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A CONE-THEORETIC APPROACH TO THE SPECTRAL THEORY OF
POSITIVE LINEAR OPERATORS: THE FINITE-DIMENSIONAL CASE

Bit-Shun Tam

Abstract. This is a review of a coherent body of knowledge, which perhaps
deserves the name of the geometric spectral theory of positive linear opera-
tors (in finite dimensions), developed by this author and his co-author Hans
Schneider (or S.F. Wu) over the past decade. The following topics are cov-
ered, besides others: combinatorial spectral theory of nonnegative matrices,
Collatz-Wielandt sets (or numbers) associated with a cone-preserving map,
distinguished eigenvalues, cone-solvability theorems, the peripheral spectrum
and the core, the invariant faces, the spectral pairs, and an extension of the
Rothblum Index Theorem. Some new insights, alternative proofs, extensions
or applications of known results are given. Several new results are proved or
announced, and some open problems are also mentioned.
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1. INTRODUCTION

This paper is a considerably expanded version of an invited talk delievered
by the author at the International Conference on Mathematical Analysis and Its
Applications (ICMAA 2000) held at National Sun Yat-sen University in Taiwan in
January 2000.

Here we are interested in linear operators or matrices that leave invariant a proper
cone. By a proper cone we mean a nonempty subset K in a finite-dimensional
real vector space V , which is a convex cone (i.e., x, y ∈ K, α, β ≥ 0 imply
αx+βy ∈ K), is pointed (i.e., K

⋂
(−K) = {0}), closed (with respect to the usual

topology of V ) and full (i.e., int K �= ∅). A typical example is R
n
+, the nonnegative

orthant of Rn. We denote by π(K) the set of all linear operators (or matrices) A

that satisfy AK ⊆ K. We refer to elements of π(K) as cone-preserving maps.
(Functional analysts usually call them positive or nonnegative linear operators.)
Hereafter, unless stated otherwise, we always use K to denote a proper cone in R

n.

1.1. Perron-Frobenius Theorems

Probably many of you have heard of the Perron-Frobenius theory of a non-
negative matrix discovered at the turn of the twentieth century. Let us recall the
results.

In 1907, Perron [87, 88] gave proofs of the following famous theorem, which
now bears his name, on positive matrices:

Theorem 1.1. (Perron Theorem). Let A be a square positive matrix. Then
ρ(A) is a simple eigenvalue of A and there is a corresponding positive eigenvector.
Furthermore, ρ(A) > |λ| for all λ ∈ σ(A), λ �= ρ(A).
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Here we denote by σ(A) the spectrum (the set of all eigenvalues) of a (square)
matrix A, and by ρ(A) the spectral radius of A, i.e., the quantity max {|λ| : λ ∈
σ(A)}. By a positive (respectively, nonnegative) matrix we mean a real matrix
each of whose entries is a positive (respectively, nonnegative) number. If A is a
nonnegative (respectively, positive)matrix, we shall denote it byA ≥ 0 (respectively,
A > 0). We also call a nonnegative matrix A primitive if there exists a positive
integer p such that Ap > 0.

In the years 1908–09, Frobenius [46, 47] also gave proofs of Perron’s theorem.
Then in 1912, Frobenius [48] extended the theorem to the class of irreducible
nonnegative matrices.

An n × n matrix A = (aij) is said to be reducible if n ≥ 2 and there exists a
proper nonempty subset α of 〈n〉 := {1, . . . , n} such that aij = 0 for all i ∈ α and
j ∈ 〈n〉\α; or, equivalently, if n ≥ 2 and there exists a permutation matrix P such
that

PT AP =
[

A11 A12

0 A22

]
,

where A11 and A22 are square matrices of order at least one. If A is not reducible,
then it is said to be irreducible.

Theorem 1.2 (Frobenius Theorem). Let A ≥ 0 be irreducible. Then
( i ) ρ(A) is simple eigenvalue of A, and there is a corresponding positive

eigenvector.
(ii) If A has h eigenvalues of modulus ρ(A), then they are ρ(A)e2πti/h, t =

0, . . . , h− 1. Moreover, the spectrum of A is invariant under a rotation about the
origin of the complex plane by 2π/h, i.e., e2πi/hσ(A) = σ(A). If h > 1, then there
exists a permutation matrix P such that

PT AP =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 A12

0 A23

0
. . .
. . . Ah−1,h

Ah1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where the zero blocks along the diagonal are square.

By a limiting argument, we readily obtain the Perron-Frobenius theorem of a
nonnegative matrix; namely, that if A is a nonnegative matrix, then ρ(A) is an
eigenvalue of A and there is a corresponding nonnegative eigenvector.

The Perron-Frobenius theory of a nonnegative matrix has been one of the most
active research areas in matrix analysis. Schneider [101, Section 2.5] has once
referred to the theory as a branch point of (inward) matrix theory from abstract
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algebra. The theory has found numerous applications in mathematical, physical
and social sciences. Nowadays, almost every textbook of matrix theory contains a
chapter on nonnegative matrices (for instance, Gantmacher [51], Varga [138], Horn
and Johnson [62], Lancaster and Tismenetsky [73], among others), and there are
also monographs specially devoted to nonnegative matrices and their applications,
such as Seneta [108], Berman and Plemmons [17], Minc [79], Berman, Neumann
and Stern [16], and Bapat and Raghavan [4]. Recently, the Perron-Frobenius theory
of nonnegative matrices has also found applications in the study of the Hausdorff
dimension of some fractals (see Drobot and Turner [31], and Takeo [114]), and in
the classification of surface homeomorphisms (see Bauer [14]).

1.2. Infinite-dimensional Results

A natural extension of the concept of a nonnegative matrix is that of an integral
operator with a nonnegative kernel. The following extension of Perron’s theorem is
due to Jentzsch [71].

Theorem 1.3 (Jentzsch, 1912). Let k(·, ·) be a continuous real function on the
unit square with k(s, t) > 0 for all 0 ≤ s, t ≤ 1. If K : L2[0, 1] → L2[0, 1] denotes
the integral operator with kernel k defined by setting

(Kf)(s) =
∫

[0,1]
k(s, t)f(t)dt, f ∈ L2[0, 1],

then
(i) K has positive spectral radius;
(ii) the spectral radius ρ(K) is a simple eigenvalue, with (strictly) positive eigen-

vector;
(iii) if λ �= ρ(K) is any other eigenvalue of K, then |λ| < ρ(K).

In 1948, in an abstract order-theoretic setting, in the important memoir [72]
Krein and Rutman extended the theory to a compact linear operator leaving invariant
a convex cone in a Banach space. They obtained the following:

Theorem 1.4 (Krein and Rutman). Let A be a compact linear operator on a
Banach space X . Suppose that AC ⊆ C, where C is a closed generating cone in
X . If ρ(A) > 0, then there exists a nonzero vector x ∈ C such that Ax = ρ(A)x.

Since the advent of the above-mentioned paper by Krein and Rutman, the
Perron-Frobenius theory has been extended to positive operators in various infinite-
dimensional settings, including Riesz spaces (i.e., lattice ordered spaces), Banach
spaces, Banach lattices, ordered topological vector spaces, ordered locally convex
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algebras, and C∗-algebras, etc. In case the underlying space is a Banach lattice,
the theory is particularly rich. For references, we refer our reader to the expository
papers by Dodds [30], Schaefer [95], Zerner [145], and also the books by Aliprantis
and Burkinshaw [2], Meyer-Nieberg [78], Schaefer [96; 98, Appendix], Schwarz
[107], and Zaanen [143], etc.

1.3. Cone-preserving Maps in Finite Dimensions

Early works on generalizations of the Perron-Frobenius theory were mainly done
in the infinite-dimensional settings. In 1967, Birkhoff [19] gave an elementary proof
of the Perron-Frobenius theorem for a cone-preserving map (in finite dimensions),
using the Jordan canonical form. His paper attracted the attention of numerical
analysts. Vandergraft [136] investigated the problem more closely. He considered
also only finite-dimensional spaces, in order to obtain stronger results, with in
mind applications to convergence theorems and comparison results (see also Marek
[75], Rheinboldt and Vandergraft [91], and Vandergraft [137]). Vandergraft (and
independently Elsner [33]) solved completely the problem of when an n × n real
matrix leaves invariant some proper cone in the underlying space. (We shall return
to this problem in a later part of this paper.) A nice account of Vandergraft’s work
has been summarized in the book by Berman and Plemmons [17, Chapter 1].

Based on the folllowing concept of a face, due to Hans Schneider, the concept
of irreducibility was extended to cone-preserving maps:

A nonempty subset F of a proper cone K is a face of K if F is a subcone of
K and in addition has the property that y ≥K x ≥K 0 and y ∈ F imply x ∈ F .
Here we use ≥K to denote the partial ordering on Rn induced by K, i.e. y ≥K x

if and only if y − x ∈ K.
A matrixA ∈ π(K) is said to be K-irreducible if A leaves invariant no nontrivial

face of K. (The trivial faces of K are {0} and K. Other faces of K are said to be
nontrivial.) It is not difficult to show that an n×n nonnegative matrix is irreducible
(in the sense we have already defined for a general square matrix) if and only if it
is Rn

+-irreducible.
The following equivalent conditions forK-irreducibilitywere obtained by Schnei-

der and Vidyasagar [106]:

Theorem 1.5. Let A ∈ π(K). The following conditions are equivalent :
(a) A is K-irreducible.
(b) A has no eigenvector in the boundary of K.
(c) (In + A)n−1(K\{0}) ⊆ int K .

Around that time, the concepts of positive and primitive matrices were also ex-
tended to cone-preserving maps: a matrix A is said to be K-positive if A(K\{0}) ⊆
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int K. In [5], Barker gave a definition for K-primitivity, which, he showed, is
equivalent to the condition that Ap is K-positive for some positive integer p. He
also obtained another equivalent condition for K-primitivity which is analogous to
the definition of K-irreducibility; namely, A is K-primitive if and only if A leaves
no subset of ∂K other than {0} invariant.

In [106], Schneider and Vidyasagar proved that if K is a proper cone in R
n,

then π(K) is a proper cone in the space of all n × n real matrices. Barker [5,
Proposition 1] also proved the interesting fact that the interior of the cone π(K) is
composed of precisely all the K-positive matrices. Around that time, the geometry
of the cone π(K) (or, more generally, π(K1, K2) := {A : AK1 ⊆ K2}) has
attracted the attention of many people, and in particular the determination of its
extreme operators was a focus of interest. (See the review paper by Barker [7], and
also the research-expository paper by Tam [125]. At the end of the latter paper,
several open problems are posed.) A bit later, the algebraic structure of π(K) as
a semiring (under matrix addition and multiplication) was also investigated by a
number of people (see Horne [63], Barker [6, Section 4], Tam [116], and the more
recent Barker and Tam [10]).

In the above, we have mentioned a number of papers published in the ’60–
’70s, devoted to the study of the spectral theory of a cone-preserving map (in finite
dimensions); namely, Birkhoff [19], Vandergraft [136, 137], Marek [75], Rheinboldt
and Vandergraft [91], Elsner [33], and Barker [5]. Besides, there are also the papers
by Barker and Turner [13] and by Barker and Schneider [8], which we shall come
across later in this paper. Furthermore, we would also like to mention, in particular,
the paper [90] by Pullman in 1971, in which he offered a geometric approach to the
theory of nonnegative matrices via a study of its core. His paper has motivated our
work in the ’90s. Anyway, around the mid-’80s, people generally thought that the
subject of positive linear operators (in finite or infinite dimensions) was more or less
complete. Let us quote from the review papers by Barker and Dodds, respectively.

In 1981, in [7, p. 264] Barker put:
“... The spectral theory of cone preserving operators is now fairly complete and

has been summarized in Barker and Schneider [8] and Berman and Plemmons [17,
Chapter 1]. Since the subject of spectral theory is well summarized, we shall not
consider it in detail in the main body of this paper ...” (The reference numbers
given are changed to those used in our reference list.)

In 1995, Dodds [30, p.21] also wrote:
“Many of the central ideas and themes in the theory of positive compact operators

may be traced back to the work, in the early part of this century, of Perron and
Frobenius on the spectral theory of non-negative matrices (in the above sense) and
to the related work of Jentzsch on integral equations with non-negative kernels.
Only as recently as 1985 can it be said, in a certain sense, that the circle of ideas
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beginning with the work of Perron-Frobenius-Jentzsch has been finally completed
...”

1.4. More Recent Work

The past two decades have witnessed a rapid development of the combinator-
ial spectral theory of nonnegative matrices, where emphasis is put on the relation
between the combinatorial structure and the spectral structure of the generalized
eigenspace associated with the spectral radius or distinguished eigenvalues of a
nonnegative matrix. Since our work was much motivated by the latter theory, we
shall devote the whole Section 2 to a description of it.

The combinatorial spectral theory of nonnegative matrices also has had some
impacts on the infinite-dimensional theory. From the early ’80s to the mid-’90s,
many of the graph-theoretic ideas (such as the concepts of classes, the notion of
accessibility between states or classes) or of the combinatorial spectral results (such
as the Nonnegative Basis Theorem and the Rothblum Index Theorem) have already
been extended, first to the setting of an eventually compact linear integral operator
on Lp(Ω, μ), 1 ≤ p < ∞, with nonnegative kernel (see Victory [139, 140], Jang
and Victory [67, 68]), and then to the setting of a positive, eventually compact linear
operator on a Banach lattice having order continuous norm (see Jang and Victory
[69, 70]). Their treatment, which employs mainly functional-analytic methods, is
made possible by a decomposition of the positive operator under consideration in
terms of certain closed ideals of the underlying space in a form which directly
generalizes the Frobenius normal form of a nonnegative reducible matrix.

This author first got involved in the spectral theory of positive linear operators
(in finite dimension) in the academic year 1986–87 when he supervised his master
student Shiow-Fang Wu to write up her master thesis “Some results related to
the class structure of a nonnegative matrix.” In the subsequent year, he took his
study leave at the University of Wisconsin-Madison, and with Hans Schneider, he
embarked on a study of the Perron-Frobenius theory of a nonnegative matrix and
its generalizations from the cone-theoretic viewpoint. After a prolonged study of
more than ten years, in this subject, they produced, in succession, the following
papers: Tam and Wu [133], Tam [121], Tam and Schneider [130, 131], and the
intended future papers Tam and Schneider [132], and Tam [127, 128]. As a result,
our knowldege of the spectral theory of cone-preserving maps (in finite dimensions)
has grown considerably, to the extent that it probably deserves the name of the
geometric spectral theory of positive linear operators.

1.5. Some Features of Our Work

In this paper, by “we” we often mean “this author and his co-author Hans
Schneider (or S.F. Wu)”.
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The main feature of our work on positive linear operators is that, we approach
the subject from a new viewpoint, the cone-theoretic geometric viewpoint, as op-
posed to the funcion-theoretic approaches used prevalently for infinite-dimensional
spaces or the current graph-theoretic (combinatorial) approaches used for nonneg-
ative matrices. We think that the geometric approach has interest in its own right
and also that in applications, say, to linear dynamical systems, it is often important
to understand the geometry.

In our study, the underlying positive cone is a proper cone (in a finite-dimensional
space), which need not be lattice-ordered (or simplicial, in our terminology); that is,
we are dealing with much more than the classical nonnegative matrix case. Appar-
ently, with a general abstract proper cone, there is not much structure one can work
with. (Indeed, until today we know very little about the elements of π(K) which
are not a nonnegative linear combination of its rank-one elements; see Tam [124,
p.69].) But in order to achieve a better understanding, we chose to start our work
in such a setting. Fortunately (and also quite surprisingly), we did obtain not a few
useful, basic (nontrivial) results in this general setting. Then by confining ourselves
to a narrower class of proper cones, such as the class of polyhedral (finitely gener-
ated) cones, we managed to obtain deeper results. We usually formulate and prove
our results in a cone-theoretic language. The operator-invariant face, instead of the
operator-invariant ideal, is one of our objects of interest; for a linear mapping pre-
serving a general proper cone, we just don’t have the concept of operator-invariant
ideal. The Perron-Frobenius theorems, duality arguments, and a number of basic,
simple (but nontrivial) results form our bag of tools. Many a time one can easily
apply a simple useful fact – like, A ∈ π(K) if and only if AT ∈ π(K∗), where
K∗ denotes the dual cone of K – without realizing that the used fact is actually
nontrivial! The strength of our approach lies in the availability of a number of
nontrivial simple useful results.

Another attracting feature of our work is that, we need only a few definitions.
We have achieved a rather high # of theorems produced / # of definitions needed
ratio.

Unlike the work of Jang and Victory, mentioned in Subsection 1.4, in our work
we do not generalize the Frobenius normal form of a reducible nonnegative matrix.
Indeed, we do not expect there is a natural generalization for a cone-preserving
map on a general proper cone. Also, we do not use digraphs associated with a
cone-preserving map, though we are aware that such digraphs have existed in the
literature (see Barker and Tam [9] and Tam and Barker [129]); for one thing, such
digraphs are not too natural and furthermore they are usually not finite. We believe
that our cone-theoretic arguments are more susceptible to generalizations to infinite-
dimensional spaces than graph-theoretic arguments.

Our geometric spectral theory can also offer an independent, self-contained,
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alternative approach to a large part of the recently developed combinatorial spectral
theory of nonnegative matrices. This is an elegant, conceptual approach, where
calculations are reduced to a minimum.

In our study, we borrowed many of our ideas from the nonnegative matrix theory.
As a feedback, we obtained an unexpected, highly nontrivial necessary condition for
the collection of elementary Jordan blocks corresponding to the eigenvalues lying in
the peripheral spectrum of a nonnegative matrix (see Subsection 4.10). Furthermore,
as an outcome of our investigation, we also discovered some new useful concepts,
like spectral pairs, which have no counterparts in the original nonnegative matrix
setting.

