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ON STABILITY OF THE EQUAIONS Bu0(t) = Au(t)

Quoc-Phong Vuy

Abstract. The stability of solutions of the equation Bu0(t) = Au(t) is
considered, where A and B are closed linear operators on a Banach space.
Under the well-posedness condition it is proved that if the imaginary part of
the spectrum of the pencil (¸B ¡ A) is countable, then a bounded uniformly
continuous solution u(t) of the equation is asymptotically almost periodic
if and only if the functions e¸ tu(t), (¸ 2 iR), have uniformly convergent
means. A condition of exponential stability also is given when the generalized
eigenvectors and associated root vectors of the linear pencil (¸B ¡ A) form a
Riesz basis.

0. INTRODUCTION

Many problems in physics or engineering lead to differential equations in Hilbert
spaces, with constant operator coefficients, or to integro-differential operators where
the kernel depends on the difference of arguments. Such problems are usually stud-
ied using the Laplace transform methods. In the classical, most well studied case
of the differential equation u0(t) = Au(t), u(0) = x, the Laplace transform of
the solution yields the resolvent, RA(¸) = (¸I ¡ A)¡ 1, which satisfies some nice
properties (e.g., the resolvent equation, among other things). Methods of complex
analysis, notably the Cauchy integral, and the theory of strongly continuous semi-
groups (C0-semigroups) enable us to construct a complete theory with many deep
results.

Laplace transform is still the main method in the study of more general differ-
ential or integro-differential equations. In particular, it leads normally to the notion
of “generalized” resolvent, which is, in fact, the inverse of some operator-valued
functions, or an operator pencil (whose values are, in general, unbounded linear
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operators). The study of such an operator pencil is in general a difficult prob-
lem, which, in particular, explains the absence of an advanced theory of general
integro-differential equations including the solvability and the asymptotic behavior
questions.

In this paper, we make an attempt to carry on a study of the Laplace transform
and its applications to asymptotic behavior of solutions to the initial value problem
of the following form

(
Bu0(t) = Au(t)

u(0) = u0

(1)

where A and B are, in general, unbounded linear operators on a Banach space H.
If A and B are both bounded and B is invertible (i.e., has a bounded inverse), then
equation (1) is completely equivalent to the regular equation u0(t) = B¡ 1Au(t).
However, when A is not bounded, even if B¡ 1 exists as a bounded linear operator,
the operator B¡ 1A is not, in general, a generator of a C0-semigroup (it may not
even be closed). Therefore, the existing theory of C0-semigroups is not directly
applicable.

The paper is organized as follows. In Section 1, we introduce main definitions,
and in Section 2 we present some standard results on the Laplace transform for
equation (1) (cf. [8]). Section 3 contains our main results on the stability of
solutions to equation (1).

While our study of the Laplace transform and stability of equation (1) may have
independent theoretical interest and applications (because some problems in physics
and engineering lead to equations of this form, see e.g. [6]), one of our primary
objectives is to give a prototype for a more general study of Laplace transforms of
more general integro-differential equations and their asymptotic behavior where our
research is still going on.

1. PRELIMINARIES

Let A and B be closed linear operators on a Hilbert (or Banach) space H.
Consider the Cauchy problem

(
Bu0(t) = Au(t)

u(0) = u0:
(1)

Definition 1. A function u(¢) : R+ ! H is called a (classical) solution to (1),
if, for all t ¸ 0, u(t) 2 D(A) \ D(B), u(t) and Bu(¢) are (strongly) continuous
on [0;1), the (strong) derivative u0(t) exists, u0(t) 2 D(B), Bu0(t) is strongly
continuous on (0; 1), Bu0(t) = Au(t), and u(0) = u0 .
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Definition 2. The Cauchy problem (1) is well posed if for all u0 2 D(A)\D(B)

there exists a unique solution u(t) of (1), and if for all u(n)
0 ½ D(A) \ D(B) such

that lim
n!1

u(n)
0 = 0, we have lim

n!1
un(t) = 0 for all t > 0, where un(t) is the

solution with un(0) = u
(n)
0 .

