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APPROXIMATION OF DEGENERATE SEMIGROUPS

Wolfgang Arendt

Abstract. By a continuous degenerate semigroup we mean a strongly contin-

uous mapping T : R+ → L(X) having the semigroup property. Thus, T (0)
is a projection which may be different from the identity. The main theorem

is a Trotter-Kato type approximation result for such degenerate semigroups.

It is used to study convergence of heat semigroups with respect to variable

domains.

0. INTRODUCTION

Given an open set Ω in Rn, frequently it is useful to consider the space L2(Ω)
as a subspace of L2(Rn) extending functions by zero. Given a C0-semigroup T

on L2(Ω), the canonical extension of T to L2(Rn) gives a degenerate continuous
semigroup TΩ on L2(Rn) such that TΩ(0) is the orthogonal projection onto L2(Ω).
Given a sequence Ωk of open sets, we now obtain a sequence of degenerate semi-

groups on a fixed Hilbert space L2(Rn) and we may study its convergence. For
this, we need an extension of the Trotter-Kato theorem for degenerate semigroups.

The Laplace transform of such a semigroup is a pseudoresolvent. Thus, the nat-

ural assumption is strong convergence of pseudoresolvents and the aim is to deduce

strong convergence of the degenerate semigroups. A most convenient tool is an ap-

proximation theorem due to Chernoff [7], which was rediscovered recently by Xiao

and Liang [14]. In Section 1, we give a short proof of this result, based merely

on the uniqueness theorem for Laplace transforms. Then we use this theorem to

study approximation of degenerate semigroups. Under the usual boundedness as-

sumptions one obtains always convergence on the closure of the range space of the

limit pseudoresolvent, but not on the kernel as easy examples show. Things are

different for uniformly holomorphic sequences, which we consider in Section 5. As

application, we study convergence of heat semigroups in Section 6.
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1. CONVERGENCE OF LAPLACE TRANSFORMS

Throughout this article, X denotes a Banach space and R+ = [0,∞) the closed
right half-line. Let f ∈ L1

loc(R+, X) be such that ‖
∫ t
0 f(s)ds‖ ≤ Meωt (t ≥ 0),

where M, ω ≥ 0. Then the Laplace transform

f̂(λ) : =
∫ ∞

0
e−λtf(t)dt

: = lim
τ→∞

∫ τ
0 e−λtf(t)dt

exists for Re λ > ω and f̂ : {λ : Re λ > ω} → X is a holomorphic function. The

uniqueness theorem asserts the following: If f̂ (λ) = 0 for all λ > λ0 and some

λ0 ≥ ω, then f(t) = 0 a.e.

Theorem 1.1 below describes convergence of a sequence of functions in terms of

their Laplace transforms. This result was recently proved by Xiao and Liang in [14].

We are grateful to F. Neubrander, who informed us that, in fact, Theorem 1.1 is

mentioned by Chernoff [7, p. 106], whose proof of the Proposition on resolvents in

[6] carries over to the general situation considered in Theorem 1.1. The special case

of Lipschitz continuous functions had been considered by Henning and Neubrander

[9].

Here we give a short proof of Theorem 1.1 by applying the uniqueness theorem

to the Banach space `∞(X) of all bounded sequences in X with uniform norm.

Theorem 1.1. Let M, ω ≥ 0. Let fn : R+ → X be continuous and satisfy

‖
∫ t

0
fn(s)ds‖ ≤ Meωt (t ≥ 0)(1.1)

for all n ∈ N. Assume that
(a) the sequence (fn)n∈N is equicontinuous at each t ≥ 0 and that
(b) limn→∞ f̂n(λ) exists for all λ > ω.

Then the sequence (fn)n∈N converges uniformly on [0, τ ] for each τ > 0.

Proof. Assumption (a) says precisely that F (t) = (fn(t))n∈N defines a contin-
uous mapping F : R+ → `∞(X). Since by (1.1)

‖
∫ t

0
F (s)ds‖ ≤ Meωt (t > 0),

the function F is Laplace transformable. Denote by c(X) the closed subspace
of `∞(X) consisting of all convergent sequences in X and by q : `∞(X) →
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`∞(X)/c(X) the quotient map. Then by assumption (b), F̂ (λ) = (f̂n(λ))n∈N ∈
c(X) for all λ > 0. Now the uniqueness theorem implies that q ◦ F ≡ 0; i.e.,
(fn(t))n∈N converges for all t ∈ R+. Since the sequence is equicontinuous at each

t ∈ R+, simple convergence implies uniform convergence on each compact subset

K of R+.

We remark that conditions (a) and (b) are necessary.

If we are merely interested in convergence of (fn(t))n∈N for almost all t > 0
then the proof of Theorem 1.1 shows that the measurability of F suffices. This is

weaker than condition (a), which says precisely that F is continuous. To illuminate

this point further, we use the following criterion for measurability, which seems to

be new. It is a consequence of Pettis’s theorem and the Krein-Smulyan theorem,

analogous to Theorem 1.5 below for holomorphic functions.

We use the following terminology. A subset W of the dual space X∗ of X is

called separating if for each x ∈ X\{0} there exists x∗ ∈ W such that 〈x∗, x〉 6= 0.