1.6. About This Paper

Now we describe the contents of this paper briefly. We devote Section 2 to
a sketch of the combinatorial spectral theory of nonnegative matrices, which is
a source of motivation for our work. Section 3 mainly describes our work in
[133] and [121] in connection with the fundamental comcepts of Collatz-Wielandt
sets, Collatz-Wielandt numbers, local spectral radius and distinguished eigenvalues.
In Section 4, we describe our work in [130] on the core of a cone-preserving
map. It is shown that there are close connections between the core, the peripheral
spectrum, the Perron-Schaefer condition, and the distinguished invariant faces of a
cone-preserving map. Section 5 is about the invariant faces of a cone-preserving
map, which is the focus of interest in [131]. The important concepts of semi-
distinguished invariant faces, and of spectral pairs of faces (or vectors) associated
with a cone-preserving map are introduced. An extension of the Rothblum Index
Theorem of nonnegative matrices to a linear mapping preserving a polyhedral cone
in terms of semi-distinguished invariant faces is described. In Section 6, the last
section, we describe our other related works in the papers [52, 126, 134], and also
the future papers [127, 128, 132]. Of course, we mention also the related works of
other people, and also open problems, where appropriate.

In this paper we focus on new ideas, concepts and results involving them. We
hope the paper will serve as a quick introduction to the subject, from the basics up
to research frontiers. Usually we do not give proofs to known results, unless we
have a different proof, which is better or can illustrate something. At a few places,
we do provide the original proofs, in order to show the interplay between various
ideas and results.

This is a survey paper. However, we have included some original work (with
proofs) in Subsections 4.8.1–4.8.3, and 6.1.1–6.1.4. In particular, we are able to de-
scribe fully the core of a K-irreducible matrix, and characterize all linear subspaces
W for which there exist K-irreducible matrices A such that coreK(A) = W

⋂
K .

We also discover the following interesting new result: If K is a polyhedral cone
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with m maximal faces and if A ∈ π(K), then there exists an m × m nonnegative
matrix B and a B-invariant subspace W of R

m, W
⋂

int R
m
+ �= ∅, such that the

cone-preserving maps A ∈ π(K) and B|W ∈ π(W
⋂

Rm
+ ) are equivalent (in a nat-

ural sense to be defined later). Then with the help of the Preferred Basis Theorem
(for singular M -matrices), we show that the above result can be used to rederive a
crucial lemma needed in proving our extension of the Rothblum Index Theorem to
the polyhedral cone case.

In Subsection 4.6, we also indicate how our results on the core of a nonnegative
matrix can be used to rederive in a quick way the recent work of Sierksma [109]
on limiting polytopes.

2. COMBINATORIAL SPECTRAL THEORY

The (finite-dimensional) matrix case has two special features not shared by the
infinite-dimensional case in general – a square matrix has a Jordan canonical form
and also a directed graph naturally associated with it. So for a nonnegative matrix
it is natural to investigate the connection between these two features. Since the
mid-’70s, there has been a rapid growth in the combinatorial spectral theory of
nonnegative matrices. Our work on positive operators by a cone-theoretic approach
is partly influenced by this development. Excellent surveys on the combinatorial
spectral theory of nonnegative matrices are already available in the literature; see
Schneider [103] and Hershkowitz [56, 57]. In this section we are going to give a
sketch of this topic. First, we begin with the necessary graph-theoretic definitions.

2.1. Definitions

Let A be an n × n matrix. By the digraph of A, denoted by G(A), we mean
as usual the directed graph with vertex set 〈n〉 := {1, . . . , n}, where (i, j) is an
arc if and only if aij �= 0. By a class of A we mean the vertex set of a strongly
connected component of G(A). The concept of a class was due to Rothblum [93].
We mainly follow his terminology, but sometimes we also borrow from Schneider
[103]. If α, β are classes of A, we say α has access to β (or β has access from α)
if either α = β or there is a path in G(A) from some (and hence from all) vertex
in α to some (and hence all) vertex in β; then we write α >= β. We write α >−β

if α >= β and α �= β. Sometimes we also write i >= α, where i ∈ 〈n〉 and α
is a class, with the obvious meaning. A class α is initial if it has no access from
other class except from itself. Similarly, we can define the concept of a final class.
If A is nonnegative, then we call a class α basic if ρ(Aαα) = ρ(A), where Aαα

denotes the principal submatrix of A with rows and columns indexed by α. A class
α of A is distinguished (respectively, semi-distinguished) if ρ(Aαα) > ρ(Aββ)
(respectively, ρ(Aαα) ≥ ρ(Aββ)) for any class β >−α. By applying a suitable
permutation similarity to A, we can always put A into the familiar (lower-triangular
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block) Frobenius normal form
⎡
⎢⎢⎢⎣

A11 0 · · · 0
A21 A22 · · · 0
...

... . . . ...
Ap1 Ap2 · · · App

⎤
⎥⎥⎥⎦ ,

where the diagonal blocks A11, . . . , App are irreducible, each corresponding to a
class of A. In case A is nonnegative, from its Frobenius normal form, we readily see
that the number of basic classes A has is equal to the algebraic multiplicity of ρ(A)
as an eigenvalue of A, or, equivalently, the dimension of the Perron generalized
eigenspace N ((ρ(A)In − A)n) of A. (In the literature, the Perron generalized
eigenspace of a nonnegative matrix is also known as its algebraic eigenspace.)

A sequence of classes α1, . . . , αk is said to form a chain from α1 to αk if
αi >−αi+1 for i = 1, . . . , k − 1. The length of a chain is the number of basic
classes it contains. The height of a class β is the length of the longest chain of
classes that terminates in β. It is clear that a basic class is of height one if and only
if it is a distinguished class.

By the reduced graph of A, denoted by R(A), we mean the directed graph with
the classes of A as its vertices, such that (α, β) is an arc if and only if α �= β and
Aαβ �= 0.

An example is in order.

Example 2.1. Consider the following 7 × 7 nonnegative matrix

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 ∗
1 0 0 0 0 0 ∗
∗ 0 1/2 0 0 0 0
0 0 ∗ 1/3 0 0 0
0 0 0 0 1 0 0
0 ∗ 0 0 ∗ 1 0
0 0 0 0 0 0 2/5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where each ∗ specifies a positive entry. The digraph G(P ) and the reduced graph
R(P ) of P are given respectively by:
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As can be readily seen, we have the following:
Classes of P : {1, 2}, {3}, {4}, {5}, {6} and {7}.
Initial classes of P : {4} and {6}.
Final classes of P : {5} and {7}.
ρ(P ) = 1.
Basic classes of P : {1, 2}, {5} and {6}.
Distinguished classes of P : {3}, {4} and {6}.
Semi-distinguished but not distinguished classes of P : {1, 2} and {5}.

2.2. Basic Results

For any square complex matrix A and any complex number λ, we denote by
νλ(A) the least nonnegative integer k such that rank((λI − A)k) =rank((λI −
A)k+1). If λ is an eigenvalue of A, then νλ(A) is the index of λ as an eigenvalue
of A; otherwise, νλ(A) = 0.

In 1956, Schneider [100] gave the following earliest results that connect the
graph structure and the Jordan structure of a nonnegative matrix. The results as
stated there are given in terms of a singular M -matrix (i.e., an n × n real matrix
of the form ρ(P )In −P , where P is nonnegative), and graphs do not appear. Here
we reformulate them in terms of a nonnegative matrix.

Theorem 2.2. If P ≥ 0, then νρ(P )(P ) = 1 if and only if there are no chains
of two or more basic classes of P .

Theorem 2.3. If P ≥ 0, then the Jordan canonical form of P contains only
one block corresponding to ρ(P ) if and only if any two basic classes of P are
comparable with respect to the accessibility relation.

Motivated by the results and technique developed by Schneider [100], in 1963
Carlson [25] studied the solvability of the equationAx = b, x ≥ 0, whereA is a sin-
gular M -matrix and b is a given nonnegative vector. In 1973, Cooper [28] resumed
the study of the spectral properties of nonnegative matrices from the combinator-
ial viewpoint by considering the distinguished (i.e., nonnegative) eigenvectors of a
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nonnegative matrix. In 1975, Rothblum [93], and later Richman and Schneider [92]
independently, looked at the distinguished generalized eigenvectors of a nonnegative
matrix corresponding to its spectral radius. The following results were obtained.

We call a matrix (also, a vector) semipositive if it is nonzero, nonnegative.
A basis (for a linear subspace) which consists of semipositive vectors is called a
semipositive basis.

Theorem 2.4. Let P be an n × n nonnegative matrix with m basic classes
α1, . . . , αm.

(i) The Perron generalized eigenspace N ((ρ(P )In −P )n) contains a semipos-
itive basis {x(α1), . . . , x(αm)} such that x

(αi)
j > 0 if and only if j >= αi, where

x
(αi)
j denotes the jth component of the vector x(αi).
(ii) There exists a basis forN ((ρ(P )In−P )n) which, in addition to the property

described in (i), satisfies the following : For i = 1, . . . , m, we have

(P − ρ(P )In)x(αi) =
m∑

k=1

cikx
(αk),

where cik is positive if αk >−αi and equals 0 otherwise.

Part (i) of Theorem 2.4 is now usually referred to as the Nonnegative Basis
Theorem, and is due to Rothblum [93, Theorem 3.1, Part I]. Part (ii) of the same
theorem is called the Preferred Basis Theorem and first appears in Richman and
Schneider [92]. In [58], Hershkowtiz and Schneider also extended the result to
cover the case of a distinguished eigenvalue, i.e., an eigenvalue for which there is
a corresponding semipositive eigenvector.

We would like to mention that the Perron eigenspace N (ρ(P )In − P ) of a
nonnegative matrix P , however, need not have a semipositive basis (as was, mis-
takingly, stated in [67, p.196, lines 23–24 and p.197, lines 15–16]). Cooper [28]
proved that the dimension of the subspace spanned by the semipositive eigenvectors
of a nonnegative matrix P is equal to the number of distinguished basic classes of
P (cf. Theorem 2.7(iii), to be given later). He also showed that if the singular
graph of P is a rooted forest (or, in other words, if for any basic class β of P , the
collection {α : β >= α, α a basic class} forms a chain, then the Perron eigenspace
of P contains a semipositive basis. Later, Richman and Schneider [92, Corollary
5.8] (or, see Schneider [103, Corollary 8.6]) also generalized the latter result.

Theorem 2.5. (Rothblum Index Theorem). If P ≥ 0, then there exists a chain
α1 >−α2 >− · · · >−αν , where each αk is a basic class of P and ν = νρ(P )(P ),
but there is no such chain with longer length.
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Let us illustrate the preceding two theorems by the nonnegative matrix P con-
sidered in Example 2.1. In this case, associated with the basic class {1, 2}, we have
a generalized eigenvector of P corresponding to ρ(P ) with sign pattern of the form
(+, +, +, +, 0, +, 0)T . Also, {6} >−{1, 2} is a chain of basic classes of P with
maximum length. By the Rothblum Index Theorem, we have νρ(P )(P ) = 2.

Part (ii) of Theorem 2.4 readily yields the following:

Corollary 2.6. If P ≥ 0, then there exists a semipositive vector x such that
(A − ρ(A)In)νx = 0 and (A − ρ(A)In)ix is semipositive for i = 1, . . . , ν − 1,
where ν = νρ(P )(P ).

The chain of semipositive vectors

x, (P − ρ(P )In)x, . . . , (P − ρ(P )In)ν−1x

considered in Corollary 2.6 is now usually referred to as a semipositive Jordan chain
for P of ν vectors (corresponding to ρ(P )).

In 1985, Victory [141], in his study of the solvability of the equation (λI−P )x =
b, x ≥ 0, where P ≥ 0, λ > 0 and b ≥ 0 are given, introduced the concept of a
distinguished class, and gave a characterization of the distinguished eigenvalue and
the support structure of a corresponding distinguished eigenvector for a nonnegative
matrix. Here is his result, which is augmented by a third part.

Theorem 2.7 (Frobenius-Victory Theorem). Let P be an n × n nonnegative
matrix. Then :

(i) For any real number λ, λ is a distinguished eigenvalue of P (for R
n
+) if

and only if there exists a distinguished class α of P such that ρ(Pαα) = λ.
(ii) If α is a distinguished class of P, then there is a (up to multiples) unique

semipositive eigenvector xα = (ξ1, . . . , ξn)T corresponding to ρ(Pαα) with the
property that ξi > 0 if and only if i >= α.

(iii) For each distinguished eigenvalue λ of P, the cone N (λIn − P )
⋂

R
n
+ is

simplicial and its extreme vectors are precisely all the distinguished eigenvectors
of P of the form xα as given in (ii), where α is a distinguished class such that
ρ(Pαα) = λ.

If S ⊆ K, we denote by Φ(S) the face ofK generated by S, i.e., the intersection
of all faces of K including S. If x ∈ K , we write Φ({x}) simply as Φ(x);
it is known that Φ(x) = {y ∈ K : x ≥K αy for some α > 0}. A vector
x ∈ K is called an extreme vector if either x is the zero vector or x is nonzero and
Φ(x) = {λx : λ ≥ 0}; in the latter case, the face Φ(x) is called an extreme ray. A
proper cone K is said to be polyhedral if it has finitely many extreme rays. By a
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simplicial cone we mean a polyhedral cone whose number of extreme rays is equal
to the dimension of its linear span. A typical example of a simplicial cone is the
nonnegative orthant Rn

+.
Part (ii) of Theorem 2.7 first appeared in Schneider [99] and [100, Theorem

2] for the special case when α is a distinguished basic class. In a slightly weaker
form and for the special case when λ = ρ(P ), part (iii) of Theorem 2.7 can also
be found in Carlson [25, Theorem 2]. As noted by Schneider in [103, p.168], most
of Section II of Frobenius [48] is devoted to what may, with hindsight, be regarded
as a proof of Theorem 2.7. Thus, Theorem 2.7 is now usually referred to as the
Frobenius-Victory Theorem.

By part (i) of Theorem 2.7, the distinguished eigenvalues of the nonnegative
matrix P , considered in Example 2.1, are precisely 1/3, 1/2 and 1.

2.3. A Deep Result

The survey paper of Schneider [103] in 1986 stimulated a lot of research work,
and subsequently many papers on the subject were produced. Let us quote from the
Introductory section of the survey paper [57] by Hershkowtiz:

“The well-known Perron-Frobenius spectral theory of nonnegative matrices mo-
tivated an intensive study of the relationship between graph theoretic properties and
spectral properties of matrices. While for about 70 years research focused on non-
negative matrices, in the past fifteen years the study has been extended to general
matrices over an arbitrary field ...”

“... In his Ph.D. thesis Schneider discussed the combinatorial structure of the
generalized eigenspace associated with the eigenvalue ρ(A) of a reduible nonnega-
tive matrix A or, equivalently, the generalized nullspace of a singularM -matrix. He
observed that in two extreme cases, the height characteristic η(A) of an M -matrix
A, which describes the analytic structure of the generalized nullspace, is equal to
the level characteristic λ(A) of A, which is determined by the zero pattern of the
block triangular Frobenius normal form of A. The equality of the two sequences
does not hold for all M -matrices, and therefore Schneider asked what the relations
between the two sequences for general M -matrices are. He also asked what the
cases of equality are. These questions were answered about thirty six years later,
when a majorization relation between the two sequences was established, and thirty
five equivalent conditions were given to describe the equality case...”

Before we close this section, we would like to describe the “majorization rela-
tion” between the height and the level characteristic of an M -matrix, as mentioned
near the end of the above paragraph. This is a deep result in this area, obtained by
Hershkowtiz and Schneider [61] in 1991. Before we describe their result, we need
more definitions.



Spectral Theory of Positive Operators 223

LetA be an n×n nonnegative matrix. By the level characteristic of A associated
with ρ(A), denoted by λ(A), we mean the finite sequence (λ1, λ2, . . . ) of positive
integers, where for each j, λj denotes the number of basic classes of A of height
j. By the height characteristic (also known as Weyr characteristic) of A associated
with ρ(A), denoted by η(A), we mean the finite sequence (η1, . . . , ην) given by

ηk = dim N ((ρ(A)In − A)k) − dim N ((ρ(A)In − A)k−1)

for k = 1, . . . , ν, where ν = νρ(A)(A). Or, put it in another way, ηk is the number
of dots in the ith row of the Jordan diagram J(A) of A associated with ρ(A); the
Jordan diagram J(A) of A is the sequence of sizes of elementary Jordan blocks of
A that correspond to ρ(A) arranged as dots in columns of nonincreasing height from
left to right. From the second alternative definition, it is clear that the sequence
η(A) is nonincreasing. For the nonnegative matrix P considered in Example 2.1,
we have λ(A) = (1, 2) and η(A) = (2, 1).

We also need the usual concept of majorization. For any n-tuple of real numbers
x = (x1, . . . , xn), let x[1] ≥ x[2] ≥ · · · ≥ x[n] denote the components of x arranged
in nonincreasing order. If x, y ∈ Rn, we say that x is majorized by y (or y

majorizes x), denoted by x ≺ y, if

k∑
i=1

x[i] ≤
k∑

i=1

y[i], for k = 1, . . . , n − 1,

and
n∑

i=1

x[i] =
n∑

i=1

y[i].

Theorem 2.8 (Hershkowitz and Schneider). Given two sequences of positive
integers λ = (λ1, . . . , λp) and η = (η1, . . . , ηq), where η1 ≥ η2 ≥ · · · ≥ ηq, in
order that there exists a nonnegative matrix A such that λ(A) = λ and η(A) = η,
it is necessary and sufficient that p = q and λ ≺ η.

The above theorem of Hershkowitz and Schneider says, in particular, that for a
nonnegative matrix A, the sequences λ(A) and η(A) have the same length, which
is the Rothblum Index Theorem. If λ = (1, . . . , 1), then the only sequence η of
positive integers (with the same length) that can majorize λ is clearly λ itself. On
the other hand, if η = (1, . . . , 1) the only sequence λ of positive integers that η

majorizes is also η itself. Thus, Theorems 2.2 and 2.3 also follow from Theorem
2.8.