Assume that (1) is well posed. Define a family U (t) of mappings from D(A)\
D(B) into itself by

U(t)u0 := u(t);

where u(t) is the solution of (1).

Proposition 1 ([8]). U (t) satisfy the following:

( i ) U(t) are linear;
( ii ) If xn 2 D(A) \ D(B), lim

n!1
xn = x0 2 D(A) \ D(B), then

lim
n!1 U(t)xn = U (t)x0; for all t ¸ 0:

(iii) U(0) = I ; U(t + s)x = U (t)U(s)x, for all x 2 D(A) \ D(B).

Proposition 2 ([8]). Assume that D(A) \ D(B) is dense in H and (1) is well
posed. Then there exists a unique family of operators V (t) 2 L(H) such that

V (t)x = U(t)x for all x 2 D(A)\ D(B); V (0) = I; V (t + s) = V (t)V (s):

It follows from the definitions that V (t)x = U (t)x are strongly continuous on
[0;1) for all x 2 D(A) \ D(B). One can show, by a standard argument (see e.g.
[7], p. 26), that, for every ± > 0, there exists M± > 0, such that kV (t)k · M± for
all t, ± · t · 1

± . From this it follows that V (t)x is continuous on (0;1) for all
x 2 H.

Proposition 3. Assume that D(A)\D(B) is dense and (1) is well posed. If u
is a solution of (1), then u0(t) is continuous on (0; 1).

Proof: We have

u0(t) =
d

dt
U(t)u0 = lim

h#0
U(t)

u(h) ¡ u(0)

h
= lim

h#0
V (t)

u(h) ¡ u(0)

h
= V (t)u0

+(0);

and continuity of u0(t) on (0; 1) follows from the above remark.

Proposition 4. Assume D(A)\ D(B) is dense and (1) is well posed. Then

¡ 1 · lim
t!1

1

t
ln kV (t)k = ! < +1:(2)
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The proof of Proposition 4 is standard (see e.g. [7], p. 28).

Proposition 5. Assume D(A)\D(B) is dense and (1) is well posed. Then for
all ¸; such that Re¸ > !; the operator (¸B ¡ A) is one-to-one.

Proof: Let z 2 D(A) \ D(B), z 6= 0; and ¸Bz ¡ Az = 0. Consider

u(t) = e¸ t z:

We have Bu0(t) = Au(t), for all t ¸ 0, u(0) = z: Hence

u(t) = V (t)z; and so ke¸t zk · kV (t)k kzk;

which implies

Re¸
1

t
lim kV (t)k ) Re ¸ · !:

2. THE LAPLACE TRANSFORM

Proposition 6. Assume that u(t) is a solution of (1) such that ku(t)k ·
Met® ; t ¸ 0; for some M and ® . Then for all ¸; Re ¸ > ® , the following
transforms exist

û(¸) =

Z 1

0
e¡ ¸ t u(t) dt

lim
"#0

lim
n!1

Z N

"

e¡ ¸ t u0(t) dt :=

Z 1

0+

e¡ ¸t u0(t) dt

and
Z 1

0+
e¡ ¸ t u0(t) dt = ¸û(¸) ¡ u(0):(3)

Proof: The proof for the existence of û(t) is standard. We have
Z N

"
e¡ ¸ t u0(t)dt = e¡ ¸N u(N) ¡ e¡ ¸" u(") + ¸

Z N

"
e¡ ¸ t u(t)dt:

Since ku(t)k · Me® t, we have

ke¡ ¸N u(N)k · Me(¡ (Re¸)+® )N ! 0 as N ! 1;

hence

lim
N!1

Z N

"
e¡ ¸t u0(t) dt = ¡ e¡ ¸"u(") + ¸

Z 1

"
e¡ ¸t u(t)dt:
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Since u(t) is continuous on [0; 1), we have

lim
"#0

lim
n!1

Z N

"
e¡ ¸t u0(t)dt :=

Z 1

0+
e¡ ¸ t u0(t)dt = ¡ u(0)+ ¸û(¸):