Theorem 1.2. Let X be a separable Banach space and f : (0,∞) → X a

function. Assume that there exists a separating subsetW of X∗ such that x∗ ◦ f is

measurable for all x∗ ∈ W . Then f is measurable.

Proof. Let Y = {x∗ ∈ X∗ : x∗◦f is measurable}. Then Y is a subspace of X∗

which containsW . Thus Y is σ(X∗, X)-dense in X∗. Let Y1 = Y ∩B∗, where B∗

denotes the closed unit ball of X∗. Since X is separable, the σ(X∗, X)-topology
is metrizable on B∗. We show that Y1 is σ(X∗, X)-closed. In fact, let x∗ be an

element in the σ(X∗, X)-closure of Y1. Then there exists a sequence (x∗
n)n∈N in Y1

converging to x∗. Hence limn→∞〈x∗
n, f(t)〉 = 〈x∗, f(t)〉 for all t > 0. It follows

that x∗ ◦ f is measurable; i.e., x∗ ∈ Y1. Now it follows from the Krein-Smulyan

theorem that Y is σ(X∗, X)-closed in X∗. Since Y is dense, we have proved that

Y = X∗; i.e., f is weakly measurable. Now Pettis’s theorem implies that f is
measurable.

With the help of Theorem 1.2 we can easily prove the following:

Corollary 1.3. Let fn : (0,∞) → X be measurable (n ∈ N) such that

sup
n∈N
t>0

‖fn(t)‖ < ∞.

Assume that there exists a separable subspace Y of `∞(X) such that (fn(t))n∈N ∈
Y for almost all t > 0. If (f̂n(λ))n∈N converges for all λ > ω and some ω ≥ 0
then (fn(t))n∈N converges for almost all t > 0.
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Proof. We keep the notations in the proofs of Theorems 1.1 and 1.2. For

x∗ ∈ X∗ and n ∈ N, let en⊗x∗ ∈ Y ∗ be defined by 〈en⊗x∗, x〉 = 〈x∗, xn〉, where
x = (xn)n∈N ∈ Y . Then W = {en ⊗ x∗ : n ∈ N, x∗ ∈ X∗} ⊂ Y ∗ is separating

and (en ⊗ x∗) ◦F = x∗ ◦ fn is measurable for all n ∈ N, x∗ ∈ X∗. It follows from
Theorem 1.2 that F is measurable. Now the proof is completed as for Theorem 1.1.

The following example shows that the separability condition cannot be omitted,

even in the scalar case.

Example 1.4. Let X = C, fn(t) = eint. Then f̂n(λ) = 1/(λ − in) → 0
(n → ∞) for all λ > 0; however (fn(t))n∈N does not converge for t ∈ R+ \ 2πZ.

Note that ‖(fn(s))− (fn(t))‖`∞ = 2 whenever |s − t| ∈ R+ \ 2πZ so that the
separability condition in Corollary 1.3 is not satisfied.

The separability condition in Corollary 1.3 seems difficult to apply in examples.

However, a stronger condition, namely holomorphy, is easy to handle. One may use

the following criterion [4].

Theorem 1.5. Let Ω ⊂ C be open and f : Ω → X a locally bounded

function. Assume that there exists a separating subspace Y of X∗ such that y∗ ◦ f

is holomorphic for all y∗ ∈ Y . Then f is holomorphic.

Now we can prove the following result.

Theorem 1.6. Let M, ω ≥ 0 and let fn : (0,∞) → X be continuous such that

‖fn(t)‖ ≤ Meωt (t > 0) for all n ∈ N. Assume that for each t > 0 there exists an
open disc B(t, δt) = {z ∈ C : |t − z| < δt}, where δt > 0, such that each fn has

a holomorphic extension to B(t, δt), still denoted by fn, such that

sup
n∈N

sup
z∈B(t,δt)

‖fn(z)‖ < ∞.

If f̂n(λ) converges as n → ∞ for λ > ω, then fn(t) converges as n → ∞ uniformly

on compact intervals of (0,∞).

Proof. By Theorem 1.5, the function

F (z) := (fn(z))n∈N

is holomorphic on Ω :=
⋃

t>0 B(t, δt) with values in `∞(X). As in the proof
of Theorem 1.1, we conclude that limn→∞ fn(t) exists a.e. It now follows from
Vitali’s theorem (see [3, Appendix A], [10, pp. 104-105] or [4]) that (fn(z))n∈N
converges uniformly on compact subsets of Ω.
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2. DEGENERATE SEMIGROUPS

Let X be a Banach space. A degenerate semigroup is a strongly continuous

mapping T : (0,∞) → L(X) satisfying

T (t + s) = T (t)T (s) (s, t > 0)(2.1)

and

sup
0<t≤1

‖T (t)‖ < ∞.(2.2)

If T (0) := limt↓0 T (t) exists strongly, we say that T is continuous. Then T (0)
is a continuous projection onto X1 = T (0)X . The restrictions T (t)|X1

define a

C0-semigroup on X1, whereas T (t)|X0
= 0 where X0 = (I − T (0))X .