There are, indeed, many more deep results in this area. We refer the interested
reader to the excellent survey papers [56] and [57] by Hershkowitz.
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3. COLLATZ-WIELANDT SETS AND DISTINGUISHED EIGENVALUES

3.1. Collatz-Wielandt Sets (or Numbers)
In 1950, Wielandt [142] offered a new proof of the basic Perron-Frobenius the-

orem of an irreducible nonnegative matrix (i.e., part (i) of Theorem 1.2). For an
n × n irreducible nonnegative matrix P , he considered the function fP : � → R+

given by fP (x) = minxi �=0(Px)i/xi, where � is the set of all vectors in Rn
+ the

sum of whose components equals 1, and (Px)i denotes the ith component of Px.
He showed that the function fP always attains its maximum at a positive vector u,
and furthermore we have Pu = fP (u)u and fP (u) ≥ |λ| for any eigenvalue λ of
P . Wielandt’s proof is considerably shorter than the previously known proofs. It is
so appealing that most textbooks written since 1950, which have a chapter on non-
negative matrices, follow Wielandt’s approach. For a very interesting commentary
on Wielandt’s paper [142] (and its influences), see Schneider [104].

In order to extend Wielandt’s method to the case of a cone-preserving map
A, Barker and Schneider [8] introduced the following four sets, now known as
the Collatz-Wielandt sets associated with A, when the underlying space need not
be finite-dimensional. Then under certain existence assumptions, they obtained
theorems of Perron-Frobenius type when A is strongly irreducible (which is the
same as A being irreducible, in the finite-dimensional case).

Ω(A)= {ω ≥ 0 : ∃x ∈ K\{0}, Ax ≥K ωx}.
Ω1(A)= {ω ≥ 0 : ∃x ∈ int K, Ax ≥K ωx}.
Σ(A)= {σ ≥ 0 : ∃x ∈ K\{0}, AxK ≤ σx}.

Σ1(A)= {σ ≥ 0 : ∃x ∈ int K, AxK ≤ σx}.
Closely related to the Collatz-Wielandt sets are the lower and upper Collatz-Wielandt
numbers of a vector x (in K) with respect to A defined by

rA(x) = sup {ω ≥ 0 : Ax ≥K ωx},
RA(x) = inf {σ ≥ 0 : AxK ≤ σx},

where we write RA(x) = ∞ if no σ exists such that AxK≤ σx. It is ready to
see that, in the nonnegative matrix case, rA(·) is the same as the function fA(·)
mentioned above (with A = P ).

3.1.1. Bounds for Collatz-Wielandt Sets
In Tam and Wu [133], we consider the values of the suprema or infima of the

Collatz-Wielandt sets associated with a cone-preserving map. Some further works
are followed in Tam [121] and the intended future paper Tam and Schneider [132].
Below we give a summary of the results obtained. (We are still assuming that K is
a proper cone in Rn.)

Theorem 3.1. Let A ∈ π(K). Then :
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(i) sup Ω(A) = inf Σ1(A) = ρ(A).
(ii) inf Σ(A) is equal to the least distinguished eigenvalue of A for K.
(iii) sup Ω1(A) = inf Σ(AT ), and hence is equal to the least distinguished eigen-

value of AT for K∗.
(iv) We always have sup Ω(A) ∈ Ω(A) and inf Σ(A) ∈ Σ(A).
(v) When K is polyhedral, we have sup Ω1(A) ∈ Ω1(A). In general, we may

have sup Ω1(A) /∈ Ω1(A).
(vi) For a nonnegative matrix P, we have ρ(P ) ∈ Σ1(P ) if and only if every

basic class of P is final.
(vii) ρ(A) ∈ Σ1(A) if and only if K = Φ((N (ρ(A)I − A)

⋂
K)

⋃
C), where

C = {x ∈ K : ρx(A) < ρ(A)} and ρx(A) denotes the local spectral radius
of A at x.

Barker and Schneider [8] showed that for any A ∈ π(K), we always have
sup Ω(A) ≤ inf Σ1(A), and if in addition A is K-irreducible, then sup Ω(A) =
inf Σ1(A) = ρ(A) (and Ω(A) = Ω1(A), Σ(A) = Σ1(A)). Part (i) of Theorem 3.1
gives the complete result, as it appears in Tam and Wu [133, Theorem 3.1]. Parts
(ii), (iii), (iv) and (vi) of Theorem 3.1 can also be found in Tam and Wu [133,
Theorems 3.2, 3.3 and 4.7], whereas part (v) appears in Tam [121, Corollary 4.2
and Example 5.5]. Part (vii) is a new, deeper result, and will appear in Tam and
Schneider [132]. At present, we do not know the answer to the question of when
sup Ω1(A) belongs to Ω1(A) for a general proper cone K .

In the irreducible nonnegative matrix case, part (i) of Theorem 3.1 reduces to
the well-known max-min and min-max characterizations of ρ(A) due to Wielandt.
Schaefer [97] generalized the result to irreducible compact operators in Lp-spaces
and, more recently, Friedland [43, 44] also extended the characterizations in the
settings of a Banach space or a C∗-algebra. (Recall that Cn is a commutative C∗-
algebra under coordinatewise multiplication, with the nonnegative orthant Rn

+ as its
cone of positive self-adjoint elements.)

3.1.2. A Comparison of Spectral Radii

The following slightly improves an early result, due to Vandergraft, which com-
pares the spectral radii of two cone-preserving maps (see Vandergraft [136, Theorem
4.6], Rheinboldt and Vandergraft [91, Theorem 9] or Berman and Plemmons [17,
Corollary 1.3.29]). Since we cannot find the result in the literature, we take the
opportunity to include it here.

Let 0 π(K)≤ A π(K)≤ B, where B is K-irreducible and A �= B. Then ρ(A) <
ρ(B).
(In the literature, A is assumed to be K-irreducible instead.) For the nonnegative
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matrix case, the above assertion follows immediately from Wielandt’s lemma (see
Berman and Plemmons [17, Theorem 2.2.14]). The proof for the general case goes
as follows:

Choose an eigenvectorx ∈ K of A corresponding to ρ(A). Then 0 K≤ ρ(A)x =
Ax K≤ Bx, and so ρ(A) ∈ Ω(B). Hence we have ρ(A) ≤ sup Ω(B) = ρ(B).
If the desired strict inequality does not hold, we must have ρ(A) = ρ(B). Then
from the above, we have ρ(B)x K≤ Bx. Since B is K-irreducible, by a standard
Wielandt-type argument (making use of condition (c) of Theorem 1.5), it follows
that ρ(B)x = Bx, and hence necessarily x ∈ int K . Thus, (B − A)x = ρ(B)x −
ρ(A)x = 0. Together with B − A ∈ π(K) and x ∈ int K, this implies that
B − A = 0, which is a contradiction.

3.1.3. Local Spectral Radius and Collatz-Wielandt Numbers

In part (vii) of Theorem 3.1, we need the concept of the local spectral radius
of A at x for an n × n complex matrix A and a vector x ∈ C

n. It can be defined
as follows. If x is the zero vector, take ρx(A) to be 0. Otherwise, define ρx(A) in
one of the following equivalent ways (see Tam and Wu [133, Theorem 2.3]):

(i) ρx(A) = lim supm→∞ ‖Amx‖1/m, where ‖ · ‖ is any norm of Cn.
(ii) ρx(A) = ρ(A|Wx), where Wx is the cyclic space relative to A generated by

x, i.e., the linear subspace span {Aix : i ≥ 0}.
(iii) Write x uniquely as a sum of generalized eigenvectors of A, say, x =

x1 + · · · + xk , where m ≥ 1 and x1, . . . , xk are generalized eigenvectors corre-
sponding respectively to distinct eigenvalues λ1, . . . , λk. Then define ρx(A) to be
max1≤i≤k |λi|.

The lower and upper Collatz-Wielandt numbers are also related to the problem
of determining nested bounds for the spectral radius. In the nonnegative matrix
case, we have the well-known inequality

rP (x) ≤ ρ(P ) ≤ RP (x),

due to Collatz [27] under the assumption that x is a positive vector and due to
Wielandt [142] under the assumption that P is irreducible and x is semipositive.
(This explains why rA(x) and RA(x) are referred to as Collatz-Wielandt numbers.)
Extending the above result, in Tam and Wu [133, Theorem 2.4(i)] we obtain the
following

rA(x) ≤ ρx(A) ≤ RA(x),(3.1)

where A ∈ π(K) and x ∈ K. In [38], Förster and Nagy also establish relations
between the local spectral radius ρx(T ) and the upper and lower Collatz-Wielandt
numbers rT (x) and RT (x), for a nonnegative linear continuous operator T in a
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partially ordered Banach space E and a nonzero nonnegative vector x in E . For the
local spectral radius they adopt the “lim sup” definition. (We would like to add that
in the finite-dimensional case we may replace “lim sup” by “lim” in the definition
of local spectral radius. A proof of this can be found in an appendix to [132].)
They use the local resolvent function xT (·), given by xT (μ) =

∑∞
j=0 μ−j−1T jx

for |μ| > ρx(T ), as a basic tool. They note that the inequality rT (x) ≤ ρx(T )
always holds, but in general the inequality ρx(T ) ≤ RT (x) is invalid. However,
when the positive cone of E is normal, the latter inequality always holds.

3.1.4. Open Problems

Given A ∈ π(K) and 0 �= x ≥K 0, a natural question to ask is, when do
we have limi→∞ rA(Aix) = ρ(A) = limRA(Aix)? Friedland and Schneider [45,
Theorem 6.8] have completely answered this question for the nonnegative matrix
case. For a general proper cone K, in the special case when A is K-irreducible, the
question is solved by Tam and Wu [133, Theorem 5.2]. But when A is K-reducible,
the question remains unsettled. Of course, an even more general question to ask is
the following:

Given A ∈ π(K) and 0 �= x ∈ K, when do we have (i) limi→∞ rA(Aix) =
ρx(A), (ii) limi→∞ RA(Aix) = ρx(A), or (iii) limi→∞ rA(Aix) = ρx(A) =
limi→∞ RA(Aix)?
Some works on these problems have also been done in the setting of a nonnegative
linear continuous operator in a partially ordered Banach space. See Förster and
Nagy [37] and Marek [76].

3.2. Cone-solvability Theorems

The study of the Collatz-Wielandt sets also has connections with cone solvability
theorems (or theorems of the alternative over cones). For example, the question of
whether ω ∈ Ω1(A) is equivalent to (A − ωIn)(int K)

⋂
K �= ∅. This led us to

the discovery of the following new cone solvability theorem.

Theorem 3.2 (Tam [121, Theorem 3.1]). Let A be an m × n real matrix. Let
K1 be a closed full cone in R

n, and let K2 be a closed cone in R
m. The following

conditions are equivalent :
(a) A(int K1)

⋂
K2 �= ∅.

(b) cl AT (K∗
2)

⋂
(−K∗

1 ) = {0}.
(c) R

n = A−1K2 − K1, where A−1K2 = {x ∈ R
n : Ax ∈ K2}.

In condition (b) of the above theorem, we use K∗ to denote the dual cone of a
cone K given by: K∗ = {z : 〈z, y〉 ≥ 0 ∀y ∈ K}, where 〈 , 〉 is the usual inner
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product of the underlying euclidean space. It is well-known that if K is a proper
cone, then so is K∗ and furthermore we have K∗∗ = K .

In the ’70s, Berman and Ben-Israel have obtained theorems of the alternative
for the following two types of linear systems over cones (see, for instance, Berman
[15, Chapter 1, Section 4]):

(I) Ax ∈ K2, 0 �= x ∈ K1;
(II) Ax ∈ int K2, x ∈ int K1.

They showed, in particular, that we always have either (I) is consistent or the system
(II)′ , obtained from (II) by replacing A, K2 and K1 respectively by AT , K∗

1 and
−K∗

2 , is consistent, but not both. Note that (II) is also equivalent to the system:
Ax ∈ int K2, 0 �= x ∈ K1. With the addition of Theorem 3.2, the investigation
along this direction is now completed. For a recent theorem of the alternative for
cones similar to Theorem 3.2, see Cain, Hershkowitz and Schneider [24, Theorem
2.7].

3.3. Distinguished Eigenvalues

If A ∈ π(K) and x ∈ K is an eigenvector (respectively, generalized eigenvec-
tor) of A, then x is called a distinguished eigenvector (respectively, distinguished
generalized eigenvector) of A for K , and the corresponding eigenvalue is known
as a distinguished eigenvalue of A for K . When there is no danger of confu-
sion, we simply use the terms distinguished eigenvector, distinguished generalized
eigenvector and distinguished eigenvalue (of A).

Our results on the Collatz-Wielandt sets also help partly in proving the following
theorem (Tam [121, Theorem 5.1]), which provides equivalent conditions for the
existence of a distinguished generalized eigenvector of A that lies in int K . The
theorem extends a result in the earlier paper by Tam and Wu [133, Theorem 4.4]
on nonnegative matrices, which in turn combines several known results.

Theorem 3.3. Let A ∈ π(K). Consider the following conditions :
(a) ρ(A) is the only distinguished eigenvalue of A for K.
(b) x ≥K 0 and Ax K≤ ρ(A)x imply that Ax = ρ(A)x.
(c) AT has a generalized eigenvector (necessarily corresponding to ρ(A)) in int

K∗.
(d) ρ(A) ∈ Ω1(AT ).

Conditions (a), (b) and (c) are always equivalent and are implied by condition (d).
When K is polyhedral, condition (d) is also an equivalent condition.

In condition (d) of Theorem 3.3, when we talk about Ω1(AT ), we are treating
AT as an element of π(K∗) and using the basic simple fact that A ∈ π(K) if and
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only if AT ∈ π(K∗). The proof of this fact relies on the observation that A ∈ π(K)
if and only if 〈z, Ay〉 ≥ 0 for all y ∈ K and z ∈ K∗, which in turn depends on
the result that K∗∗ = K. Since a proof of the latter result usually invokes the use
of a standard separation theorem for convex sets, the basic simple fact mentioned
above is actually deeper than it looks.

We take this opportunity to offer the following more transparent argument for
the equivalence of conditions (a) and (c) of Theorem 3.3:

LetK1 be the coneR((ρ(A)In−A)n)
⋂

K , where we denote byR(B) the range
space of a matrix B. Observe that R((ρ(A)In−A)n) is equal to the intersection of
R

n with the direct sum of the generalized eigenspaces (in C
n) of A corresponding

to eigenvalues other than ρ(A). Clearly we have AK1 ⊆ K1. If K1 �= {0},
then by the Perron-Frobenius theory, A must have an eigenvector in K1, and hence
in K, corresponding to an eigenvalue other than ρ(A), i.e., condition (a) is not
satisfied. Conversely, if A has a distinguished eigenvalue other than ρ(A), then the
corresponding distinguished eigenvector must belong to K1, and hence K1 �= {0}.
This shows that condition (a) is equivalent to the condition thatK1 = {0}. Now the
latter condition says that the subspace R((ρ(A)In−A)n) meets K only at the zero
vector. So by a generalization of the Gordan-Stiemke theorem (see, for instance,
[11, Corollary 2.6]) the condition becomes:

N ((ρ(A)In − AT )n)
⋂

int K∗(= [R((ρ(A)In − A)n)]⊥
⋂

int K∗) �= ∅,

which is condition (c). This proves the equivalence of conditions (a) and (c).

For distinguished eigenvectors, we have the following corresponding result.

Theorem 3.4. Let A ∈ π(K). The following conditions are equivalent :
(a) ρ(A) is the only distinguished eigenvalue of A for K, and νρ(A)(A) = 1.

(b) For any vector x ∈ Rn, Ax K≤ ρ(A)x implies that Ax = ρ(A)x.
(c) AT has an eigenvector in int K∗ (corresponding to ρ(A)).

[Here we would like to point out that the implication (a)=⇒(c) of Theorem 3.4
follows immediately from Theorem 3.3, (a)=⇒(c), whereas the proof of (c)=⇒(b)
should be corrected as follows: Apply Corollary 3.2 (of Tam [121]) with K1 = K∗,
K2 = {0}, and A replaced by (A − ρ(A)In)T .]

3.4. A Cone-theoretic Proof for the Nonnegative Basis Theorem

In [121], we also give an interesting existential proof for the Nonnegative Basis
Theorem (Theorem 2.4(i)), using Theorem 3.3 and the Frobenius-Victory Theorem
(Theorem 2.7). We rewrite the proof below:
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The difficult part of the proof is to show that for any basic class α of the
nonnegative matrix P , we can find a nonnegative generalized eigenvector xα with
the property that the ith component of xα is positive if and only if the vertex i has
access to the basic class α. Let Q denote the principal submatrix of P with rows
and columns indexed by vertices of G(P ) that have access to α. Then the problem
is reduced to constructing a positive generalized eigenvector of Q (corresponding
to ρ(Q) which equals ρ(P )). By Theorem 3.3, it suffices to show that ρ(Q) is the
only distinguished eigenvalue of QT . But that is clear; sinceQT has only one initial
class which is also a basic class, namely α, by the Frobenius-Victory theorem, our
contention follows.

3.5. Extensions to the Polyhedral Cone Case

The idea of using algebraic, matrix-theoretic arguments to study positive opera-
tors on polyhedral cones first appeared in a paper by Burns, Fiedler and Haynsworth
[23]. In the paper they introduced the concept of a minimal generating matrix for a
polyhedral cone. Subsequently, many other authors also use matrix-theoretic meth-
ods to study the positive operators between polyhedral cones (see, for instance,
Fiedler and Pták [36], and Adin [1]).