Proposition 7. Assume that there exists ¹ 2 ½(B) such that (¹ ¡ B)¡ 1A is
closed. Then for every solution u(t) such that ku(t)k · Me® t; t ¸ 0; for some
M; ® , we have û(¸) 2 D(A) \ D(B) and

(¸B ¡ A)û(¸) = Bu(0); for all Re ¸ > ®:(4)

Proof (cf. [3], p. 10): From Bu0(t) = Au(t), the continuity of u0(t) on (0; 1)
(Proposition 3), and closedness of B, it follows

Z N

"
e¡ ¸ t Au(t)dt = B

Z N

"
e¡ ¸ t u0(t)dt

= B

·
e¡ ¸ t u(t)

¯̄N

"
+ ¸

Z N

"
e¡ ¸t u(t) dt

¸

= e¡ ¸N Bu(N) ¡ e¡ ¸" Bu(") + ¸

Z N

"

e¡ ¸ t Bu(t) dt:

(5)

From (5) we have
Z N

"

e¡ ¸ t Au(t)dt =e¡ ¸N(B ¡ ¹)u(N) ¡ e¡ ¸" (B ¡ ¹)u(")

+¸

Z N

"
e¡ ¸t (B ¡ ¹)u(t)dt + ¹e¡ ¸N u(N) ¡ ¹e¡ ¸" u(")

+¹¸

Z N

"
e¡ ¸t u(t) dt;

or

(B ¡ ¹)¡ 1

Z N

"
e¡ ¸t Au(t)dt =e¡ ¸N u(N) ¡ e¡ ¸" u(")

+¸

Z N

"
e¡ ¸ t u(t)dt + ¹(B ¡ ¹)¡ 1 e¡ ¸N u(N)

¡ ¹e¡ ¸"(B ¡ ¹)¡ 1u(")

+¹¸(B ¡ ¹)¡ 1

Z N

"
e¡ ¸t u(t)dt:
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Letting N ! 1, and " # 0, we see that the following integral converges and
Z 1

0+
e¡ ¸ t (B¡ ¹)¡ 1Au(t)dt = ¡ u(0)+¸û(¸)¡ ¹(B¡ ¹)¡ 1u(0)+¸¹(B¡ ¹)¡ 1û(¸):

This implies that û(¸) 2 D(B) and

(B ¡ ¹)
R 1
0+ e¡ ¸ t (B ¡ ¹)¡ 1Au(t)dt = ¡ (B ¡ ¹)u(0) + (B ¡ ¹)¸û(¸) ¡ ¹u(0)

+¸¹û(¸)

= ¡ Bu(0) + ¸Bû(¸):

Since (B ¡ ¹)¡ 1A is closed, it follows that û(¸) 2 D(A) and

A

Z 1

0+
e¡ ¸ t u(t)dt = ¸Bû(¸) ¡ Bu(0);

or
Aû(¸) = ¸Bû(¸) ¡ Bu(0);

(¸B ¡ A) û(¸) = Bu(0):

If equation (1) is well posed and ! is defined by (2), then, since (¸B ¡ A) is
one-to-one for all ¸ > ! (Proposition 5), formula (4) can be written as:

Z 1

0
e¡ ¸ t V (t)x dt = (¸B ¡ A)¡ 1Bx for all x 2 D(A)\ D(B):(6)

Note that from (6) it follows that the operator (¸B ¡ A)¡ 1B is a bounded
operator from D(A) \ D(B) to H for all Re ¸ > !, but the operator (¸B ¡ A)¡ 1

may not be bounded.

A complex number ¸ is called (A;B)-regular, if (¸B ¡ A) is one-to-one and
the operator (¸B ¡ A)¡ 1B is bounded. The set of all (A; B)-regular points is
denoted by ½(A;B) and called the (A; B)-resolvent set. Its complement in C is
called the spectrum of (A; B) and denoted by ¾(A; B). The function R(¸) :=
(¸B ¡ A)¡ 1B; ¸ 2 ½(A;B) is called the (A; B)-resolvent. From (6) we have

Proposition 8. Assume that D(A) \ D(B) is dense, (1) is well posed; and
condition in Proposition 7 holds. Then f¸ : Re ¸ > !g ½ ½(A;B).