Let Ω ⊂ C be a subset. A function R : Ω → L(X) is called a pseudoresolvent
if

R(λ)− R(µ)
µ − λ

= R(λ)R(µ) whenever µ, λ ∈ Ω , µ 6= λ.(2.3)

Then the kernels kerR(λ) and the images R(λ)X are independent of λ ∈ Ω. If
ker R(λ) = {0}, then there exists an operator A onX such that (λ−A) is invertible
and R(λ) = (λ− A)−1 for all λ ∈ Ω. If Ω is open, then it follows from (2.3) that

R is a holomorphic function.

Conversely, if Ω is open and connected and R : Ω → L(X) is holomorphic and
if (2.3) is valid for all λ, µ ∈ Ω0, λ 6= µ, where Ω0 ⊂ Ω is a subset of Ω having

a limit point in Ω, then it follows from the uniqueness theorem for holomorphic

functions that R is a pseudoresolvent.

Let T : (0,∞) → L(X) be a degenerate semigroup. Then, as in the case of
C0-semigroups, there exist M ≥ 0, ω ∈ R such that

‖T (t)‖ ≤ Meωt (t > 0).(2.4)

Thus, we may consider the Laplace transform T̂ (λ) ∈ L(X) of T defined by

T̂ (λ)x := lim
τ→∞

τ∫

0

e−λtT (t)xdt

for all x ∈ X , λ ∈ C such that Re λ > ω. One sees as in [1, Proposition 2.2]

or [3, Theorem 3.1.7] that T̂ is a pseudoresolvent. Conversely, if T : (0,∞) →
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L(X) is strongly continuous and satisfies (2.4), and if T̂ : (ω,∞) → L(X) is a
pseudoresolvent, then T is a degenerate semigroup (by the references given above).
Similar to the mean ergodic theorem, one has the following decomposition result

on reflexive spaces (cf. [13, Corollary VIII.4.1] or [2]). We give a proof for

completeness.

Proposition 2.1. Let R : (ω,∞) → L(X) be a pseudoresolvent on a reflexive
Banach space X . Assume that

lim sup
λ→∞

‖λR(λ)‖ < ∞.(2.5)

Then X is the direct sum X = X0⊕X1, where X0 = kerR(λ) and X1 = R(λ)X.
Consequently, there exists an operator A on X1 such that (ω,∞) ⊂ %(A) and
R(λ, A) = R(λ)|X1

(λ > ω).

Proof.

(a) Let µ > ω, x = R(µ)y. Then λR(λ)R(µ)y = (λ/(λ−µ)(R(µ)y−R(λ)y) →
R(µ)y as λ → ∞. Hence limλ→∞ λR(λ)x = x for all x ∈ X1.

(b) Let x ∈ X and let z be a σ(X, X∗)-limit point of λR(λ)x as λ → ∞. Then
〈R(µ)z, x∗〉 is a limit point of 〈λR(λ)x, R(µ)∗x∗〉 as λ → ∞. Since the
last expression converges to 〈R(µ)x, x∗〉 as λ → ∞ by a), it follows that

〈R(µ)(z − x), x∗〉 = 0 for all x∗ ∈ X∗. Thus z − x ∈ X0 and z ∈ X1. We

have shown that X ⊂ X0 + X1.

(c) Since for x ∈ X1, limλ→∞ λR(λ)x = x, it follows that X0 ∩ X1 = {0}.

Corollary 2.2. Each degenerate semigroup on a reflexive space X is continu-

ous.

Proof. Let T be a degenerate semigroup. Then T satisfies (2.4) for some

M ≥ 0, ω ∈ R. Then T̂ : (ω,∞) → L(X) is a pseudoresolvent. Hence X =
X0 ⊕X1 according to Proposition 2.1. It follows from the uniqueness theorem that

T (t)|X0
= 0. There is an operator A on X1 such that R(λ)x = (λ − A)−1x for

x ∈ X1, λ > ω. ThusD(A) = R(λ)X is dense inX1. It follows from [1, Theorem

2.4] that A satisfies the Hille-Yosida condition. Hence T (t)|X1
is a C0-semigroup.

We mention that on a Banach space X which is not reflexive there may exist a

degenerate semigroup which is not continuous even if X has the Radon-Nikodym

property (see [1]).

We conclude, showing by an example, that condition (2.5) cannot be omitted in

Proposition 2.1.
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Example 2.3. There exists a bounded pseudoresolvent R : [1,∞) → L(X),
where X is a Hilbert space such that X0 + X1 6= X , where X0 = kerR(λ) and
X1 = R(λ)X (λ > 1). In fact, let X̃ = {x = (xn)n∈N ⊂ C :

∑∞
n=1 |xn|2/(1 +

n2) < ∞}. Then X̃ is a Hilbert space for the scalar product

(x | y) =
∞∑

n=1

xn · ȳn

1 + n2
.

Let X = {x ∈ X̃ : (x2n + x2n+1)n∈N ∈ `2}, with norm ‖x‖2
X = ‖x‖2

X̃
+ ‖(x2n +

x2n+1)n∈N‖2
`2
. Then X is a Hilbert space. Define R(λ) ∈ L(X) by

(R(λ)x)n =

{
1

λ+nxn (n ∈ 2N)

0 n 6∈ 2N.