Let K be a polyhedral cone in R
n. We call an n× m real matrix X a minimal

generating matrix for K if the columns of X form a set of distinct (up to multiples)
extreme vectors of K. Note that for any A ∈ π(K), there exists an m × m (not
necessarily unique) nonnegative matrix B such that AX = XB.

To extend known results on the Perron generalized eigenspace of a nonnegative
matrix to a matrix preserving a polyhedral cone, in [121] we also make use of
a minimal generating matrix as a tool. However, since we prefer to a geometric
approach, we are not employing matrix methods. We adopt the operator-theoretic
viewpoint, noting that the above equation AX = XB can be interpreted as an
equation between cone-preserving maps, with A ∈ π(K), B ∈ π(Rm

+), and X ∈
π(Rm

+ , K) (such that X(Rm
+) = K). The following interesting result (which is

stated in a form slightly less general than that in [121, Theorem 7.3]) is obtained:

Theorem 3.5. Let K1, K2 be proper cones in possibly different euclidean
spaces. Let A ∈ π(K1), B ∈ π(K2), and P ∈ π(K2, K1) be such thatAP = PB,
PK2 = K1, and N (P )

⋂
K2 = {0}. Then :

(i) Any representative matrices for A and BT |R(PT ) are similar.
(ii) ρ(A) = ρ(B) = ρ, say.
(iii) νρ(A) = νρ(B).
(iv) The set of distinguished eigenvalues of A for K1 is equal to the set of

distinguished eigenvalues of B for K2.
(v) For any distinguished eigenvalue λ of B for K2, P takes the generalized
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eigenspace of B corresponding to λ onto the generalized eigenspace of A corre-
sponding to λ.

We call a nonzero vector x ∈ K a K-semipositive vector. A basis of a subspace
which consists of K-semipositive vectors is called a K-semipositive basis.

Using Theorem 3.5 (with K1 = Rm
+ , K2 = K and P equal to a minimal

generating matrix for K), the Nonnegative Basis Theorem and Corollary 2.6, one
readily deduces the following result (Tam [121, Theorem 7.5]):

Theorem 3.6. Let A ∈ π(K), where K is a polyhedral cone. Then :
(i) The Perron generalized eigenspace N ((ρ(A)In − A)n) of A contains a

K-semipositive basis.
(ii) There exists a K-semipositive vector x such that (A− ρ(A)In)νx = 0 and

(A − ρ(A)In)ix is K-semipositive for i = 1, . . . , ν − 1, where ν = νρ(A)(A).

3.6. Semipositive Solutions of a Matrix Equation

In [54], Hartwig posed the following question:
Given nonnegative square matrices A, B (not necessarily of the same size),

when does the matrix equation AX = XB admit a semipositive solution X? If
solutions exist, what do they look like ?

In terms of the concept of a distinguished eigenvalue, this author [121, Theorem
8.1] offered the following answer to the first part of the above question:

Theorem 3.7. Let K1, K2 be proper cones in possibly different euclidean
spaces. Let A ∈ π(K1) and B ∈ π(K2). Then there exists a nonzero X ∈
π(K2, K1) such that AX = XB if and only if the set of distinguished eigenvalues
of A for K1 and the set of distinguished eigenvalues of BT for K∗

2 have a common
element.

4. THE CORE AND THE PERIPHERAL SPECTRUM

4.1. Motivation

Another object of interest in our study is the core of a cone-preserving map. If
A ∈ π(K), then by the core of A relative to K, denoted by coreK(A), we mean the
convex cone given by coreK(A) =

⋂∞
i=1 AiK . For the motivation of our study, let

us quote from Tam and Schneider [130, p.480]:
“There are plausible reasons which explain why a study of the core of a cone-

preserving map is worthwhile. First, in an initial study of the core of a nonnegative
matrix (relative to the nonnegative orthant) Pullman [Pul] succeeded in rederiving
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the famous Frobenius theorem for an irreducible nonnegative matrix. This theorem,
as we now know, is important to the treatment of nonnegative matrices by matrix-
theoretic methods. Second, Birkhoff [Bir] gave an elementary proof of the Perron-
Frobenius theorem for a cone-preserving map by considering the Jordan canonical
form of a matrix. His method was later modified by Vandergraft [Van] to obtain an
equivalent condition, now known as the Perron-Schaefer condition (which will be
given in Section 2), for a matrix to have an invariant proper cone. Their proofs start
by considering the limit of a convergent subsequence of (Aix/‖Aix‖)i∈N, where
A is the cone-preserving map under consideration and x is an appropriate nonzero
vector in the cone. But any such limit belongs to the core of A (relative to the
cone). So it seems likely that the core of A contains much information about its
spectral properties.”

4.2. The Perron-Shaefer Condition
A square (complex or real) matrix A is said to satisfy the Perron-Schaefer

condition if for any eigenvalue λ in the peripheral spectrum of A (i.e., λ ∈ σ(A)
such that |λ| = ρ(A)), we have νλ(A) ≤ νρ(A)(A). Then clearly ρ(A) is an
eigenvalue of A.

In the ’60s Schaefer proved that if T is a positive linear operator on an ordered
complex Banach space with a normal reproducing cone, then the spectral radius
ρ(T ) is an element of the spectrum of T , and if in addition ρ(T ) is a pole of
the resolvent, then it is of maximal order on the spectral circle of T (see Schaefer
[98, p. 311]). Restricted to the finite-dimensional case, Schaefer’s result means
that every cone-preserving map satisfies the Perron-Schaefer condition. In 1967,
Birkhoff [19] gave an elementary proof for the Perron-Frobenius theorem of a cone-
preserving map in the finite-dimensional case. His proof makes use of the Jordan
canonical form of a matrix. Later, by modifying Birkhoff’s argument, Vandergraft
[136] established the Perron-Schaefer condition for a cone-preserving map in the
finite-dimensional case. In the same paper, Vandergraft (and independently Elsner
[33]) also proved the striking converse result: If A is an n × n real matrix which
satisfies the Perron-Schaefer condition, then there exists a proper cone K in R

n

such that A ∈ π(K). (For more theorems of this type, which relate the spectral
properties and the geometric properties of a matrix, see Djoković [29], Elsner [33,
35], Schneider [102], Stern and Wolkowicz [113], and Vandergraft [136].)

4.3. Basic Properties of the Core
A penetrating study of the core of a cone-preserving map is made in Tam and

Schneider [130]. It is shown that there are close connections between the core, the
peripheral spectrum, the Perron Schaefer condition, and the distinguished invariant
faces of a cone-preserving map. The following is a basic result on the core of a
cone-preserving map:
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Theorem 4.1. If A ∈ π(K), then
(i) the set coreK(A) is a closed, pointed cone;
(ii) the restriction of A to span (coreK(A)) is an automorphism of coreK(A);
(iii) if K is polyhedral (respectively, simplicial), then so is coreK(A).

A matrix A is said to be an automorphism of K, denoted by A ∈ Aut(K), if
A is invertible, and A, A−1 both belong to π(K); or, equivalently, AK = K. (For
works on Aut(K) or subgroups of π(K), see Horne [64] and Tam [117, Theorem
3.3; 118, Section 3; 123, Lemma and Theorem].)

The “polyhedral” part of Theorem 4.1(iii) is due to Pullman [90]. His proof
depends on a compactness argument and invokes the use of a separation theorem
for convex sets. The “simplicial” part follows from a result in [130] together with
the Frobenius-Victory theorem, as we shall explain a bit later.

Given A ∈ π(K), it is obvious that every distinguished eigenvector of A (or, of
its positive powers) that corresponds to a nonzero distinguished eigenvalue belongs
to coreK(A). So, if we denote by Dk(A) the cone generated by the distinguished
eigenvectors of Ak corresponding to its nonzero distinguished eigenvalues, then⋃∞

i=1 Di(A) is included in coreK(A), and in fact it is equal to Dk(A) for some
positive integer k (see [130, Lemma 3.1]).

4.3.1. When the Core is Polyhedral

To obtain deeper results, we restrict our attention to the case when coreK(A) is
a polyhedral cone. By Theorem 4.1, this covers the case when K is a polyhedral
cone, and hence also the important nonnegative matrix case. It is easy to see that
coreK(A) is the zero cone if and only if A is nilpotent. Hereafter, we assume that
coreK(A) is a nonzero polyhedral cone. In this case, A permutes the extreme rays of
coreK(A). We denote by τA the induced permutation. By the order of τA we mean,
as usual, the smallest positive integer m such that τm

A is the identity permutation.
It is not difficult to show the following [130, Theorem 3.2]:

Remark 4.2. Let A ∈ π(K). Suppose that coreK(A) is a nonzero, polyhedral
cone. For each positive integer i, let Di(A) have the same meaning as before. Then:

(i) coreK(A) = Dj(A) for some positive integer j.
(ii) For each positive integer i, Di(A) = coreK(A) if and only if i is a multiple

of m, where m is the order of the induced permutation τA.

We can now obtain the “simplicial” part of Theorem 4.1(iii) as follows: By
Remark 4.2(i), coreK(A) = Di(A) for some positive integer i. By definition of
Di(A), we have

coreK(A) =
⊕

[N (λI − Ai)
⋂

K],
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where the direct sum is taken over all nonzero distinguished eigenvalues λ of Ai.
(We say a coneK is a direct sum of the conesK1, . . . , Kp and writeK = K1⊕· · ·⊕
Kp if each vector x inK can be expressed uniquely as x1+· · ·+xp, where xj ∈ Kj

for each j.) Since K is simplicial, it is linearly isomorphic with a nonnegative
orthant. By applying the Frobenius-Victory theorem to Ai (∈ π(K)), we infer that
for each nonzero distinguished eigenvalue λ of Ai, the cone N (λI − Ai)

⋂
K is

simplicial, hence so is the cone coreK(A).

According to [130, Corollary 3.4], when coreK(A) is polyhedral, it cannot
contain any generalized eigenvectors of A other than eigenvectors. In below we
restate the result in a slightly stronger form and indicate a modified proof.

Remark 4.3. Let A ∈ π(K). If coreK(A) = Di(A) for some positive integer i
(which is the case if coreK(A) is a nonzero polyhedral cone), then in span(coreK(A))
there is no generalized eigenvectors of A (or of any positive powers of A) other
than eigenvectors.

The reason is, in this case span(coreK(A)) has a basis consisted of eigenvectors
ofAi (corresponding to nonzero distinguished eigenvalues); that is, (A|span(coreK(A)))i

is diagonalizable, and hence so is A|span(coreK (A)) or any of its positive powers.

When coreK(A) is a nonzero polyhedral cone, we can write the induced permu-
tation τA as a product of disjoint cycles. As observed by Pullman [90], each cycle
of τA gives rise to a distinguished eigenvector of A. To see this, let σ be one such
cycle. By an abuse of language, we shall refer to the extreme rays of coreK(A)
which are not fixed by σ as the extreme rays in the cycle σ. Choose a nonzero
vector, say x, from one of the extreme rays in the cycle σ. Let d be the length (and
hence also the order) of σ. Since Ad maps the ray generated by x onto itself, we
have Adx = λdx for some positive number λ. Let v =

∑d−1
i=0 λ−iAiv. Then v is a

nonzero vector of K and a straightforward computation shows that Av = λv. It is
easy to check that (up to multiples) the vector v is independent of the choice of the
vector x from an extreme ray in σ. We shall call v the distinguished eigenvector of
A associated with the cycle σ for the eigenvalue λ.

4.4. Distinguished A-invariant Faces

Let A ∈ π(K). We call a nonzero face F of K a distinguishedA-invariant face
(for the eigenvalue ρF ) if F is A-invariant (i.e., AF ⊆ F ), and for any nonzero A-
invariant face G properly included in F , we have ρG < ρF , where we denote by ρF

the spectral radius of the restriction map A|span F . The concept of a distinguished
A-invariant face is a natural analog of the concept of a distinguished class for a
nonnegative matrix. Note that if F is a distinguished A-invariant face, then the
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eigenvector of A in F corresponding to ρF is (up to multiples) unique and must lie
in the relative interior of F . The following is a main result in the earlier part of
[130].

Theorem 4.4. Let A ∈ π(K). Suppose that coreK(A) is nonzero and simplicial.
Let τA denote the permutation induced by A on the set of extreme rays of coreK(A).
For any cycle σ of τA, let Fσ denote the face of K generated by the distinguished
eigenvector of A associated with σ. Then
(i) the association σ �→ Fσ gives a one-to-one correspondence between the set of
cycles of τA and the set of distinguished A-invariant faces of K for nonzero
distinguished eigenvalues;

(ii) eigenvalues in the peripheral spectrum of A|span Fσ are simple, and are pre-
cisely ρFσ times all the dσ th roots of unity, where dσ is the length of σ.

It is clear that if A ∈ π(K) isK-irreducible, then there is only one distinguished
A-invariant face of K, namely, K itself. So, if A is an irreducible nonnegative
matrix, then by Theorem 4.4, the induced permutation τA is itself a cycle, and the
eigenvalues in the peripheral spectrum of A are simple, and are precisely ρ(A) times
all the hth roots of unity, where h is the length of τA as a cycle. Thus, we recover
part of Theorem 1.2(ii) and part of the following geometric equivalent condition for
irreducibility of a nonnegative matrix, as obtained by Pullman [90]:

An n × n nonnegative matrix P is irreducible if and only if P has no zero
columns, the induced permutation τP is itself a cycle, say, with length d, and Rn

can be written as a direct sum of d coordinate subspaces each containing exactly
one extreme ray of coreRn

+
(P ) in its positive orthant.

The proof of Theorem 4.4 (i) depends on the existence of a one-to-one corre-
spondence between the set of distinguished A-invariant faces of coreK(A) and the
set of distinguished A-invariant faces of K for nonzero distinguished eigenvalues,
assuming only that coreK(A) is a nonzero cone (see [130, Theorem 3.13]); whereas
the proof of Theorem 4.4 (ii) relies on part (iv) of the following result [130, Theorem
3.9]:

Theorem 4.5. Let A ∈ π(K) with ρ(A) > 0 and νρ(A)(A) = 1. Let
M (respectively, N ) denote the intersection of R

n with the direct sum of all
eigenspaces (respectively, generalized eigenspaces) of A corresponding to eigen-
values with modulus ρ(A) (respectively, with modulus less than ρ(A)). Denote by
P the projection of Rn onto M along N . Then we have :

(i) There exists a subsequence of ((A/ρ(A))k)k∈N which converges to P ; hence
P ∈ π(K).

(ii) M = span(M
⋂

K).
(iii) M

⋂
K ⊆ coreK(A).
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(iv) The peripheral spectrum of A and that of the restriction of A to
span(coreK(A)) are the same, counting algebraic multiplicities.

4.5. The Core of a Nonnegative Matrix

By the support of a vector x = (ξ1, . . . , ξn)T , denoted by supp(x), we mean
the set {i ∈ 〈n〉 : ξi �= 0}. If α is a class of an n × n nonnegative matrix P , we
denote by Fα the set of all vectors in R

n
+ whose supports are included in the union

of all classes having access to α. It is readily checked that Fα is a P -invariant face
of R

n
+. Making use of the Frobenius-Victory theorem, it is not difficult to show the

following [130, Lemma 4.1]:

Remark 4.6. Let P be an n × n nonnilpotent nonnegative matrix. Then
the association α �→ Fα gives a one-to-one correspondence between the set of
distinguished classes of P and the set of distinguished P -invariant faces of R

n
+,

both for nonzero distinguished eigenvalues.

Below is a complete description of the core of a nonnegative matrix, as given
in [130, Theorems 4.2 and 4.7].

By the index of imprimitivity of an irreducible nonnegative matrix we mean the
cardinality of its peripheral spectrum.

Theorem 4.7. Let P be an n × n nonnegative matrix with positive spectral
radius. For each distinguished class α of P, denote by hα the index of imprimitivity
of the irreducible submatrix Pαα, and also by xα the extremal distinguished eigen-
vector of P associated with the class α as given in part (ii) of the Frobenius-Victory
theorem. Then we have the following :

(i) For each cycle σ of the induced permutation τP we associate with it the
distingushed class α of P with the property that xα is the distinguished eigenvector
of P associated with the cycle σ. Then this association is a one-to-one correspon-
dence between the set of cycles of τP and the set of distinguished classes of P for
nonzero distinguished eigenvalues. Furthermore, if σ is a cycle of τP and α is the
corresponding distinguished class, then the length of the cycle σ is equal to hα.

(ii) coreRn
+
(P ) is a simplicial cone with

∑
hα extreme rays, where the sum-

mation is taken over all distinguished classes α of P for nonzero distinguished
eigenvalues.

(iii) Each distinguished class α of P for a nonzero distinguished eigenvalue
gives rise to hα distinct (up to multiples) extreme vectors of coreRn

+
(P ), which are

precisely the extremal distinguished eigenvectors of Phα associated with the hα

noncomparable distinguished classes of Phα into which the class α of P splits.

In part (iii) of Theorem 4.7, we are using certain facts that relate the classes of a
nonnegative matrix to those of its positive powers. More specifically, if α is a class



Spectral Theory of Positive Operators 237

of a nonnegative matrix P such that the index of imprimitivity of the corresponding
submatrix Pαα is hα, then for any positive integer q, the class α of P splits into
dα noncomparable classes of P q, where dα is the greatest common divisor of q and
hα. Furthermore, if α is a distinguished class of P , then the classes of P q into
which α splits are also all distinguished. The proof depends on the well-known
fact that if P is an irreducible nonnegative matrix, then each of its positive powers
is permutationally similar to a direct sum (possibly with only one summand) of
irreducible matrices each having the same spectral radius. The usual proof for the
latter fact is matrix computational. However, in [130, Lemma 4.5 and Corollary
4.6] we give conceptual proofs, that involve an interesting interplay between the
geometric idea of the core and the combinatorial idea of classes.