Proposition 9. The (A;B)-resolvent set ½(A;B) is open and R(¸) is an ana-
lytic function on ½(A;B). Moreover; the following identity holds

R(¸) ¡ R(¹) = (¹ ¡ ¸)R(¸)R(¹):(7)
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Proof: Let ¸ 2 ½(A;B), and r := k(¸B ¡ A)¡ 1Bk¡ 1. From

(¹B ¡ A) = (¸B ¡ A)[I ¡ (¸ ¡ ¹)(¸B ¡ A)¡ 1B]

it follows that (¹B ¡ A) is one-to-one and (¹B ¡ A)¡ 1B is bounded whenever
j¹ ¡ ¸ j < r, i.e. ½(A;B) is an open set. Since

(¹B¡ A)¡ 1B¡ (¸B ¡ A)¡ 1B = [(I ¡ (¸ ¡ ¹)(¸B ¡ A)¡ 1B)¡ 1 ¡ I ](¸B ¡ A)¡ 1B

and

[I ¡ (¸ ¡ ¹)(¸B ¡ A)¡ 1B]¡ 1 ¡ I =
1X

k=1

(¸ ¡ ¹)k[(¸B ¡ A)¡ 1B]k ! 0 as ¹ ! ¸;

it follows that R(¸) is continuous. Furthermore,

(¸B¡ A)¡ 1B ¡ (¹B¡ A)¡ 1B = (¸B ¡ A)¡ 1[I ¡ (¸B ¡ A)(¹B ¡ A)¡ 1]B

= (¸B¡ A)¡ 1[(¹B¡ A)¡ (¸B¡ A)](¹B¡ A)¡ 1B

= (¸B ¡ A)¡ 1(¹ ¡ ¸)B(¹B ¡ A)¡ 1B;

which implies (7), as well as the fact that R(¸) has derivative in ½(A;B), hence is
an analytic function.

From (7) it also follows that the resolvents are commuting, i.e. R(¸)R(¹) =
R(¹)R(¸).

Since every solution u(t) is continuosly differentiable on [t1; t2](t1 > 0) (Propo-
sition 3), we have by the formula for the inverse Laplace transform

V (t)x =
1

2¼i

Z °+i1

°¡ i1
e¸ t(¸B ¡ A)¡ 1Bxd¸; x 2 D(A) \ D(B):(8)

3. STABILITY

Let u : R+ ! H be a bounded uniformly continuous function. Then the
function û(¸) :=

R 1
0

e¡ ¸t u(t) dt is defined and analytic in f¸ 2 C : Re¸ > 0g.
A point ¸0 2 iR is called a regular point of u, if û(¸) has an analytic continuation
into a neighborhood of ¸0 . The complement in iR of the set of regular points is
called spectrum of u and denoted by ¾(u).

The following Lemma is a special case of Proposition 7.
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Lemma 10. Assume the condition in Proposition 7 hold and that u(t) is a
bounded solution of (1). Then, for every ¸; Re ¸ > 0, û(¸) 2 D(A) \ D(B) and
(¸B ¡ A)û(¸) = Bu0. In particular; if ¸ 2 ½(A; B); then û(¸) = R(¸)u0.

Lemma 11. Assume that D(A) \ D(B) is dense, (1) is well posed; and the
conditions in Proposition 7 hold. Then, for every bounded uniformly continuous
solution u(t),

¾(u) ½ ¾(A;B):

Proof: Since
û(¸) = (¸B ¡ A)¡ 1Bu0; Re ¸ > 0;

it follows, by Lemma 10, that if ¸ 2 iR \½(A; B); then û has analytic continuation
into ¸ . Therefore,

¾(u) ½ ¾(A;B):

Theorem 12. Assume that D(A) \ D(B) is dense, (1) is well posed; and
¾(A; B)\iR is countable. Let u(t) be a uniformly continuous and bounded solution
to (1). Then ku(t)k ! 0 (t ! 1) if and only if; for each ¸ 2 ¾(A;B) \ iR;

lim
T!1

1

T

Z h+T

h
e¡ ¸ t u(t)dt = 0

uniformly in h.