ThenR : [1,∞) → L(X) is a bounded pseudoresolvent. Consider u = (1,−1, 1,−1,
· · · ) ∈ X . It is obvious that X0 = {x ∈ X : x2n = 0 for all n ∈ N} and X1 ⊂
{x ∈ X : x2n−1 = 0 for all n ∈ N}. Let u = (1,−1, 1,−1, · · ·) ∈ X . Assume that
u = u0 + u1 ∈ X0 + X1. Then u0 = (1, 0, 1, 0 · · ·) and u1 = (0,−1, 0,−1, · · ·).
But u0 6∈ X and u1 6∈ X1; a contradiction.

3. APPROXIMATION OF PSEUDORESOLVENTS

We start this section by showing that each bounded operator can be embedded

into a unique pseudoresolvent. To make this precise, we use the following definition.

Definition 3.1. Let R : Ω → L(X) be a pseudoresolvent, where Ω ⊂ C is

open and connected.

(a) We say that R is maximal if for each pseudoresolventR1 : Ω1 → L(X) with
Ω1 an open connected set containing Ω such that R1(λ) = R(λ) on Ω, one
has Ω = Ω1.

(b) Let Q ∈ L(X), λ0 ∈ C. We say that Q is embedded into R at λ0 if λ0 ∈ Ω
and R(λ0) = Q.

In the sequel, we will frequently use the following lemma.

Lemma 3.2. Let R : Ω → L(X) be a pseudoresolvent, where Ω ⊂ C is open.
(a) Let λ ∈ Ω. Then for µ ∈ Ω one has

R(µ) = (I − (λ− µ)R(λ))−1R(λ)(3.1)

whenever |λ − µ| < ‖R(λ)‖−1.
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(b) In particular, ‖R(µ)‖ ≤ 2M if ‖R(λ)‖ ≤ M and |λ− µ| ≤ (2M)−1.

Proof. Since R(λ) − R(µ) = (µ − λ)R(λ)R(µ), one has R(λ) = (I − (λ −
µ)R(λ))R(µ), which implies (3.1). Thus

R(µ) = R(λ)
∞∑

n=0

(λ− µ)nR(λ)n.

This implies (b).

Next we prove consistency.

Lemma 3.3. Let Ω1, Ω2 ⊂ C be open such that Ω1 ∩ Ω2 is connected. Let

λ0 ∈ Ω1 ∩Ω2. Assume that Rj : Ωj → L(X) are pseudoresolvents (j = 1, 2) such
that R1(λ0) = R2(λ0). Then
(a) R1(λ) = R2(λ) for all λ ∈ Ω1 ∩ Ω2 and

(b)

R(λ) :=
{

R1(λ) (λ ∈ Ω1),
R2(λ) (λ ∈ Ω2)

defines a pseudoresolvent on Ω1 ∪ Ω2.

Proof. (a) Let Ω3 = {λ ∈ Ω1 ∩ Ω2 : R1(λ) = R2(λ)}. Then λ0 ∈ Ω3

and Ω3 is relatively closed in Ω1 ∩ Ω2 since pseudoresolvents are continuous. Let

λ ∈ Ω3. Then R1(λ) = R2(λ). It follows from Lemma 3.2(a) that R1(µ) = R2(µ)
if µ ∈ Ω1∩Ω2 such that |µ−λ| < ‖R1(λ)‖−1. We have shown that Ω3 is an open,

closed and non-empty subset of Ω1 ∩ Ω2. Since Ω1 ∩ Ω2 is connected, it follows

that Ω3 = Ω1 ∩ Ω2.

(b) Let λ ∈ Ω1. Set

Ω3 :=
{

µ ∈ Ω2 :
R1(λ)− R2(µ)

µ − λ
= R1(λ)R2(µ)

}
.

Then Ω1 ∩ Ω2 ⊂ Ω3 by (a), and hence Ω3 6= ∅. We show that Ω3 is open. Let

µ0 ∈ Ω3. Then by Lemma 3.2, for |µ − µ0| < ‖R2(µ0)‖−1 we have

R1(λ)− R2(µ)= R1(λ)− (I − (µ0 − µ)R2(µ0))−1R2(µ0)

= [R1(λ)(I − (µ0 − µ)R2(µ0))− R2(µ0)]

(I − (µ0 − µ)R2(µ0))−1

= [(µ0 − λ)R1(λ)R2(µ0) − R1(λ)(µ0 − µ)R2(µ0)]

(I − (µ0 − µ)R2(µ0))−1

= (µ − λ)R1(λ)R2(µ0)(I − (µ0 − µ)R2(µ0))−1

= (µ − λ)R1(λ)R2(µ).



Approximation of Degenerate Semigroups 287

Hence µ ∈ Ω3. Thus Ω3 is open, closed and nonempty. It follows that Ω3 = Ω2.

Thus R satisfies the resolvent equation.

Next we embed an operator locally into a pseudoresolvent with the help of (3.1).

Lemma 3.4. Let Q ∈ L(X), M = ‖Q‖, and λ0 ∈ C. Define R(µ) =
(I − (λ0 − µ)Q)−1Q for µ ∈ B(λ0, 1/2M) := {µ ∈ C : |λ0 − µ| < 1/2M}. Then
R is a pseudoresolvent.