4.6. An Application

In [130], we studied the core of a cone-preserving map, out of our interest in its
spectral properties. Actually, the results we obtained on the core of a nonnegative
matrix can also provide a quick way to rederive many known results on the limiting
behaviour of Markov chains (see, for instance, Pullman [89], Chi [26], and Sierksma
[109]). We illustrate this by considering the question treated in [109]. Let us quote
the first paragraph of the Introduction of the paper:

“The following question was our motivation of looking at the limiting process
of discrete-time Markov chains. Let V0 be n points in the Euclidean space Rd

(n, d ≥ 1). Consider n convex combinations of these n vertices. Let V1 be the set
of points when these n convex combinations are successively applied on V0. Clearly,
V1 ⊆ conv(V0). Applying the same convex combinations again on V1 leads to the set
of points V2 with V2 ⊆ conv(V1) ⊆ conv(V0), etc. Define V∞ =

⋂∞
i=1 conv(Vi),

called a limiting polytope. It is well-known, see, e.g., Pullman [1965], that V∞ is
in fact a polytope. Questions that may arise are: What is the ‘limit’ V∞? When is
V∞ precisely one point? What are the extreme points of V∞?”

To tackle the above problem, we first reformulate it in terms of matrices. Let
P be a d × n real matrix whose column vectors constitute the set V0, and let A

be the n × n column stochastic matrix whose n column vectors correspond to the
n covex combinations under consideration. (Since we represent points in Rd by
column vectors, we work with a column stochastic matrix, instead of a stochastic
matrix as in [109].) Then the set V1 consists of the column vectors of the matrix
PA, and for each i = 1, 2, . . . , conv(Vi) is simply the convex hull of the column
vectors of the matrix PAi. Let � denote the standard simplex of Rn. It is obvious
that

⋂∞
i=0 Ai� = coreR

n
+
(A)

⋂�. But coreRn
+
(A) is a simplicial cone (as A is a

nonnegative matrix) and the affine hull of � does not contain the origin, it follows
that

⋂∞
i=0 Ai� is a simplex. Let S denote a matrix with column vectors formed

by the extreme points of this simplex. We contend that the set V∞ is equal to
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PS(�), the convex hull of the column vectors of the matrix PS. To see this, first
choose any vector y from the latter set. Then y can be written as PSx for some
probability vector x. Now Sx ∈ ⋂∞

i=0 Ai�, so for each nonnegative integer i, we
have Sx = Aiu for some probability vector u, and hence PSx = PAiu ∈ conv(Vi).
This shows that y ∈ V∞. Conversely, if y ∈ V∞, then for each nonnegative integer
i, there exists a probability vector ui such that y = PAiui. Since (Aiui)i∈N is a
bounded sequence of vectors in Rn, it has a convergent subsequencewith a limit, say
v. Then y = Pv, and v ∈ ⋂∞

i=0 Ai� (see [130, Remark 3.10]). By definition of S,
we have v = Su for some probability vector u. Hence, y = PSu ∈ PS(�). This
proves our contention. Since the core of a nonnegative matrix is already completely
determined (see Theorem 4.7), we can readily determine the simplex

⋂∞
i=1 Ai�,

and then the matrix S, and hence the set V∞. We leave to the reader to supply the
details and to compare our approach with that given by Sierksma [109].

4.7. Characterizations in Terms of the Core

4.7.1. A Characterization of K-irreducibility

In [130, Theorem 5.7], we prove that if A ∈ π(K) satisfies the (obvious nec-
essary) conditions N (A)

⋂
K = {0} and coreK(A)

⋂
int K �= ∅, then in order

that A be K-irreducible it is necessary and sufficient that the restriction of A to
span(coreK(A)) is irreducible with respect to coreK(A). We also show that, in case
coreK(A) is simplicial, we may replace the latter condition simply by “the induced
permutation τA is itself a cycle”. (See [130, Corollary 5.8].) Then in the paper
it is explained how we can recover the geometric condition for irreducibility of a
nonnegative matrix, as obtained by Pullman [90, Theorem 6.1].

4.7.2. An Interesting Useful Result

In [131, Theorem 5.10], we give a list of equivalent conditions for a non-
nilpotent A ∈ π(K) to have spectral radius with index one. In addition, when K
is polyhedral, a further equivalent condition is that, A is an automorphism of the
cone M

⋂
K when restricted to its linear span, where M denotes the intersection

of Rn with the direct sum of all generalized eigenspaces of A corresponding to
eigenvalues in its peripheral spectrum. One direction of the proof depends on the
following result [130, Theorem 5.9], which has interest of its own:

Theorem 4.8. Let A be an n × n real matrix. The following conditions are
equivalent :

(a) A is nonzero, diagonalizable, all eigenvalues of A are of the same modulus
and ρ(A) is an eigenvalue of A.

(b) There exists a proper coneK such that A ∈ π(K) and A has an eigenvector
in int K.
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(c) There exists a proper cone K such that A ∈ π(K), and for any such cone
K, we have, A ∈ Aut(K).

(d) There exists a proper cone K such that A ∈ π(K), and for any such cone
K, we have A ∈ Aut(K) and A has an eigenvector in int K.

(e) There exists a proper cone K such that A takes a complete compact cross-
section of K onto itself.

The proof of Theorem 4.8 as given in [130] depends on a number of previous
results. To give the reader a feeling of the type of arguments involved, let us indicate
a new direct proof for the implication (a)=⇒(d):

Clearly when condition (a) is fulfilled, A satisfies the Perron-Schaefer condition.
So there exists a proper cone K such that A ∈ π(K). For any such coneK , we now
apply Theorem 4.5. Note that in this case the peripheral spectrum and the spectrum
of A coincide; so the subspaceM in Theorem 4.5 is simplyR

n (= spanK). By part
(iii) of Theorem 4.5, it follows that K = coreK(A); in other words, A ∈ Aut(K).
By condition (a), it is also clear that ρ(A) is the only distinguished eigenvalue of
A for K, and νρ(A)(A) = 1. So, by Theorem 3.4, AT has an eigenvector in int
K∗. It is not difficult to show that A ∈ Aut(K) if and only if AT ∈ Aut(K∗).
Hence, we have AT ∈ Aut(K∗) and AT has an eigenvector in int K∗. By another
nontrivial result (see [130, Lemma 5.6]), the latter condition is equivalent to that
A ∈ Aut(K) and A has an eigenvector in int K . Thus, condition (d) follows.

4.8. More About the Core

When coreK(A) need not be polyhedral, the best description about the elements
of coreK(A), as given in [130], is the following:

Theorem 4.9. Let A ∈ π(K). For each nonzero distinguished eigenvalue λ of
A, denote by Wλ the intersection of Rn with the direct sum of all eigenspaces of
A corresponding to eigenvalues with moduli equal to λ. For each positive integer
k, let Dk(A) be the cone generated by the distinguished eigenvectors of Ak cor-
responding to its nonzero distinguished eigenvalues for K. Then

⋃∞
i=1 Di(A) ⊆⊕

(Wλ
⋂

K) ⊆ coreK(A), where the direct sum is taken over all nonzero distin-
guished eigenvalues λ of A. When coreK(A) is polyhedral, the inclusions become
equalities.

4.8.1. The Core of a K-irreducible Matrix

We would like to take this opportunity to add the following new result:

Theorem 4.10. Let A ∈ π(K) be nonnilpotent. If ρ(A) is the only distinguished
eigenvalue of A for K and νρ(A) = 1 (which is the case if A is K-irreducible),
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then coreK(A) is precisely the convex cone W
⋂

K, where W is the intersection
of R

n with the direct sum of all eigenspaces of A corresponding to eigenvalues in
the peripheral spectrum of A.

Proof. Since ρ(A) is the only distinguished eigenvalue of A and νρ(A)(A) = 1,
by Theorem 3.4, AT has an eigenvector in int K∗ corresponding to ρ(A), say w.
Normalizing A, we may assume that ρ(A) = 1. Let C denote the set {y ∈ K :
〈w, y〉 = 1}. Then C is a complete cross-section of A, which is compact convex and
is invariant under A. Choose an eigenvector u of A corresponding to ρ(A) that lies
in C. Then C−u is a compact convex body of (span {w})⊥, which is also invariant
underA. By Theorem 4.5 (iii), we haveW

⋂
K ⊆ coreK(A), and as a consequence

we also have (W
⋂

C)−u ⊆ ⋂∞
i=0 Ai(C−u). Now (span {w})⊥ is the direct sum

of two A-invariant subspaces, namely,W
⋂

(span {w})⊥ and the intersection of R
n

with the direct sum of all generalized eigenspaces of A corresponding to eigenvalues
with moduli less than 1 (= ρ(A)). Since the kth power of the restriction of A to
the latter subspace tends to the zero operator as k tends to infinity, it is not difficult
to show that

⋂∞
i=0 Ai(C − u) ⊆ W

⋂
(C − u) (= (W

⋂
C) − u), from which it

follows that
⋂∞

i=1 AiC = W
⋂

C, and hence coreK(A) = W
⋂

K.

By Theorem 4.10, if A ∈ π(K) satisfies the hypothesis of the theorem, then
we must have span(coreK(A))

⋂
K = coreK(A). Note that the latter property is

not shared by the core of a cone-preserving map in general, not even for a general

nonnegative matrix A. As a simple example, consider A =
[

2 0
1 1

]
. We have

core
R2

+
(A) = pos

{(1
1

)
,

(0
1

)} �= R2
+ = span core

R2
+
(A)

⋂
R2

+.

4.8.2. A Characterization of K-primitivity

If A is K-primitive, then A is K-irreducible and ρ(A) is a simple eigenvalue of
A, which is also the only eigenvalue in the peripheral spectrum of A; so by Theorem
4.10, coreK(A) is a single ray (which is generated by a vector in int K, namely the
Perron vector of A). Conversely, if coreK(A) is a single ray generated by a vector
in int K and if, in addition, A satisfies the condition N (A)

⋂
K = {0}, then by

the characterization of K-irreducibility of A in terms of coreK(A) (see Subsection
4.7.1), A is K-irreducible. Then by Theorem 4.10 again, the fact that coreK(A) is
a single ray implies that ρ(A) is the only eigenvalue in the periperal spectrum of
A, and hence A is K-primitive.

In the above, we have provided another way to recover the characterization of
K-primitivity of A in terms of coreK(A) as given in [130, Theorem 5.6].
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4.8.3. Special Linear Subspaces

According to Theorem 4.10, if A is K-irreducible, then coreK(A) must be of
the form W

⋂
K for some linear subspace W that meets the interior of K. In

below we characterize all possible candidates for such W . Our proof also suggests
a method to construct examples of K-irreducible matrices.

Theorem 4.11. LetK be a proper cone in Rn. For any nonzero linear subspace
W of R

n, the following conditions are equivalent :
(a) There exists a K-irreducible matrix A such that W is equal to the intersec-

tion of Rn with the direct sum of all eigenspaces of A corresponding to
eigenvalues that lie in the peripheral spectrum of A.

(b) There exists a K-irreducible matrix A such that coreK(A) = W
⋂

K .
(c) W satisfies all of the following :

(i) W
⋂

int K �= ∅;
(ii) there exists an idempotent matrix P ∈ π(K) such that R(P ) = W and

N (P )
⋂

K = {0};
(iii) Aut(W

⋂
K) contains an operator which is irreducible with respect to

W
⋂

K.

Proof. The equivalence of conditions (a) and (b) follows from Theorem 4.10.

Suppose that conditions (a) and (b) both hold, and let A be a K-irreducible
matrix with the properties as described in (a) and (b). Since W contains the Per-
ron vector of A, which lies in int K , clearly we have W

⋂
int K �= ∅, which

is condition (c)(i). Note that the latter condition implies that span coreK(A) =
span(W

⋂
K) = W . Let P denote the projection of Rn onto W along the inter-

section of Rn with the direct sum of all generalized eigenspaces of A corresponding
to eigenvalues with moduli less than ρ(A). Since νρ(A)(A) = 1 (as A is K-
irreducible), by Theorem 4.5 we have P ∈ π(K). Moreover, N (P )

⋂
K cannot

be a nonzero cone; otherwise, since N (P ) is an A-invariant subspace, by applying
the Perron-Frobenius theorem to A|N (P )

⋂
K ∈ π(N (P )

⋂
K), we infer that A has

a distinguished eigenvalue other than ρ(A), which is a contradiction. So we have
condition (c)(ii). Since A is K-irreducible, A|span(coreK (A)) is also irreducible with
respect to coreK(A) (= W

⋂
K). But A|span(coreK (A)) is also an automorphism of

coreK(A), hence condition (c)(iii) follows. This shows that (a) implies (c).
Suppose that condition (c) holds. Choose any Q ∈ Aut(W

⋂
K) which is

irreducible with respect to W
⋂

K, and let A be the operator P followed by Q.
Then it is clear that A ∈ π(K) and coreK(A) = W

⋂
K . Furthermore, we have

N (A)
⋂

K = N (P )
⋂

K = {0}, coreK(A)
⋂

int K �= ∅ (as W
⋂

int K �= ∅),
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and A|span(coreK(A)) = Q is irreducible with respect to coreK(A). So A is K-
irreducible. This establishes the implication (c)=⇒ (b), thus completing the
proof.

Remark 4.12. According to Gritzmann, Klee and Tam [52, Theorem 5.5],
when n ≥ 3, for “almost all” proper conesK in R

n (in the sense of Baire category),
Aut(K) consists of scalar matrices only. So, in general, condition (c)(iii) of Theorem
4.11 is hard to satisfy.

We call a proper cone K self-dual if K = K∗.

Corollary 4.13. For any linear subspace W of Rn, the following conditions
are equivalent :

(a) There exists an n×n irreducible nonnegative matrixA such that coreRn
+
(A) =

W
⋂

Rn
+.

(b) W
⋂

int R
n
+ �= ∅ and W

⋂
R

n
+ is a simplicial self-dual cone.

(c) W
⋂

int Rn
+ �= ∅ and PW ∈ π(Rn

+), where PW denotes the orthogonal
projection of R

n onto W .

Proof. (a)=⇒(b): By Theorem 4.11, we haveW
⋂

int R
n
+ �= ∅, and there exists

a nonnegative idempotent matrix P such that R(P ) = W and N (P )
⋂

Rn
+ = {0}.

As a nonnegative idempotent matrix, P is expressible as x1y
T
1 + · · ·+ xry

T
r , where

the xi’s and yi’s are nonnegative vectors of Rn that satisfy yT
i xj = δij for all i, j,

where δij denotes the Kronecker delta symbol (see Tam [117, Corollary 4.7]). It is
ready to see that we have W

⋂
Rn

+ = R(P )
⋂

Rn
+ = P (Rn

+) = pos{x1, . . . , xr},
and x1, . . . , xr are the distinct extreme vectors of this cone. But W satisfies
span(W

⋂
Rn

+) = W and is the range space of the nonnegative idempotent ma-
trix P . By Tam [117, Corollary 4.6] it follows that pos{x1, . . . , xr} is a simplicial
cone. Note that if the supports of the vectors x1, . . . , xr are not pairwise disjoint,
say k ∈ supp(x1)

⋂
supp(x2), then in view of the assumptions yT

i xj = δij for
all i, j, the kth components of the vectors y1, . . . , yr must all be zero; but then
the kth standard unit vector ek of Rn will be a semipositive vector that belongs
to N (P ), which contradicts our assumption on P . Hence, the vectors x1, . . . , xr

have disjoint supports and so they are mutually orthogonal. But x1, . . . , xr are the
extreme vectors of the simplicial cone W

⋂
R

n
+, so the cone must be self-dual.

(b)=⇒(c): Let x1, . . . , xr be the distinct extreme vectors of the simplicial self-
dual cone W

⋂
R

n
+. After normalizing the vectors, we may assume that xT

j xi = δij

for all i, j. Then x1x
T
1 +· · ·+xrx

T
r is a nonnegative, symmetric, idempotent matrix

withR(P ) = span {x1, . . . , xr} = W . Hence, we have PW = x1x
T
1 +· · ·+xrx

T
r ∈

π(Rn
+).
(c)=⇒(a): It suffices to show that conditions (c)(i)–(iii) of Theorem 4.11 are all

satisfied. We already have (c)(i). Since W
⋂

int R
n
+ �= {0}, W⊥ cannot contain a
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semipositive vector; so we have N (PW )
⋂

Rn
+ = {0} and hence condition (c)(ii).

SinceW is the range space of the nonnegative idempotent matrix PW , by Tam [117,
Corollary 4.6], W

⋂
Rn

+ is a simplicial cone. But then condition (c)(iii) is trivially
satisfied.

In the proof of Corollary 4.13, (a)=⇒(b), we could have deduced the pairwise
disjointness between the supports of the vectors x1, . . . , xr by invoking Pullman’s
geometric condition that R

n is a direct sum of the r coordinate subspaces each
containing one of the vectors x1, . . . , xr in its positive orthant. That we can do
otherwise means that our above sequence of results (Theorems 4.10, 4.11, and
Corollary 4.13, together with other supporting results) provide yet another way to
arrive at Pullman’s geometric condition.

4.9. The Core and the Peripheral Spectrum

In view of the results we have obtained, given A ∈ π(K), it is natural to ask
the question of when coreK(A) is polyhedral, and when it is simplicial. In general,
these problems seem intractable. Even for the question of when coreK(A) is a single
ray, there is no complete satisfactory answer (see [130, Section 5]). The point is,
a matrix can leave invariant two different proper cones such that the cores of the
matrix relative to these cones are quite different. As a simple example, take A to
be the 2 × 2 matrix diag(2,1). Then A ∈ π(R2

+) and coreR2
+
(A) = R

2
+. On the

other hand, if we take K = pos {e1, e1 + e2}, where e1, e2 denote the standard
unit vectors of R

2, then we also have A ∈ π(K), but in this case coreK(A) is the
single ray generated by the vector e1.