Proof: The statement follows from Lemma 11 and an individual stability theo-
rem in [1], [2], or [4].

Corollary 13. Assume ¾(A;B) \ iR = ;. Then every bounded uniformly
continuous solution of (1) satisfies lim

t!1
ku(t)k = 0.

In practice, sometimes it is known that ¾(A; B) consists of generalized eigenval-
ues ¸1, ¸2, : : : ; ¸m; : : : and the corresponding eigenvectors yk , yk 2 D(A)\D(B),

(¸kB ¡ A)yk = 0

form a Riesz basis. Recall that fykg1
k=1 form a Riesz basis in a Hilbert space H if

there exists an invertible operator Q and an orthonormal basis e1, e2 , : : : such that
yk = Qek, k = 1; 2; : : : .

Theorem 14. Assume that equation (1) is well posed and ¾(A; B) consists of
generalized eigenvalues ¸k such that Re ¸k · ¡ " < 0 for some " > 0; for all k;
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and the corresponding eigenvectors form a Riesz basis. Then for every solution
u(t) of (1), we have

ku(t)k · Me¡ "tku(0)k; for all t ¸ 0; where M = kQkkQ¡ 1k:

Proof: We have

(¸B ¡ A)yk = (¸kB ¡ A)yk + (¸ ¡ ¸k)Byk

= (¸ ¡ ¸k)Byk;

hence
(¸B ¡ A)¡ 1Byk = (¸ ¡ ¸k)

¡ 1yk; for all Re ¸ > !:

Let x 2 D(A) \D(B), and u(t) = V (t)x be the solution of (1) (with u0 = x).
We have x =

P1
n=1 Cnyn . By (8),

V (t)x=
1

2¼i

Z °+i1

°¡ i1
e¸ t (¸B ¡ A)¡ 1Bx d¸ =

1X

n=1

CnV (t)yn

=

1X

n=1

Cn
1

2¼i

Z °+i1

°¡ i1
e¸t (¸ ¡ ¸k)

¡ 1yn d¸ =

1X

n=1

e¸ nt Cnyn:

Hence

kV (t)xk=

°°°°°
1X

n=1

e¸ nt Cnyn

°°°°° =

°°°°°
1X

n=1

e¸ nt CnQen

°°°°°

· kQk
°°°°°

1X

n=1

Cne¸ nt en

°°°°° · kQk
( 1X

n=1

¯̄
C̄ne¸ nt

¯̄
¯
2
)1=2

· kQke¡ "t

Ã 1X

n=1

jCnj2
!1=2

= kQke¡ "t

°°°°°
1X

n=1

Cnen

°°°°°

= kQke¡ "t

°°°°°Q¡ 1
1X

n=1

Cnyn

°°°°° · kQk kQ¡ 1ke¡ "t kxk = Me¡ "t kxk:

Theorem 14 can be generalized to include the case when the Riesz basis consists
of eigenvectors and associated root vectors.

Definition 3. Let ¸0 be a generalized eigenvalue of ¸B ¡ A and y0( 6= 0) be
the corresponding eigenvector, i.e., ¸By0 ¡ Ay0 = 0. Vectors y1 , y2, : : : , ym¡ 1 are
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called root vectors associated with y0 , if

(¸0B ¡ A)y1 = By0

(¸0B ¡ A)y2 = By1

...

(¸0B ¡ A)ym¡ 1 = Bym¡ 2:

The number m is the length of the chain y0, y1 , y2; : : : ; ym¡ 1 of the generalized
eigenvector y0 and the associated root vectors y1, : : : ; ym¡ 1. The maximal length
of chain of root vectors associated with y0 is called the multiplicity of y0 and denoted
by m(y0).