Proof. Let λ, µ ∈ B(λ0, 1/2M). Then

R(λ)− R(µ)= (I − (λ0 − λ)Q)−1[Q − (I − (λ0 − λ)Q)R(µ)]

= (I − (λ0 − λ)Q)−1[Q(I − (λ0 − µ)Q)− (I − (λ0 − λ)Q)Q]

· (I − (λ0 − µ)Q)−1

= (I − (λ0 − λ)Q)−1Q(µ − λ)Q(I − (λ0 − µ)Q)−1

= (µ − λ)R(λ)R(µ).

Next we characterize maximality.

Proposition 3.5. A pseudoresolvent R : Ω → L(X) defined on an open
connected set Ω ⊂ C is maximal if and only if

lim
k→∞

‖R(λk)‖ = ∞

for each sequence (λk)k∈N in Ω converging to a boundary point λ0 ∈ ∂Ω.

Proof. Assume that the condition is not satisfied. Then there exist λ0 ∈ ∂Ω
and a sequence (λk)k∈N in Ω converging to λ0 such that

M := sup
k∈N

‖R(λk)‖ < ∞.

Let k ∈ N be such that |λ0 − λk| < 1/2M . Then by Lemmas 3.3 and 3.4, R has

an extension to Ω∪B(λk , 1/2M) which contains λ0. Thus R is not maximal. The

other implication is obvious since pseudoresolvents are continuous.

Now we can prove the embedding result.

Theorem 3.6. Let Q ∈ L(X), and λ0 ∈ C. Then there exist an open, connected
set Ω ⊂ C and a unique maximal pseudoresolvent R : Ω → L(X) such that Q is

embedded into R at λ0.
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Proof. The set I := {V ⊂ C open : λ0 ∈ V , there exists a pseudoresolvent

RV : V → L(X) such that Q is embedded into Rv at λ0} is nonempty by Lemma
3.4. It contains a maximal element by Zorn’s lemma. The uniqueness of R follows

also from Lemma 3.3.

Using Theorem 3.6, we can prove the following approximation result for pseudore-

solvents.

Theorem 3.7. Let Ω ⊂ C be open and connected and let Rn : Ω → L(X) be
a pseudoresolvent for each n ∈ N. Assume that

sup
n∈N

‖Rn(λ)‖ < ∞

for all λ ∈ Ω. Assume that (Rn(λ0))n∈N converges strongly for some λ0 ∈ Ω. Then
there exists a pseudoresolvent R : Ω → L(X) such that R(λ)x = limn→∞ Rn(λ)x
uniformly on compact subsets of Ω for all x ∈ X .

Proof. Let Q be the strong limit of (R(λ0))n∈N. Denote by R : Ω̃ → L(X)
the maximal pseudoresolvent such that Q is embedded into R at λ0 (see Theorem

3.6).

(a) Let µ ∈ Ω̃ ∩ Ω. We show that R(µ) = limn→∞ Rn(µ) strongly. In fact, let
x ∈ X . Let z = x + (λ0 − µ)R(µ)x and zn = z + (µ − λ0)Rn(λ0)z. Then
by the resolvent equation, R(µ)x = R(λ0)z and Rn(µ)zn = Rn(λ0)z. By
hypothesis, limn→∞ zn = z + (µ − λ0)R(λ0)z = z + (µ − λ0)R(µ)x =
x. Since supn∈N ‖Rn(µ)‖ < ∞, it follows that R(µ)x = R(λ0)z =
limn→∞ Rn(λ0)z = limn→∞ Rn(µ)zn = limn→∞[Rn(µ)(zn−x)+Rn(µ)x]
= limn→∞ Rn(µ)x.

(b) Suppose that Ω 6⊂ Ω̃. Then there exists µ0 ∈ ∂Ω̃ ∩ Ω. Let µk ∈ Ω̃ ∩ Ω
be such that limk→∞ µk = µ0. Let M = supn∈N ‖Rn(µ0)‖ < ∞. Then,
if |µk − µ0| ≤ 1/2M , it follows from Lemma 3.2(b) that ‖Rn(µk)‖ ≤ 2M

for all n ∈ N. Since limn→∞ Rn(µk) = R(µk) strongly, it follows that
‖R(µk)‖ ≤ 2M . This contradicts the maximality of R by Proposition 3.5.

Thus Ω ⊂ Ω̃.
(c) Let x ∈ X . It follows from (a) and (b) that limn→∞ Rn(µ)x = R(µ)x for

all µ ∈ Ω. Lemma 3.2 implies that the sequence (Rn)n∈N is locally bounded.
Thus Vitali’s theorem (see [3, Appendix A], [4] or [10, pp. 104-105]) implies

that the convergence is uniform on compact subsets of Ω.

Remark 3.8. The proof of (a) shows also the following. Let Ω ⊂ C be

an arbitrary set, and R, Rn : Ω → L(X) be pseudoresolvents. Assume that

supn∈N ‖Rn(λ)‖ < ∞ for all λ ∈ Ω. If there exists some λ0 ∈ Ω such that
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R(λ0) = limn→∞ Rn(λ0) strongly, then Rn(λ) converges strongly to R(λ) for all
λ ∈ Ω.

