 2001–
June 8, 2001).
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