Assume that there is a Riesz basis consisting of eigenvectors and associated root
vectors, such that each of the eigenvectors has a finite multiplicity · m. We can
arrange them as,

y
(0)
1 ; y

(1)
1 ; : : : ; y

(m1)
1

y
(0)
2 ; y

(1)
2 ; : : : ; y

(m2)
2

...

y
(0)
n ; y

(1)
n ; : : : ; y

(mn)
n

...

where
(¸nB ¡ A)y

(0)
n = 0;

(¸nB ¡ A)y(k)
n = By(k¡ 1)

n ; 1 · k < mn:

Moreover, assume that mn = 0 for all but finitely many n.

Theorem 15. Assume that Re ¸k · ¡ " < 0 for some " > 0; and all k. Then
every solution u(t) of (1) satisfies the following: for every ± < "; there exists
M = M(±) such that

ku(t)k · Me¡ ±tku(0)k; for all t ¸ 0:

Proof : We have, for every n,

(¸B ¡ A)¡ 1By(0)
n = (¸ ¡ ¸n)

¡ 1y(0)
n

(¸B ¡ A)y
(1)
n = (¸nB ¡ A)y

(1)
n + (¸ ¡ ¸n)By

(1)
n ;

= By
(0)
n + (¸ ¡ ¸n)By

(1)
n ;
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hence

y
(1)
n = (¸B ¡ A)¡ 1By

(0)
n +(¸ ¡ ¸n)(¸B ¡ A)¡ 1By

(1)
n

= (¸ ¡ ¸n)¡ 1y
(0)
n + (¸ ¡ ¸n)(¸B ¡ A)¡ 1By

(1)
n

or,
(¸B ¡ A)¡ 1By(1)

n = (¸ ¡ ¸n)
¡ 1y(1)

n ¡ (¸ ¡ ¸n)¡ 2y(0)
n :

Analogously

(¸B ¡ A)¡ 1By
(2)
n = (¸ ¡ ¸n)¡ 1y

(2)
n ¡ (¸ ¡ ¸n)¡ 2y

(1)
n + (¸ ¡ ¸n)¡ 3y

(0)
n

...

(¸B ¡ A)¡ 1By(k)
n = (¸ ¡ ¸n)¡ 1y(k)

n ¡ (¸ ¡ ¸n)¡ 2y(k¡ 1)
n + ¢¢¢

+(¡ 1)k(¸ ¡ ¸n)¡ k¡ 1y(0)
n 1 · k · mn:

Let x 2 D(A)\ D(B), and u(t) = V (t)x be the solution of (1) (with u0 = x). We
have

x =
1X

n=1

mnX

k=0

C(k)
n y(k)

n :

Hence

V (t)x =

1X

n=1

mnX

k=0

C(k)
n V (t)y(k)

n

=
1X

n=1

mnX

k=0

C(k)
n

1

2¼i

Z °+i1

°¡ i1
e¸t(¸B ¡ A)¡ 1By(k)

n d¸

=

1X

n=1

mnX

k=0

C(k)
n

kX

j=0

1

2¼i

Z °+i1

°¡ i1
e¸ t(¸ ¡ ¸n)

¡ j¡ 1 y(k¡ j)
n d¸

=
1X

n=1

mnX

k=0

C(k)
n

kX

j=0

1

j!
tj e¸nt y(k¡ j)

n

=
1X

n=1

0
@

mnX

k=0

0
@

mn¡ kX

j=0

1

j!
tj C(j+k)

n

1
A y(k)

n

1
Ae¸nt:

The statement now follows easily from (9).

In the case B = I , Theorem 15 remains through without the assumption that
mn = 0 for all but finitely many n, if we assume mn · m < +1 for all n.
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Theorem 16. Assume B = I; and (¸I ¡ A) has a Riesz basis consisting of
eigenvectors and associated root vectors; such that supm(y(0)

n ) = m < 1. If
Re ¸n · ¡ " < 0 for all n; then for every 0 < ± < " there exists M such that
ku(t)k · Me¡ ±tku(0)k for all t ¸ 0.