In order to obtain further fruitful results, we modify our problems as follow:
Given an n × n real matrix A that satisfies the Perron-Schaefer condition,

find an equivalent condition on A so that there exists a proper cone K such that
A ∈ π(K) and coreK(A) is polyhedral, a single ray, or simplicial.

Below are the answers to the above problems, as given in Section 7 of [130].
As the reader will see, the answers are all given in terms of the peripheral spectrum
of the matrix under consideration.

Theorem 4.14. Let A be an n×n real matrix. Then there exists a proper cone
K such that A ∈ π(K) and coreK(A) is polyhedral if and only if A satisfies the
Perron-Schaefer condition, and every eigenvalue in the peripheral spectrum of A

with the same index as that of ρ(A) is equal to ρ(A) times a root of unity.

Theorem 4.15. Let A be an n×n matrix. Then there exists a polyhedral cone
K such that A ∈ π(K) if and only if A satisfies the Perron-Schaefer condition,
and every eigenvalue in the peripheral spectrum of A is equal to ρ(A) times a root
of unity.
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Theorem 4.16. Let A be an n × n real matrix. Then there exists a proper
cone K such that A ∈ π(K) and coreK(A) is a single ray if and only if ρ(A) > 0,
and the Jordan form of A has exactly one block of maximal order corresponding
to ρ(A), and the index of ρ(A) is greater than that of every other eigenvalue in the
peripheral spectrum of A.

We would like to mention that the problem of determining an invariant polyhe-
dral cone (with certain specific properties) of a given matrix arises in the study of
nonnegative realization problems (the discrete or continuous version). We refer our
reader to Förster and Nagy [40, 41], and van den Hof [135] for the details.

For convenience, to answer the question of when there exists a proper cone K
such that A ∈ π(K) and coreK(A) is a nonzero simplicial cone, we normalize the
given matrix A and assume that ρ(A) = 1.

Theorem 4.17. Let A ∈ Mn(R) with ρ(A) = 1 that satisfies the Perron-
Schaefer condition. Let S denote the multi-set of eigenvalues in the peripheral
spectrum of A with maximal index (i.e., ν1(A)), the multiplicity of each element
being equal to the number of corresponding blocks in the Jordan form of A of
order ν1(A). Let T be the multi-set of eigenvalues in the peripheral spectrum of
A for which there are corresponding blocks in the Jordan form of A of order less
than ν1(A), the multiplicity of each element being equal to the number of such
corresponding blocks. Also let Zm denote the set {e2πti/m : t = 0, . . . , m − 1}.
Then there exists a proper cone K such that A ∈ π(K) and coreK(A) is simplicial
if and only if there exists a multi-set T̃ of T such that S

⋃
T̃ is the multi-subset

union of certain Z ′
ms.

To illustrate the condition given in Theorem 4.17, consider the 24×24 real matrix
A with Jordan form J3(1) ⊕ J2(1) ⊕ J1(1) ⊕ J3(−1) ⊕ J3(−1) ⊕ J3(e2πi/3) ⊕
J3(e4πi/3) ⊕ J2(−1) ⊕ J2(eπiθ) ⊕ J2(e−πiθ), where θ is irrational. Then S =
{1,−1,−1, e2πi/3, e4πi/3} and T = {1, 1,−1, eπiθ, e−πiθ}. Take T̃ = {1, 1}.
Then S

⋃
T̃ = Z2

⋃
Z2

⋃
Z3; i.e., the condition of Theorem 4.17 is satisfied.

To prove the “only if” parts of Theorems 4.14–4.17, we need the following
result about the peripheral spectrum of a linear mapping preserving a polyhedral
cone:

Remark 4.18. If A ∈ π(K), whereK is a polyhedral cone, then each eigenvalue
in the peripheral spectrum of A is equal to ρ(A) times a root of unity.

The result first appeared in Barker and Turner [13, Theorem 2]. But their proof
is invalid, as pointed out by this author in [121]. Let us see why.
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In the paper, the result is already established for a K-irreducible matrix A. To
complete the proof by a limiting argument (as suggested by these authors), we need
to show that if λ is any eigenvalue in the peripheral spectrum of a K-reducible
matrix A, different from ρ(A), then given any ε > 0, we can always find a K-
irreducible matrix Bε, together with an eigenvalue μ in the peripheral spectrum of
Bε, such that |λ − μ| < ε. But given the general nature of K, A and λ, and our
present rather inadequate knowledge of the elements of π(K), the construction of
the desired Bε and μ is beyond our capability. In the paper, it is suggested that
Bε can be chosen to be A plus a small positive multiple of a rank-one K-positive
matrix. But then the matrix Bε is also K-positive and cannot serve our purpose,
since the peripheral spectrum of a K-positive matrix contains only one element,
namely, its spectral radius. In fact, even we now know that λ equals ρ(A) times a
root of unity, we still cannot see any way to construct the desired Bε and μ.

A correct proof of Remark 4.18 was given in [121, Theorem 7.6]; it depends
on the concept of a minimal generating matrix for a polyhedral cone, together with
a couple of other results (in particular, Theorem 3.5 of this paper).

Now back to the proof of the “only if” parts of Theorems 4.14–4.17. We
consider only the “only if” part of Theorem 4.14. Let us denote by S the set
{λ ∈ σ(A) : |λ| = ρ(A), νλ(A) = νρ(A)(A)}. It suffices to show that S ⊆
σ(A|span(coreK(A))), as A|span(coreK (A)) ∈ π(coreK(A)), ρ(A|span(coreK(A))) =
ρ(A), and coreK(A) is polyhedral. Let M =

⊕
λ[(λIn − A)ν−1N ((λIn − A)ν)],

where ν = νρ(A)(A) and the direct sum is taken over all eigenvalues λ ∈ S. It is
clear that M is an A-invariant subspace and σ(A|M) = S. Hence, it reduces to
proving the following result [130, Theorem 7.1], which is an extension of Theorem
4.5, (i)–(iii).

Theorem 4.19. Let A ∈ π(K) with ρ(A) > 0. Denote νρ(A)(A) by ν. For any
eigenvalue λ of A and any nonnegative integer r, let E

(r)
λ denote the component

of A given by E
(r)
λ = (A − λI)rE

(0)
λ , where E

(0)
λ is the projection of C

n onto the
generalized eigenspace of A corresponding to λ along the direct sum of generalized
eigenspaces of A corresponding to eigenva Then we have the following :

(i) There is a subsequence of ((ν − 1)!Ak/[ρ(A)k−ν+1kν−1])k∈N which con-
verges to

∑
λ E

(ν−1)
λ , where the summation runs through all eigenvalues λ in the pe-

ripheral spectrum of A with the same index as that of ρ(A). Hence (
∑

λ E
(ν−1)
λ )|Rn

∈ π(K).
(ii) LetM denote the intersection of Rn with

⊕
λ[(λIn−A)ν−1N ((λIn−A)ν)],

where λ runs through the same set of eigenvalues as that described in the sum
appearing in part (i). Then M = span(M

⋂
K) and M

⋂
K ⊆ coreK(A).

To prove the “if” parts of Theorems 4.14–4.17, we need to construct the invariant
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proper cone K with the desired properties. The constructions are fairly long and
technical. We omit the details.

4.10. The Nonnegative Inverse Elementary Divisor Problem

Before we end this section, we would like to mention that Theorem 4.17, a
climax of the paper [131], also sheds light on the Nonnegative Inverse Elementary
Divisor Problem. Recall first the famous Nonnegative Inverse Eigenvalue Problem:

Determine a necessary and sufficient condition for a complex n-tuple to be the
spectrum of an n × n nonnegative matrix.
The latter problem has aroused a lot of research activities and a major breakthrough
was made in 1991 by Boyle and Handelman [20] using symbolic dynamics: they
settled completely the question of when an n-tuple of nonzero complex numbers is
the nonzero part of the spectrum of a primitive matrix, and hence also the question
of when a given n-tuple can be the nonzero part of the spectrum of a nonnegative
matrix. On the other hand, only some initial work has been done on the more difficult
Nonnegative Inverse Elementary Divisors Problem of determining a necessary and
sufficient condition for a complex matrix to be similar to a nonnegative matrix. (For
more information, see Berman and Plemmons [17, Chapter 4, Section 2 and Chapter
11, Section 2] and Minc [79, Chapter VII].) Since the core of a nonnegative matrix
(relative to the corresponding nonnegative orthant) is always simplicial, Theorem
4.17 has the following unexpected, highly nontrivial consequence:

If A is an n×n nonnilpotent nonnegative matrix normalized so that ρ(A) = 1,

then the Jordan blocks of A corresponding to eigenvalues that lie in its peripheral
spectrum must satisfy the condition given in Theorem 4.17.

It would be interesting to find a direct proof of the above result, one that does
not involve the concept of the core.

Recently, with B.G. Zaslavsky, this author also treated the related Inverse Ele-
mentary Divisor Problem for an eventually nonnegative matrix. In terms of the new
concept of a Frobenius collection of Jordan blocks, we characterize the collection of
Jordan blocks that appear in the Jordan form of an irreducible m-cyclic eventually
nonnegative matrix whose mth power is permutationally similar to a direct sum of
m eventually positive matrices. For the details, see Zaslavsky and Tam [144].

5. THE INVARIANT FACES

5.1. Motivation

The A-invariant faces of the cone K are the focus of interest in Tam and
Schneider [131]. The motivation is clear: as shown in the preceding paper [130],
the set coreK(A) does not capture all the important information about the spectral
properties of A. In particular, if coreK(A) is a polyhedral cone, then it does not
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contain any distinguished generalized eigenvectors of A other than eigenvectors (see
our Remark 4.3). This means that the index of the spectral radius of A cannot be
determined from a knowledge of its core. On the other hand, in the nonnegative
matrix case, by the Rothblum Index Theorem, the index of the spectral radius can
be described in terms of its classes. Also, the work of [130] shows that there is
a close connection between the distinguished classes of a nonnegative matrix and
its distinguished invariant faces. This suggests that a study of the invariant faces
associated with a cone-preserving map may be worthwhile.

5.2. Invariant Faces of a Nonnegative Matrix

For a proper cone K, we use F (K) to denote the set of all faces of K. Under
inclusion as the partial ordering, F (K) forms a lattice with meet and join given
by: F ∧ G = F

⋂
G and F ∨ G = Φ(F

⋃
G). If A ∈ π(K), then the set of all

A-invariant faces of K, which we denote by FA, forms a sublattice of F (K).
The paper [131] begins by examining the nonnegative matrix setting thoroughly

in order to see clearly the ideas for treating deeper spectral questions for matrices
leaving invariant a proper cone in Rn.

It is well-known that each face of R
n
+ is of the form

FI = {x ∈ R
n
+ : supp(x) ⊆ I},

where I ⊆ 〈n〉, and supp(x) is the support of x. Indeed, the association I → FI

gives an isomorphism between the lattice 2〈n〉 of all subsets of 〈n〉 and the face
lattice F (Rn

+) of R
n
+, both under inclusion as the partial ordering. It turns out that

if P is an n×n nonnegative matrix, then the P -invariant faces of R
n
+ are all of the

form FI , where I is an initial subset for P . Here we call a subset I of 〈n〉 an initial
subset for P if either I is empty, or I is nonempty and PI′I = 0, where I ′ = 〈n〉\I
and PI′I denotes the submatrix of P with rows indexed by I ′ and columns indexed
by I ; or equivalently, for every j ∈ 〈n〉, I contains j whenever j has access to I .
It is not difficult to see that a nonempty subset I of 〈n〉 is an initial subset for P if
and only if I is the union of an initial collection of classes of P , where a nonempty
collection of classes of P is said to be initial if whenever it contains a class α, it
also contains all classes having access to α. If K is a nonempty collection of classes
of P , we call a class α ∈ K final in K if it has no access to other classes of K. An
initial subset I for P is said to be determined by a class α of P if it is the union
of all classes of P having access to α (or, in other words, α is the only class final
in the initial collection corresponding to I).

Let A ∈ π(K). We call an A-invariant face F of K A-invariant join-reducible
if F is join-reducible in the lattice FA in the usual lattice-theoretic sense; or, in
other words, F is the join of two A-invariant faces of K that are properly included
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in F . An A-invariant face which is not A-invariant join-reducible is said to be
A-invariant join-irreducible.

The following characterizations [131, Theorems 3.1 and 3.6] of various types of
P -invariant faces associated with a nonnegative matrix P motivate the subsequent
work in [131]:

Theorem 5.1. Let P be an n× n nonnegative matrix. Denote by I the lattice
of all initial subsets for P and by FP the lattice of all P -invariant faces of R

n
+.

Then the association I −→ FI induces an isomorphism from the lattice I onto the
lattice FP . Furthermore, for any initial subset I for P, we have

(i) FI is a minimal nonzero P -invariant face if and only if I is an initial class
of P .

(ii) FI is a nonzero P -invariant join-irreducible face if and only if I is an initial
subset determined by a single class.

(iii) FI is a P -invariant face which contains in its relative interior a generalized
eigenvector (respectively, an eigenvector) of P corresponding to λ if and only if
I is a nonempty initial subset such that each class final in the initial collection of
classes corresponding to I is a semi-distinguished (respectively, distinguished)
class associated with λ.

(iv) FI is a P -invariant join-irreducible face which contains in its relative in-
terior a generalized eigenvector (respectively, an eigenvector) of P correspond-
ing to λ if and only if I is an initial subset determined by a semi-distinguished
(respectively, distinguished ) class associated with λ.

Suggested by Theorem 5.1 (iv), we call a face F of K a semi-distinguished
A-invariant face (associated with λ) if F is an A-invariant join-irreducible face
which contains in its relative interior a generalized eigenvector of A (correspond-
ing to λ). According to an earlier result of [131, Theorem 4.11], F is a distin-
guished A-invariant face of K if and only if F is an A-invariant join-irreducible
face which contains in its relative interior an eigenvector of A. Thus, in the one-to-
one correspondence I → FI between I and FP , an initial subset determined by a
distinguished (respectively, semi-distinguished) class corresponds to a distinguished
(respectively, semi-distinguished) A-invariant face. (The term “semi-distinguished
class” and the important concept of semi-distinguished A-invariant faces are both
introduced in [131].)

In the course of establishingTheorem 5.1, cone-theoretic proofs for the Frobenius-
Victory theorem and an extension of the Nonnegative Basis Theorem (to the case
of a distinguished eigenvalue, due to Hershkowitz and Schneider) are also provided
(see [131, Theorems 3.3 and 3.4]).
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5.3. An Extension of the Rothblum Index Theorem

The following extension of the Rothblum Index Theorem to the case of a linear
mapping preserving a polyhedral cone is obtained in [131, Theorem 5.1]:

Theorem 5.2. Let K be a polyhedral cone, and let A ∈ π(K). Let λ be
a distinguished eigenvalue of A for K . Denote by mλ the maximal order of
distinguished generalized eigenvectors of A corresponding to λ. Then there is a
chain F1 ⊂ F2 ⊂ · · · ⊂ Fmλ

of mλ distinct semi-distinguished A-invariant faces
of K associated with λ, but there is no such chain with more than mλ members.

When K is a nonpolyhedral cone, the maximum cardinality of a chain of semi-
distinguished A-invariant faces of K associated with a distinguished eigenvalue λ
can be less than, equal to, or greater than mλ, where mλ has the same meaning as
before (see [131, Examples 5.3–5.5]).

In order to give the reader the flavor of cone-theoretic methods, we are going
to describe in some detail the fairly long proof of Theorem 5.2. (The same kind of
arguments, but with much more elaboration, is used in the later parts of the paper to
derive other results.) As can be readily seen, the proof should consist of two parts:
to show the existence of the desired chain, and to establish the maximality of the
chain. In the course of the proof, we introduce as a machinery the concept of the
spectral pair of a face relative to a cone-preserving map. For the purpose, we begin
with the concept of the spectral pair of a vector relative to a complex square matrix
first.

5.3.1. The Spectral Pair

If A is an n × n complex matrix and x is a nonzero vector of C
n, we can

write x = x1 + · · · + xm, where x1, . . . , xm are generalized eigenvectors of A

corresponding respectively to the distinct eigenvalues λ1, . . . , λm. As mentioned
before, one way to define ρx(A), the local spectral radius of A at x, is to set
ρx(A) = max1≤i≤m |λi|. Now we also set ordA(x) = max{ordA(xi) : |λi| =
ρx(A)}, where ordA(xi) denotes the order of the generalized eigenvector xi, i.e., the
least positive integer k such that (λiIn−A)kxi = 0. We refer to ordA(x) as the order
of x relative to A; clearly, it extends the usual concept of the order of a generalized
eigenvector to an arbitrary vector. Now, also set spA(x) = (ρx(A), ordA(x)) and
call it the spectral pair of x relative to A. (For the zero vector, set spA(0) = (0, 0).)
The following important observation is made in [131, Lemma 4.3]:

Remark 5.3. Let A ∈ π(K). For any x ∈ int K, we have

spA(x) = (ρ(A), νρ(A)(A)).
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Note that, according to Remark 5.3, we have ρx(A) = ρ(A) for any x ∈ int K .
This clearly extends the known fact that if x is an eigenvector or a generalized
eigenvector of A that lies in int K, then necessarily x corresponds to the eigenvalue
ρ(A). The proof of the remark depends on the Perron-Schaefer condition for a
cone-preserving map together with the following known result (see Schneider [102,
Theorem 5.2]):

Theorem 5.4. Let A ∈ π(K). Let E
(0)
ρ denote the projection of Cn onto

the generalized eigenspace of A corresponding to ρ(A) along the direct sum of
other generalized eigenspaces of A. For each positive integer k, let E

(k)
ρ denote

the component of A given by E
(k)
ρ = (A − ρ(A)In)kE

(0)
ρ . Then the restriction of

E
(ν−1)
ρ to R

n, where ν = νρ(A)(A), belongs to π(K), and rank(E(ν−1)
ρ ) is equal

to the number of maximal Jordan blocks of A corresponding to ρ(A).