4. APPROXIMATION OF DEGENERATE SEMIGROUPS

In this section, we investigate how strong convergence of degenerate semigroups

can be deduced from strong convergence of the associated pseudoresolvents.

We need the following lemma:

Lemma 4.1. Let T : (0,∞) → L(X) be a degenerate semigroup such that
‖T (t)‖ ≤ Meωt (t > 0). Let R(λ)x =

∫ ∞
0 e−λtT (t)xdt (λ > ω). Then

(λR(λ)− I)
∫ t

0
T (r)dr = (T (t)− I)R(λ) (λ > ω, t > 0).

Proof.

(λR(λ)− I)

t∫

0

T (r)dr=

∞∫

0

λe−λs(T (s)

t∫

0

T (r)dr −
t∫

0

T (r)dr)ds

=

∞∫

0

λe−λs(

t+s∫

s

T (r)dr −
t∫

0

T (r)dr)ds

=

∞∫

0

λe−λs(

t+s∫

t

T (r)dr −
s∫

0

T (r)dr)ds

=

∞∫

0

e−λs(T (t + s) − T (s))ds

= T (t)R(λ)− R(λ),

where integration by parts has been used.

Now we can prove the following approximation result for degenerate semigroups.

Theorem 4.2. Let Tn : (0,∞) → L(X) be a continuous semigroup on a
reflexive Banach space X such that

‖Tn(t)‖ ≤ Meωt (t ≥ 0)

for all n ∈ N, where M, ω ≥ 0. Denote by Rn(λ) = T̂n(λ) the associated
pseudoresolvents (λ > ω, n ∈ N). Assume that Rn(λ0) converges strongly for
some λ0 > ω. Then the following holds.

The Banach space X is the direct sum of subspaces X0 and X1 such that
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(a) T (t)x := limn→∞ Tn(t)x converges uniformly on [0, τ ] for all τ > 0 and all
x ∈ X1, and

(b) limn→∞
∫ t
0 Tn(s)xds = 0 uniformly on [0, τ ] for all τ > 0 and all x ∈ X0.

Moreover, T is a C0-semigroup onX1. Let A1 be its generator. Then R(λ, A1)x =
limn→∞ Rn(λ)x for all x ∈ X1 and all λ > ω.

Proof. We have the uniform estimate

‖Rn(λ)‖ ≤ M

λ − ω
(λ > ω, n ∈ N).

It follows from the hypothesis and Theorem 3.7 that R(λ) = limn→∞ Rn(λ) exists
strongly for all λ > ω. Then (R(λ))λ>ω is a pseudoresolvent satisfying ‖λR(λ)‖ ≤
M for λ ≥ ω + 1. Let X1 = R(λ)X and X0 = ker R(λ), where λ ≥ ω + 1. Let
y ∈ X, and x = R(λ)y. Let t ≥ 0. We show that {Tn(·)x} is equicontinuous at
each t. In fact, by Lemma 4.1 one has, for 0 < s < t,

‖Tn(t)x − Tn(s)x‖ = ‖Tn(t)R(λ)y − Tn(s)R(λ)y‖
≤ ‖(Tn(t) − Tn(s))(R(λ)y− Rn(λ)y)‖+

‖(Tn(t) − Tn(s))Rn(λ)y‖
≤ ‖(Tn(t) − Tn(s))(R(λ)y− Rn(λ)y‖+

‖(Tn(t) − I)Rn(λ)y − (Tn(s) − I)Rn(λ)y‖
= ‖(Tn(t) − Tn(s))(R(λ)y− Rn(λ)y)‖

+‖(λRn(λ)− I)

t∫

s

Tn(r)ydr‖

≤ M(eωt + eωs)‖R(λ)y − Rn(λ)y‖

+(M + 1)

t∫

s

Meωrdr‖y‖.

Given ε > 0, we may choose n0 ∈ N such that the first expression is inferior

to ε/2 for all n > n0 and all 0 < s ≤ t + 1. Now choose 0 < δ < max{t, 1} such
that the second expression is inferior to ε/2 whenever |s − t| ≤ δ and also

‖Tn(t)x − Tn(s)x‖ ≤ ε for n = 1, 2, · · · , n0

if |s−t| ≤ δ. Then ‖Tn(t)x−Tn(s)x‖ ≤ ε for all n ∈ N whenever |s−t| ≤ δ. This
shows that the sequence {Tn(·)x : n ∈ N} is equicontinuous at t. Now it follows

from Theorem 1.1 that Tn(t)x converges uniformly on [0, τ ] as n → ∞. By density,



Approximation of Degenerate Semigroups 291

this remains true for all x ∈ X1. Thus (a) is proved. Consequently, T (t)x :=
limn→∞ Tn(t)x (x ∈ X1, t ≥ 0) defines a C0-semigroup on X1. Moreover,

R(λ, A1)x =
∫ ∞
0 e−λtT (t)xdt = limn→∞

∫ ∞
0 e−λtTn(t)xdt = limn→∞ Rn(λ)x

for all x ∈ X1, λ > ω. In order to show (b), let Sn(t) =
∫ t
0 Tn(r)dr. Then

‖Sn(t)−Sn(s)‖ ≤ M
∫ t
s eωrdr for all n ∈ N and Rn(λ) = λ

∫ ∞
0 e−λtSn(t)dt (λ >

ω). So the set {Sn(·)x : n ∈ N} is equicontinuous for each x ∈ X . Now it follows
from Theorem 1.1 that limn→∞ Sn(t)x = 0 for all x ∈ X0.