Under the condition of Theorem 16 the operator A is a spectral operator in the
sense of Dunford, i.e., A has the representation

A = T + N

where T is a spectral operator of scalar type (T is similar to a normal operator)
and N is a nilpotent operator, such that Nm+1 = 0. Therefore, the statement in
Theorem 16 follows from the following general result.

Recall that a closed linear operator A is called spectral operator if A can be
represented in the form A = T + N, where T is a spectral operator of scalar type
and N is a quasinilpotent operator such that T N = NT (see [5]).

Theorem 17. If A is a spectral operator such that

A = T + N

and Nk = 0 for some k > 1; then !(A) = s(A); where !(A) is the growth type
of A and s(A) is the spectral abscissa.

Proof: Since T and N commute, we have

etA = etT ¢etN ; t ¸ 0:

Therefore ketAk · ketT k ketNk. Since Nk = 0,

ketNk =
°°°I + tN + ¢¢¢+ tk¡ 1Nk¡ 1

°°° · p(jtj)

for some polynomial p. Hence

ketAk · p(jtj)ketTk:

From this it follows
!(A) = !(T ) = s(T ) = s(A)

(it is well known that ¾(A) = ¾(T), hence s(T ) = s(A) ).

Theorem 17 is not true if A is an arbitrary spectral operator.
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Example: We construct an example of a spectral operator A such that s(A) =
¡ 1, but etA is not exponentially stable. The operator A will have the form

A = ¡ I + N

where N is quasinilpotent operator. Let

H = C1 © C2 © ¢¢¢© Cn © ¢¢¢

and
A = A1 © A2 © ¢¢¢© An © ¢¢¢

where

A1 = ¡ 1; A2 =

µ ¡ 1 1
0 ¡ 1

¶
; A3 =

0
@

¡ 1 1 0
0 ¡ 1 1
0 0 ¡ 1

1
A ; ¢¢¢ :

It can be seen easily that

etA = etA1 © etA2 © ¢¢¢© etAn © ¢¢¢

where

etA1 = e¡ t; etA2 =

µ
e¡ t te¡ t

0 e¡ t

¶
; etA3 =

0
@

e¡ t te¡ t t2

2! e¡ t

0 e¡ t te¡ t

0 0 e¡ t

1
A ; ¢¢¢ :

For a corresponding vector

xn =

0
BB@0; : : : ;0; 1p

n
; 1p

n
; : : : ; 1p

n| {z }
n terms

; 0; 0; 0; : : :

1
CCA

we have kxnk = 1 and

eAtxn =
³
0; : : : ;0; 1p

n

³
1 + t + t2

2! + ¢¢¢+ tn¡ 1

(n¡ 1)!

´
e¡ t;

1p
n

³
1 + t + ¢¢¢+ tn¡ 2

(n¡ 2)!

´
e¡ t; : : : ; 1p

n
e¡ t; 0; : : :

´
:
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We have for large odd n

keAtxnk=
1p
n

"µ
1 + t +

t2

2!
+ ¢¢¢+ tn¡ 1

(n ¡ 1)!

¶ 2

+

µ
1 + t +

t2

2!
+ ¢¢¢+

tn¡ 2

(n ¡ 2)!

¶ 2

+ ¢¢¢+(1 + t)2 +12
¤1=2

e¡ t

¸ 1p
n

"µ
1 + t +

t2

2!
+ ¢¢¢+ tn¡ 1

(n ¡ 1)!

¶ 2

+ ¢¢¢

+

Ã
1 + t +

t2

2!
+ ¢¢¢+ t

n¡ 1
2¡

n¡ 1
2

¢
!

!2
3
5

1=2

e¡ t

¸ 1p
n

2
4n ¡ 1

2
¢
Ã

1 + t +
t2

2
+ ¢¢¢+

t
n¡ 1
2¡

n¡ 1
2

¢
!

!2
3
5

1=2

e¡ t:

Hence
sup

kxk· 1
keAtxk ¸ 1p

2
:
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