To show Remark 5.3, consider any x ∈ int K. According to Theorem 5.4,
E

(ν−1)
ρ x belongs to K and must be a nonzero vector; otherwise, E

(ν−1)
ρ equals

the zero operator, which is a contradiction. By the definition of E
(ν−1)
ρ , it follows

that in the representation of x as a sum of generalized eigenvectors of A, there
must be a term which is a generalized eigenvector of A corresponding to ρ(A) of
order ν. On the other hand, by the Perron-Schaefer condition for A, ν cannot be
less than the order of any generalized eigenvector that appears in the representation
and corresponds to an eigenvalue with modulus ρ(A). Thus, we have spA(x) =
(ρ(A), ν).

If F is an A-invariant face of K, by applying Remark 5.3 to A|span F , we see
that spA(x) is independent of the choice of x from the relative interior of F . In
fact, the same remark also holds for any face F of K; the proof depends on the
basic fact [131, Lemma 2.1] that for any x ∈ K, Φ((In + A)n−1x) is the smallest
A-invariant face of K containing x. So, for any face F of K , we use spA(F ) to
denote spA(x), where x is any vector chosen from relint F , and refer to it as the
spectral pair of F relative to A. (Here a relevant basic fact is that, for any face F
of K and any vector x ∈ K, we have F = Φ(x) if and only if x ∈ relint F .)

Note that the spectral pair of a face is not an extension of an existing concept
for nonnegative matrices. However, it has proved to be a useful concept. This
probably is due to the fact that its definition implicitly involves the Perron-Schaefer
condition, a characterizing property for a cone-preserving map.

5.3.2. The Local Perron-Schaefer Condition

Now we make a digression and take note of the following useful observation
[131, Theorem 4.7], which we exploit much in our future paper [132]:
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Remark 5.5. If A ∈ π(K), then for any 0 �= x ∈ K, the following condition
is always satisfied:

There is a generalized eigenvector y of A corresponding to ρx(A) that appears
as a term in the representation of x as a sum of generalized eigenvectors of A.
Furthermore, we have ordA(x) =ordA(y).

The condition mentioned in Remark 5.5 is now called the local Perron-Schaefer
condition at x. This author has proved the following interesting result, which will
appear in another future paper Tam [128]:

Theorem 5.6. Let A be an n × n real matrix, and let x be a given nonzero
vector of Rn. The following conditions are equivalent :

(a) A satisfies the local Perron-Schaefer condition at x.
(b) A|Wx satisfies the Perron-Schaefer condition.
(c) The convex cone cl(pos {Aix : i = 0, 1, . . .}) is pointed.
(d) There is a closed, pointed convex cone C containing x such that AC ⊆ C.

Making use of Theorem 5.6, this author [128] also gives an elementary alterna-
tive proof for the following intrinsic Perron-Frobenius theorem, which was derived
by Schneider [102, Theorem 1.4] (in its complex version) by an analytic argument:

Corollary 5.7. Let A be an n × n real matrix. Then A satisfies the Perron-
Schaefer condition if and only if for any (or, for some) nonnegative integer k, the
cone cl(pos {Ai : i = k, k + 1, . . .}) is pointed.

5.3.3. Proof of Theorem 5.2

Now back to the proof of Theorem 5.2. After introducing the concepts of
spectral pairs of a vector and of a face, we can derive the following useful properties
involving them [131, Theorem 4.9]. In below we use � to denote the lexicographic
ordering between ordered pairs of real numbers, i.e., (a, b) � (c, d) if either a < c, or
a = c and b ≤ d. In case (a, b) � (c, d) but (a, b) �= (c, d), we write (a, b) ≺ (c, d).

Theorem 5.8. Let A ∈ π(K).
(i) For any faces F, G of K, we have

(a) spA(F ) = spA(F̂ ), where F̂ is the smallest A-invariant face of K
including F ;

(b) if F ⊆ G, then spA(F ) � spA(G);

(c) spA(F ∨ G) = max{spA(F ), spA(G)}, where the maximum is taken
with respect to the lexicographic ordering.

(ii) For any vectors x, y ∈ K, we have
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(a) spA(x) = spA((In + A)n−1x);

(b) if x ∈ Φ(y), then spA(x) � spA(y);

(c) spA(x+y) = max{spA(x), spA(y)}, where the maximum is taken with
respect to the lexicographic ordering.

As the reader may now easily guess, to construct the desired chain of semi-
distinguished A-invariant faces associated with λ, we require the ith face Fi in the
chain has the property that spA(Fi) = (λ, i). Of course, if F is a face that contains
in its relative interior a generalized eigenvector of A of order i corresponding to λ,
then F satisfies this property.

To begin the construction, take a distinguished generalized eigenvector x of A
corresponding to λ of ordermλ; this exists by the definition ofmλ. If the face Φ(x)
is not A-invariant, replace x by (In + A)n−1x. Then Φ(x) is an A-invariant face
which contains in its relative interior a generalized eigenvector of A corresponding to
λ of ordermλ. Choose Fmλ

to be an A-invariant face of K minimal with respect to
the property that Fmλ

contains in its relative interior a generalized eigenvector of A
corresponding to λ of ordermλ. (Such Fmλ

must exist, because our underlying space
is finite-dimensional.) Then clearly we have spA(Fmλ

) = (λ, mλ). Furthermore,
the face Fmλ

must be A-invariant join-irreducible, and hence is semi-distinguished
A-invariant. If not, we can find A-invariant faces G1, G2 properly included in Fmλ

such that Fmλ
= G1 ∨ G2. By Theorem 5.8(i)(c), spA(Fmλ

) is equal to spA(G1)
or spA(G2), say spA(G1). Then ρG1 = λ and νρG1

(A|span G1) = mλ. As a face
of the polyhedral cone K, G1 is itself a polyhedral cone. So we can find in G1

a generalized eigenvector of A corresponding to λ of order mλ (see Theorem 3.6
(ii)). Then by repeating the above argument, we obtain an A-invariant face of G1

that contains in its relative interior a generalized eigenvector of A corresponding to
λ of order mλ, in contradiction with the minimality property of Fmλ

.
Next, by the polyhedrality of Fmλ

and Theorem 3.6 (ii) again, we can find in
Fmλ

a generalized eigenvector of A corresponding to λ of order mλ −1. Then take
Fmλ−1 to be an A-invariant face of Fmλ

minimal with respect to the property that
it contains in its relative interior a generalized eigenvector of A corresponding to
λ of order mλ − 1, and repeat the argument. Continuing in this way, after a finite
number of steps, we can eventually construct the desired chain of semi-distinguished
A-invariant faces.

5.3.4. A Crucial Lemma

To complete the proof of Theorem 5.2, it remains to establish the maximality of
the length of our chain. Since the faces of a polyhedral cone are still polyhedral, it
suffices to establish the following [131, Lemma 5.2]:
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Lemma 5.9. Let K be a polyhedral cone, and let A ∈ π(K). If K is a semi-
distinguishedA-invariant face of itself, then spA(K) � spA(F ) for any A-invariant
face F properly included in K.

To prove the above lemma, first note that by the definition of a semi-distinguished
A-invariant face, A has a generalized eigenvector lying in int K. So by Theorem
3.3, ρ(A) is the only distinguished eigenvalue of AT for K∗. We contend that
(up to multiples)AT has only one distinguished eigenvector corresponding to ρ(A).
Suppose otherwise. Choose two distinct (up to multiples) extreme vectors z1, z2

of the cone N (ρ(A)In − AT )
⋂

K∗. If Φ(z1)
⋂

Φ(z2) �= {0}, then by the Perron-
Frobenius theorem, this nonzeroAT -invariant face ofK∗ will contain an eigenvector
w of AT . But since ρ(A) is the only distinguished eigenvalue of AT , w must cor-
respond to the eigenvalue ρ(A). This contradicts the extremality assumption on
z1 and z2. So Φ(z1) ∧ Φ(z2) = {0}. Let dK denote the duality operator of K,
i.e., the mapping from the face lattice F (K) to the face lattice F (K∗) given by:
dK(F ) = (span F )⊥

⋂
K∗. Using the basic properties of the duality operator (see,

for instance, Tam [119]), we have

K = dK∗({0}) = dK∗(Φ(z1) ∧ Φ(z2)) = dK∗(Φ(z1)) ∨ dK∗(Φ(z2)),

where the last equality depends on the fact that K , and hence K∗, is polyhedral.
Hence, K is the join of the proper A-invariant faces dK∗(Φ(z1)) and dK∗(Φ(z2)),
which violates the A-invariant join-irreducibility of K. This establishes our con-
tention.

By the last part of Theorem 5.4, a consequence of our contention is that AT

has precisely one Jordan block of maximal order corresponding to ρ(A), and, fur-
thermore, the unique distinguished eigenvector of AT , say w, must correspond to
this unique maximal block, in the sense that w = (AT − ρ(A)In)ν−1z for some
generalized eigenvector z of AT of order ν, where ν = νρ(A)(A). Then we have

(span {w})⊥ =
⊕

λ∈σ(A)\{ρ(A)}
N ((λI − A)n) ⊕ U,

where U is the space of generalized eigenvectors of A corresponding to ρ(A) of
order less than or equal to ν − 1, together with the zero vector.

Let F be any A-invariant face properly included in K. Then dK(F ) is an
AT -invariant face of K∗, and by the Perron-Frobenius theorem it must contain an
eigenvector of AT , which necessarily equals w, the only distinguished eigenvector
of AT . So we must have span F ⊆ (span{w})⊥. In view of the above direct
decomposition for (span {w})⊥, we readily see that spA(F ) ≺ spA(K). This
completes the proof of Lemma 5.9, and hence also that of Theorem 5.2.
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5.3.5. A Class of A-invariant Faces

As a consequence of the basic properties of spectral pairs, we also obtain in
the following a class of A-invariant faces of K which extends and refines in the
finite-dimensional case the class of invariant ideals discovered by Meyer-Nieberg
for a positive linear operator defined on a Banach lattice (see Meyer-Nieberg [78,
pp. 293]).

Corollary 5.10. [131, Corollary 4.10]. Let A ∈ π(K). For any nonnegative
real number λ and any positive integer k, the set

Fλ,k = {x ∈ K : spA(x) � (λ, k)}

is an A-invariant face ofK. Furthermore, for any nonnegative real numbers λ1, λ2,

and positive integers k1, k2, if (λ1, k1) � (λ2, k2), then Fλ1,k1 ⊆ Fλ2,k2 .

5.4. Semi-distinguished A-invariant Faces

One may propose to define a semi-distinguishedA-invariant face by the follow-
ing property:

F is nonzero A-invariant, and spA(G) ≺ spA(F ) for any A-invariant face G
properly included in F .
It is not difficult to show that when A is a nonnegative matrix, a face F of the
nonnegative orthant is semi-distinguished A-invariant if and only if it has the pre-
ceding property. But the same is not true for a general cone-preserving map A.
Nevertheless, in [131, Theorem 6.6] we identify an interesting class of proper cones
whose semi-distinguished invariant faces are characterized by the above property.

Theorem 5.11. (i) Let K be a proper cone with the property that the dual cone
of each of its faces is a facially exposed cone, and let A ∈ π(K). Then for any
nonzero A-invariant face F of K, F is semi-distinguished A-invariant if and only
if spA(G) ≺ spA(F ) for all A-invariant faces G properly included in F .

(ii) A proper cone K has the property given in the hypothesis of part (i), if it
fulfills one of the following :

(a) K∗ is a facially exposed cone, and all nontrivial faces of K are polyhe-
dral (which is the case if K is polyhedral, or is a strictly convex smooth
cone).

(b) K is a perfect cone.
(c) K equals P (n) for some nonnegative integer n.

We call a proper cone K facially exposed if each of its faces is exposed (i.e., is
of the form dK∗(G) for some face G of K∗; or, equivalently, each of its nontrivial
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faces equals the intersection of K with a supporting hyperplane). A proper cone
K is said to be perfect if each of its faces is self-dual in its own linear span. The
term was suggested by Raphael Loewy and first appeared in Barker [6]. (See also
Barker and Tam [10, Theorems 3.3 and 4.7] for equivalent conditions.) Examples
of perfect cones include, the nonnegative orthant Rn

+, the n-dimensional ice-cream
cone Kn := {(ξ1, . . . , ξn)T : ξ1 ≥ (ξ2

2 + · · · + ξ2
n)1/2}, and the cone of n × n

positive semi-definite hermitian (or real symmetric) matrices. Perhaps, the more
interesting fact is that, the positive cone A+ of a finite-dimensional C∗-algebra A

can always be regarded as a perfect cone in the real space of hermitian elements
of A. This is because, as is well-known, every finite-dimensional C∗-algebra is
∗-isomorphic withMk1(C)⊕ · · ·⊕Mkp(C) for some positive integers k1, . . . , kp.

For each nonnegative integer n, we use P (n) to denote the cone of all real
polynomials of degree not exceeding n that are nonnegative on the closed interval
[0, 1] (see Barker and Thompson [12]).

In Section 6 of [131], further properties of invariant faces associated with a
linear mapping A preserving a polyhedral cone K are also given. Here are some of
them:

(a) AnyA-invariant face ofK which contains in its relative interior a generalized
eigenvector of A corresponding to λ can be expressed as a join of semi-distinguished
A-invariant faces associated with λ.

(b) For each nonzero A-invariant face F of K, there exists a semi-distinguished
A-invariant face G ⊆ F such that spA(G) = spA(F ).

(c) For each nonzero A-invariant face F of K , there exists in F a generalized
eigenvector of A corresponding to ρF of order νρF

(A|span F ).
In fact, in that paper, the logical relations between the above conditions and other
conditions are examined in the setting when A preserves a general proper cone K
(see [131, Theorems 6.4 and 6.7]).

The paper [131] contains a lot more results. Two theorems extending respec-
tively Theorems 2.2 and 2.3 (two early results on the combinatorial spectral theory
of a nonnegative matrix) are obtained in Section 7, and cleverly devised counterex-
amples for various natural questions are also given in Section 8. We refer the
interested reader to the paper for the details.

5.5. Open Problems

At the end of [131], the following two open questions are posed:

Question 5.12. Let K be a proper cone whose dual cone K∗ is a facially
exposed cone. Is it true that for any A ∈ π(K), we have the following ?

(i) For any nonzero A-invariant face F of K, F is semi-distinguished A-
invariant if and only if spA(G) ≺ spA(F ) for all A-invariant faces G properly
included in F .
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(ii) There exists in K a generalized eigenvector of A corresponding to ρ(A) of
order νρ(A)(A).

(iii) For any A-invariant face F which contains in its relative interior a gen-
eralized eigenvector of A, there exists a semi-distinguished A-invariant face G
included in F such that spA(G) = spA(F ).

Question 5.13. Let K be a proper cone with the property that the dual cone of
each of its faces is a facially exposed cone. Is it true that, for any A ∈ π(K) and
any distinguished eigenvalue λ of A, any A-invariant face of K which contains
in its relative interior a generalized eigenvector of A corresponding to λ can be
expressed as a join of semi-distinguished A-invariant faces associated with λ ?

6. FURTHER RESULTS AND REMARKS

6.1. Matrices Preserving a Polyhedral Cone: Another Look

A useful way to derive results on a linear mapping preserving a polyhedral
cone from known results on a nonnegative matrix is to use the “minimal generating
matrix” as a tool. In Subsection 3.5 we have demonstrated how the method can
be used to show the existence of a K-semipositive basis and also that of a K-
semipositive Jordan chain of maximum length for the Perron generalized eigenspace
of a linear mapping preserving a polyhedral cone. The key point is that, if A

preserves a polyhedral cone K with an n×m minimal generating matrix P , then P
intertwines some m × m nonnegative matrix B with A (i.e., PB = AP ), and the
spectral properties of the cone-preserving maps A (∈ π(K)) and B (∈ π(Rm

+ )) are
closely related, as given by Theorem 3.5. Of course, the method is not all powerful;
because, the nonnegative matrix B is in general not unique, the spectrum of A is
usually properly included in that of B, and in the hypotheses of Theorem 3.5 the
definition of P as a minimal generating matrix for K (for instance, the fact that P
cannot contain in its nullspace a vector which has one component positive and the
remaining components nonpositive) is not fully taken into account. Indeed, we have
attempted to use the method to give another proof of Theorem 5.2 (an extension of
the Rothblum Index Theorem to the polyhedral cone case), but in vain, because of
technical difficulties. (The point is, the mapping P is not one-to-one; it does not
give a nice correspondence between the semi-distinguished A-invariant faces of K

and the semi-distinguished B-invariant faces of R
m
+ .) Nevertheless, in the process

of our investigation, we found the following interesting results as supplements to
Theorem 3.5.
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6.1.1. The Minimal Generating Matrix Approach: Further Results

Theorem 6.1. Let K1, K2 be proper cones in R
n and R

m respectively. Let
A ∈ π(K1), B ∈ π(K2), and P ∈ π(K2, K1) be such that AP = PB, PK2 =
K1, and N (P )

⋂
K2 = {0}. Then :

(i) If F is a B-invariant face of K2, then Φ(PF ) is an A-invariant face of K1.
(ii) If G is a face (respectively, A-invariant face) of K1, then P−1G is a face

(respectively, B-invariant face) of K2.
(iii) For any x ∈ Rm, spB(x) � spA(Px).
(iv) For any x ∈ K2, spB(x) = spA(Px).

If, in addition, K2 is polyhedral, then we also have the following :
(v) For any distinguished eigenvalue λ of A, A and B have the same maximal

order for the distinguished generalized eigenvectors corresponding to λ.
(vi) For any semi-distinguished A-invariant face G of K1, there exists a semi-

distinguished B-invariant face F of K2 such that Φ(PF ) = G.
(vii) If F is a semi-distinguished B-invariant face of K2 with the property that

the face Φ(PE) of K1 is minimal (with respect to inclusion) among all faces of the
form Φ(PE), where E is a semi-distinguished B-invariant face of K2 such that
spB(E) = spB(F ), then Φ(PF ) is a semi-distinguished A-invariant face of K1.