Whereas the integrated semigroups
∫ t
0 Tn(r)xdr converge as n → ∞ for each

x ∈ X , we have seen in Example 1.4 that it can happen that the semigroups Tn(t)x
do not converge if x ∈ X0. The situation is better if the semigroups are “uniformly

holomorphic” in a sense made precise in the next section.

5. HOLOMORPHIC DEGENERATE SEMIGROUPS

A bounded holomorphic degenerate semigroup is a degenerate semigroup

T : (0,∞) → X which has a bounded holomorphic extension to a sector Σ(θ) :=
{reiα : r > 0, |α| < θ} for some θ ∈ (0, π/2] with values in L(X). We also use
the letter T for this extension. It follows from the uniqueness of analytic extensions
that

T (z)T (z′) = T (z + z′) for all z, z′ ∈ Σ(θ).

The semigroup is called continuous if T (t) converges strongly as t ↓ 0. By Vitali’s
theorem, this implies that T (z) converges strongly as z → 0 for z ∈ Σ(θ′), for each
θ′ ∈ (0, θ) (cf. [3, Proposition 2.6.3] or [10, Theorem 3.14.3]. By Corollary 2.2, if
X is reflexive, then a bounded degenerate holomorphic semigroup is automatically

continuous.

Let T : (0,∞) → L(X) be a bounded holomorphic degenerate semigroup with
Laplace transform T̂ (λ) (Re λ > 0). Then one sees as in the C0-case that there

exists a constant M ≥ 0 such that

‖λT̂(λ)‖ ≤ M (Re λ > 0).

Conversely, as in the C0-case, one proves (e.g., with help of [3, Theorem 2.7.1])

the following converse result. We let C+ = {λ ∈ C : Re λ > 0}.

Theorem 5.1. Let M ≥ 0. There exist M̃ ≥ 0, θ ∈ (0, π/2] such that the
following holds. Let R : C+ → L(X) be a pseudoresolvent such that

‖λR(λ)‖ ≤ M (Re λ > 0).
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Then there exists a bounded holomorphic degenerate semigroupT such that T̂ (λ) =
R(λ) (Re λ > 0). Moreover, T has a holomorphic extension to Σ(θ) such that
‖T (z)‖ ≤ M̃ (z ∈ Σ(θ)).

We call T the bounded holomorphic degenerate semigroup associated with

R.

Now we obtain the following approximation result.

Theorem 5.2. Let M ≥ 0. For each m ∈ N, let Rm : C+ → L(X) be a
pseudoresolvent such that ‖λRm(λ)‖ ≤ M for all λ ∈ C+, m ∈ N. Let Tm be the

bounded holomorphic degenerate semigroup associated with Rm. If for some λ >

0, Rm(λ) converges strongly as m → ∞, then there exists a bounded holomorphic
degenerate semigroup T such that limm→∞ Tm(t)x = T (t)x uniformly on [0, τ ]
for all τ > 0 and all x ∈ X .

Proof. By Theorem 5.1, there exist θ ∈ (0, π/2], M̃ ≥ 0 such that Tm has a

holomorphic extension to Σ(θ) with values in L(X) satisfying ‖Tm(z)‖ ≤ M̃ for

all z ∈ Σ(θ), m ∈ N. It follows from Theorem 1.6 that T (z)x := limm→∞ Tm(z)x
converges uniformly on compact subsets of Σ(θ) for all x ∈ X . Then T is holo-

morphic by Vitali’s theorem. Moreover, T (z +z′) = T (z)T (z′) for all z, z′ ∈ Σ(θ)
by the semigroup property of Tm.

We remark that it is also possible to prove Theorem 5.2 with the help of a

contour argument.

6. CONVERGENCE OF HEAT SEMIGROUPS

Let Ω ⊂ Rn be an open set. We identify L2(Ω) with a closed subspace of
L2(Rn) extending functions by zero. By D(Ω) we denote the test functions on Ω
and by H1(Rn) the first Sobolev space in L2(Rn). The space H1

0(Ω) is defined as
the closure of D(Ω) in H1(Rn). Now we define the Dirichlet Laplacian as the
operator ∆Ω on L2(Ω) given by

D(∆Ω) = {f ∈ H1
0(Ω) : ∆f ∈ L2(Ω)},

∆Ωf = ∆f in D(Ω)′.

Here we consider L2(Ω) as a subspace of D(Ω)′ as usual. The operator ∆Ω is

selfadjoint and form negative, so it generates a holomorphicC0-semigroup (et∆Ω)t≥0

on L2(Ω). We define the degenerate semigroup TΩ(t) on L2(Rn) by

(TΩ(t)f)(x) =

{
(et∆Ωf|Ω)(x) if x ∈ Ω

0 if x 6∈ Ω.
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Then TΩ is continuous and TΩ(0) is the orthogonal projection onto L2(Ω) given by
TΩ(0)f = 1Ωf .

Definition 6.1 (convergence of open sets). If Ωm, Ω ⊂ Rn are open sets

(m ∈ N), we write limm→∞ Ωm = Ω if the following two conditions are satisfied:
(a) For each compact set K ⊂ Ω, there exists m0 ∈ N such that K ⊂ Ωm for all

m ≥ m0, and

(b) limm→∞ |Ωm \ Ω| = 0, where |F | denotes the Lebesgue measure of a mea-
surable subset F of Rn.

In the following theorem, we need a mild regularity assumption on the limit set

Ω. We let
H̃1

0(Ω) = {f ∈ H1(Rn) : f(x) = 0 a.e. on Rn \Ω}.
Then H̃1

0(Ω) is a closed subspace of H1(Rn) containing H1
0(Ω). We will need the

assumption that H1
0(Ω) = H̃1

0(Ω). It is satisfied if the boundary of Ω is sufficiently
regular. For example, if Ω is bounded and has Lipschitz continuous boundary, then
H1

0 (Ω) = H̃1
0 (Ω). However, for Ω = (0, 1)∪ (1, 2) ⊂ R one has H1

0(Ω) 6= H̃1
0(Ω).

We refer to [2] for further details.

Theorem 6.2. Let Ω, Ωm ⊂ Rn be open (m ∈ N) such that limm→∞ Ωm = Ω.
Assume thatH1

0(Ω) = H̃1
0(Ω). Then for each f ∈ L2(Rn), one has limm→∞ TΩm(t)

f = TΩ(t)f in L2(Rn) uniformly on [0, τ ] for all τ > 0.

Proof. It follows from the spectral theorem that

‖λR(λ, ∆Ωm)‖ ≤ 1 (Re λ > 0)

for all m ∈ N. Denote by Rm : C+ → L(L2(Rn)) the pseudoresolvent associated
with TΩm ; i.e.,

(Rm(λ)f)(x) =

{
(R(λ, ∆Ωm)f)(x) (x ∈ Ωm),

0 (x 6∈ Ωm),

and let R be the pseudoresolvent associated with TΩ. Let f ∈ L2(Rn), um =
Rm(1)f , and u = R(1)f . In order to apply Theorem 5.2 we have to show that
limm→∞ um = u in L2(Rn). For this, it suffices to show that each subsequence of
(um)m∈N possesses a subsequence which converges to u. Note that um ∈ H1

0(Ωm)
and um − ∆um = f in D(Ωm)′; i.e.,

∫

Ωm

umϕ +
∫

Ωm

∇um∇ϕdx =

∫

Ωm

umϕ −
∫

Ωm

um∆ϕdx =
∫

Ωm

fϕdx
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for all ϕ ∈ D(Ωm). By density, we deduce that
∫

Ωm

umϕ +
∫

Ωm

∇um∇ϕdx =
∫

Ωm

fϕdx

for all ϕ ∈ H1
0 (Ωm). In particular,
∫

Ωm

|um|2dx +
∫

Ωm

|∇um|2dx=
∫

Ωm

fumdx

≤ ‖f‖L2(Rn) · ‖um‖L2(Rn)

≤ 1
2
(‖f‖2

L2(Rn) + ‖um‖2
L2).

Thus, (um)m∈N is bounded in H1(Rn). SinceH1(Rn) is reflexive, we may assume
that um converges weakly to a function v ∈ H1(Rn) as m → ∞ (considering a

subsequence otherwise). Since for each ball B in Rn the embedding of H1(B) into
L2(B) is compact, we can assume that um converges to v in L2

loc(Rn) as m → ∞.
So we can also assume that um(x) converges to v(x) a.e. as m → ∞ (taking a

subsequence again).

Now observe that |um| ≤ R(1, ∆)|f | for all m ∈ N, where ∆ denotes the

Laplacian on L2(Rn), i.e., the generator of the Gaussian semigroup on L2(Rn) (see
[2] for example). Thus it follows from the dominated convergence theorem that

um → v in L2(Rn) as m → ∞. The assumption b) implies that 1Ωm\Ω converges
to 0 in measure as m → ∞. As is well-known, this implies that a subsequence
converges to 0 a.e. Hence v(x) = 0 a.e. on Rn \ Ω. Thus v ∈ H̃1

0(Ω) = H1
0(Ω).

Let ϕ ∈ D(Ω). Then there exists m0 ∈ N such that supp ϕ ⊂ Ωm for all m ≥ m0

(by property a)). Since um − ∆um = f in D(Ωm)′, it follows that
∫

Rn

umϕ +
∫

Rn

∇um∇ϕ =
∫

Rn

fϕdx

for all m ≥ m0. Taking the limit as m → ∞, we deduce that
∫

Rn

vϕ +
∫

Rn

∇v∇ϕ =
∫

Rn

fϕ.

We have shown that v−∆v = f in D(Ω)′. Thus v = u, and the proof is complete.

It is not difficult to generalize Theorem 6.2 to strong convergence in Lp(Ω) (1 ≤
p < ∞). In L2(Ω), one may also use convergence theorems for quadratic forms
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if the sequence of forms is monotonic; see [2], Simon [12] and Reed-Simon [11,

Appendix]. Concerning convergence with respect to the domain of the corresponding

elliptic problem with different boundary conditions, we refer to Henrot [8] and Bucur

[5].
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