Proof. The verification of (i) and (ii) is straightforward.
It is easy to show that if u is a generalized eigenvector of B corresponding to

λ and if u /∈ N (P ), then Pu is a generalized eigenvector of A corresponding to λ

and ordA(Pu) ≤ ordB(u).
To prove (iii), let x = x1 + · · · + xk be the representation of x as a sum of

generalized eigenvectors of B, with xi corresponding to the eigenvalue λi. Then
Px = Px1 + · · ·+Pxk , where each Pxi is either the zero vector or is, by the above
observation, a generalized eigenvector of A corresponding to λi of order less than
or equal to that of xi. By the definition of spectral pair, it is clear that we have
spA(Px) � spB(x).

To prove (iv), suppose that x ∈ K2. We still use the above representation of
x as a sum of generalized eigenvectors of B. By Remark 5.5, we may assume
that x1 is a generalized eigenvector of B corresponding to ρx(B) and furthermore
we have ordx1(B) = ordx(B) = p, say. Moreover, by [131, Corollary 4.8], (B −
ρx(B)Im)p−1x1 is a distinguished eigenvector of B corresponding to ρx(B), and
hence must be nonzero. Since N (P )

⋂
K2 = {0}, it follows that we have

(A − ρx(B)In)p−1Px1 = P (B − ρx(B)Im)p−1x1 �= 0

and
(A− ρx(B)In)pPx1 = P (B − ρx(B)Im)px1 = 0,
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i.e., Px1 is a generalized eigenvector of A corresponding to ρx(B) of order p. From
the definition of spectral pair, now it follows that we have spA(Px) = spB(x).

Hereafter, we assume that K2 is a polyhedral cone.
To prove (v), let mA (respectively, mB) denote the maximal order for the dis-

tinguished generalized eigenvectors of A (respectively, of B) corresponding to λ.
If w is a distinguished generalized eigenvector of B for K2 corresponding to λ of
order mB, then, in view of (iv), Pw is also a distinguished generalized eigenvector
of A for K1 corresponding to λ of order mB. This shows that mB ≤ mA. To
prove the reverse inequality, let x ∈ K2 be a vector such that Px is a general-
ized eigenvector of A corresponding to λ of order mA. (Here we make use of the
assumption that PK2 = K1. Note that x need not be a generalized eigenvector
of B.) By (iv) again, we have spB(x) = spA(Px) = (λ, mA). By Corollary
5.10, Fλ,mA

:= {y ∈ K2 : spB(y) � (λ, mA)} is a B-invariant face of K2. By
definition, clearly spB(Fλ,mA

) � (λ, mA). Since Fλ,mA
contains x, we must have

spB(Fλ,mA
) = (λ, mA), and hence ρ(B|Fλ,mA

) = λ and νλ(B|Fλ,mA
) = mA. But

Fλ,mA
is a polyhedral cone (as K2 is), so by Theorem 3.6 we can find in Fλ,mA

,
and hence in K2, a generalized eigenvector of B corresponding to λ of order mA.
This establishes the equalitymA = mB .

To prove (vi), let G be a semi-distinguishedA-invariant face of K1. By (ii) and
(iv), P−1G is a B-invariant face of K2 such that spB(P−1G) = spA(G). Since
K2 is polyhedral, we can find a semi-distinguished B-invariant face F ⊆ P−1G
such that spB(F ) = spB(P−1G) (see the discussion following Theorem 5.11).
Then Φ(PF ) is an A-invariant face of K1, included in the semi-distinguished A-
invariant face G, such that spA(Φ(PF )) = spB(F ) = spA(G). Now the cone K1

is also polyhedral, as K1 = PK2 and K2 is polyhedral. So by Lemma 5.9, we have
G = Φ(PF ), i.e., G can be expressed in the desired form.

Now we are going to prove (vii). Since Φ(PF ) is an A-invariant face of
K1 and K1 is polyhedral, there exists a semi-distinguished A-invariant face G of
K1 such that G ⊆ Φ(PF ) and spA(G) = spA(Φ(PF )). By (vi), there exists
a semi-distinguished B-invariant face E of K2 such that Φ(PE) = G. Then
Φ(PE) ⊆ Φ(PF ), and we have

spB(E) = sp(Φ(PE)) = spA(G) = spA(Φ(PF )) = spB(F ).

By the minimality property of Φ(PF ), we obtain Φ(PF ) = Φ(PE) = G; hence
Φ(PF ) is semi-distinguished A-invariant.

Note that in the above proof for parts (vi), (vii) of Theorem 6.1, we are using
Lemma 5.9 and also a nontrivial property of a linear mapping preserving a polyhedral
cone.

By a duality argument, we can rephrase the hypotheses of Theorem 6.1 (also,
Theorem 3.5) and obtain an interesting result.
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Two cone-preservingmaps A ∈ π(K1) and B ∈ π(K2) are said to be equivalent
if there exists a linear isomorphismP : spanK2 −→ span K1 such that PK2 = K1

and P−1AP = B.

Theorem 6.2. Let K1, K2 be proper cones in possibly different euclidean
spaces.

(i) For any P ∈ π(K2, K1), the following conditions are equivalent :
(a) PK2 = K1 and N (P )

⋂
K2 = {0}.

(b) PT (K∗
1) = R(PT )

⋂
K∗

2 , R(PT )
⋂

intK∗
2 �= ∅ and PT is one-to-one.

(ii) Let P ∈ π(K2, K1) satisfy the equivalent conditions of (i). If A ∈ π(K1)
and B ∈ π(K2) are such that AP = PB, then the cone-preserving maps AT ∈
π(K∗

1) and BT |R(PT ) ∈ π(R(PT )
⋂

K∗
2) are equivalent.

Proof. The equivalence of conditions (a), (b) in part (i) follows readily from
the following result (Tam [117, Proposition 5.1]):

If A is an m × n real matrix and K1 and K2 are closed cones in R
n and

Rm respectively, then we have clAK1 = R(A)
⋂

K2 if and only if clATK∗
2 =

R (AT )
⋂

K∗
1 .

When P ∈ π(K2, K1) satisfies the equivalent conditions in (i), by condition
(b) the cones K∗

1 and R(PT )
⋂

K∗
2 are clearly linearly isomorphic under PT . If,

in addition, A ∈ π(K1) and B ∈ π(K2) satisfy AP = PB, then it is ready to
see that AT ∈ π(K∗

1) and BT |R(PT ) ∈ π(R(PT )
⋂

K∗
2) (noting that R(PT ) =

span(R(PT )
⋂

K∗
2 )), and we have the following commutative diagram:

K∗
1

PT

⏐⏐⏐	

AT

−−−−−−−→ K∗
1⏐⏐⏐	 PT

R(PT )
⋂

K∗
2

BT |
R(PT )−−−−−−−→ R(PT )

⋂
K∗

2

Then it is clear that the cone-preserving maps AT and BT |R(PT ) are equivalent.

6.1.2. A New Look

Applying Theorem 6.2 to the nonnegative matrix case, we obtain the following
useful new result:

Theorem 6.3. Let K be a polyhedral cone in R
n with m maximal faces.

Then for any A ∈ π(K), there exists an m × m nonnegative matrix B, and a
B-invariant subspace W of Rm, W

⋂
int Rm

+ �= ∅, such that the cone-preserving
maps A ∈ π(K) and B|W ∈ π(W

⋂
R

m
+ ) are equivalent.
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Proof. Consider any polyhedral cone K in Rn with m maximal faces. Let
A ∈ π(K). Choose a minimal generating matrix P for the polyhedral cone K∗.
Clearly P is n×m, as the number of extreme rays of K∗ is equal to the number of
maximal faces of K. Then we can write ATP = PBT for somem×m nonnegative
matrix B. Here we have AT ∈ π(K∗), BT ∈ π(Rm

+ ) and P ∈ π(Rm
+ , K∗)

such that PR
m
+ = K∗ and N (P )

⋂
R

m
+ = {0}. Now apply Theorem 6.2 with

K1 = K∗, K2 = Rm
+ , and AT , BT in place of A and B respectively.

Theorem 6.3 yields an easy proof for Remark 4.18, as we are going to do below.
Using Theorem 6.3 and the Preferred Basis Theorem (Theorem 2.4 (ii)), we shall
also provide a new proof for Lemma 5.9, the crucial lemma used in the proof of
Theorem 5.2. However, based on Theorem 6.3 but not on Theorem 3.5, we are
unable to find a direct proof for Theorem 3.6.

6.1.3. An Alternative Proof for Remark 4.18

To show Remark 4.18, first, by Theorem 6.3 we have ρ(A) = ρ(B|W ). Since
W

⋂
int R

m
+ �= ∅, we also have ρ(B|W ) = ρ(B) (by Remark 5.3 or Tam [121,

Lemma 7.1]). Hence, the peripheral spectrum of A is included in that of the
nonnegative matrix B. But it is well-known that every eigenvalue in the peripheral
spectrum of a nonnegative matrix is equal to the spectral radius times a root of unity,
of order not exceeding the size of the matrix, so Remark 4.18 follows.

6.1.4. An Alternative Proof for Lemma 5.9

Let A, K and B have the meanings as given in Theorem 6.3. Since the cone-
preserving maps A ∈ π(K) and B|W ∈ π(Rm

+

⋂
W ) are equivalent, it suffices

to show that if R
m
+

⋂
W is a semi-distinguished B|W -invariant face of itself, then

spB|W (Rm
+

⋂
W ) � spB|W (F ) for any B|W -invariant face F properly included in

Rm
+

⋂
W . To begin with, note that for any vector x ∈ W , spB|W (x) = spB(x);

this is because, the representation of x as a sum of generalized eigenvectors of B|W
is the same as its representation as a sum of generalized eigenvectors of B. As a
consequence, for any face F of R

m
+

⋂
W , we have spB|W (F ) = spB(Φ(F )), where

Φ(F ) denotes the face of Rm
+ generated by F .

Since R
m
+

⋂
W is a semi-distinguishedB|W -invariant face of itself andW

⋂
int

Rm
+ �= ∅, we can find in W a positive generalized eigenvector of B (corresponding
to ρ(B)), say y. Let α1, . . . , αq be all the basic classes (of B), and let B =
{x(αi) : i = 1, . . . , q} be a preferred basis of the Perron generalized eigenspace of
B, i.e., a semipositive basis that satisfies the reguirement of Theorem 2.4 (ii). Then
we can write y as a linear combination of the vectors in B, say y =

∑q
i=1 cix

(αi).
Note that because B has a positive generalized eigenvector, every final class is
necessarily basic. Following Rothblum [93], we say a class α has access to a class
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β in k steps if k is the length of the longest chain from α to β. (Recall that the
length of a chain is the number of basic classes it contains.) Denote νρ(B)(B) by
ν. For each k = 1, . . . , ν, let Ik = {i ∈ 〈q〉 : αi has access to a final class in k

steps}. Then I1, . . . , Iq are each nonempty, and 〈q〉 is equal to their disjoint union.
Furthermore, the collection of final classes is precisely the set {x(αi) : i ∈ I1}.
In order that y is a positive vector, it is clear that ci > 0 for all i ∈ I1; after
normalizing the vectors x(αi), hereafter we assume that ci = 1 for all i ∈ I1.

Let F be a nontrivial B|W -invariant face of W
⋂

R
m
+ , and suppose to the

contrary that spB|W (F ) = spB|W (W
⋂

Rm
+ ). Then their common spectral pair value

is (ρ(B), ν). Since F is polyhedral, by Theorem 3.6 (ii), F contains a generalized
eigenvector u of B corresponding to ρ(B) of order ν. Certainly, we can also write
u in terms of the vectors in B, say u =

∑q
i=1 dix

(αi). By the Preferred Basis
Theorem, we readily see that there exists at least one i ∈ 〈q〉 such that di �= 0 and
αi is a basic class of height ν. Of course, any such i must belong to I1. Since
u is a nonnegative vector, it is also clear that di ≥ 0 for all i ∈ I1. Now let
λ = max{di : i ∈ I1}. Then for all i ∈ I1, we have λyαi ≥ uαi with at least one
equality, where we use yβ to denote the subvector of y determined by the class β.
Indeed, for any nonbasic class β which has access to a final class in one step, we
also have λyβ ≥ uβ. (However, we need not have λy ≥ u.)

Now, let z denote the vector y +
∑q

k=1 μk(B − ρ(B)Im)ky. Since W is a
B-invariant subspace, clearly z ∈ W . We contend that by choosing μk, k =
1, . . . , q, to be positive numbers sufficiently large, we would obtain a positive
vector z such that λz ≥ u. Here we make use of the property of a Preferred Basis
that, for each basic class α, (B − ρ(B)Im)x(α) is a positive linear combination of
all of the x(β)’s such that β is a basic class, β >−α. Since y =

∑
i∈I1

y(αi) +∑
i∈〈q〉\I1

ciy
(αi), a consequence of the latter property is that (B − ρ(B)Im)y is

expressible as
∑q

i=1 eiy
(αi) with ei = 0 for all i ∈ I1 and ei > 0 for all i ∈ I2. If β

is a class (basic or nonbasic) that has access to a final class in one step, then since
((B − ρ(B)Im)ky)β = 0 for k = 1, . . . , q, we have (λz − u)β = λyβ − uβ ≥ 0,
where the last inequality is already mentioned above. If β is a class that has access
to a final class in two steps, then (λz − u)β = λyβ + λμ1

∑
i∈I2

ei(y(αi))β − uβ;
since (y(αi))β is a positive vector for at least one i ∈ I2 (as β >= αi for at least one
such i), by choosing μ1 > 0 sufficiently large, we have zβ > 0 and (λz− u)β ≥ 0.
Similarly, by choosing μ2 sufficiently large, we also have zβ > 0 and (λz−u)β ≥ 0
for all classes β that have access to a final class in three steps. Continuing in this
way, we can choose positive numbers μ1, . . . , μq with the desired property. This
proves our contention.

By our choice of λ, we have (λz − u)αj = λ(y)αj − uαj = 0 for at least one
j ∈ I1. But {αi : i ∈ I1} is the collection of final classes, it follows that the
smallest B-invariant face of Rm

+ containing λz − u is not Rm
+ itself, and hence the
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smallest B|W -invariant face of W
⋂

Rm
+ containing λz − u is also not W

⋂
Rm

+

itself. Since z ∈ relint(W ⋂
R

m
+ ) and λz = (λz − u) + u with λ > 0, it follows

thatW
⋂

Rm
+ is the join of the smallestB|W -invariant faces ofW

⋂
Rm

+ containing
λz − u and u respectively, where the latter two faces are both strictly included in
W

⋂
Rm

+ (the one containing u being included in F ). This contradicts the B|W -
invariant join-irreducibility of W

⋂
R

m
+ . The proof is complete.

The reader may think that the above proof is not easier than the original proof
as given in Subsection 5.3.4. (Both proofs depend on Theorem 3.6.) Indeed, this
author prefers the original proof, as it is more conceptual and more readily adaptable
to the non-polyhedral cone case. We include the above proof just to show how it
can be done if one really wants to apply the nonnegative matrix theory (and maybe
someone has a better idea).

6.2. K-semipositive Bases

According to Theorem 2.4, there always exists a semipositive basis for the
Perron generalized eigenspace of a nonnegative matrix. Indeed, semipositive bases
of various kinds have been introduced and studied by Rothblum [93], Richman and
Schneider [92], and Hershkowitz and Schneider [59, 60], using matrix combinatorial
methods. In [55], Hartwig, Neumann and Rose offer an algebraic-analytic proof for
the existence of a semipositive basis, analytic in the sense that it utilizes the resolvent
expansion but does not involve the Frobenius normal form. The connection between
the combinatorial and the algebraic-analytic approaches is examined in detail by
Neumann and Schneider [82, 83, 84].

As noted in Section 3 (Theorem 3.6), we now know that if A preserves a
polyhedral cone K, then the Perron generalized eigenspace of A always contains a
K-semipositive basis and there is a K-semipositive Jordan chain of maximal length.
The proof of the latter results as given in Tam [121] relies on the corresponding
results for a nonnegative matrix and uses the minimal generating matrix as a tool.
By introducing cone-theoretic arguments into the method of Hartwig, Neumann and
Rose, recently this author [127] also found a new approach to rederive these results,
without assuming the corresponding nonnegative matrix results. Thus, our treatment
can be kept independent of the known results on a nonnegative matrix.

First, the following is obtained:

Theorem 6.4. Let A ∈ π(K), and let E
(0)
ρ denote the projection of R

n onto
the Perron generalized eigenspace of A along the intersection of Rn with the direct
sum of other generalized eigenspaces of A. Consider the following conditions :

(a) E
(0)
ρ ∈ π(K).

(b) (λIn − A)−1E
(0)
ρ ∈ π(K) for all λ > ρ(A) (or, for all λ sufficiently

large).
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(c) (λIn − A)−1E
(0)
ρ ∈ π(K) for all λ > ρ(A), sufficiently close to ρ(A).

(d) (λIn − A)−1E
(0)
ρ ∈ π(K) for at least one λ > ρ(A).

(e) The Perron generalized eigenspace of A has a K-semipositive basis.

Then conditions (a) and (b) are equivalent, conditions (c) and (d) are also equivalent,
and the following logical relations hold : (a)=⇒(c)=⇒(e).

Then it is proved in [127] that, if the underlying coneK is polyhedral, condition
(c) of Theorem 6.4 always holds; hence, condition (e) also follows. The proof is
a modification of the method of Hartwig, Neumann and Rose, and depends on the
fact that the polyhedrality of K implies that of π(K)∗, the dual cone of π(K) (with
respect to the inner product 〈A, B〉 = tr(ABT ) of the underlying matrix space).

By a K-semipositive Jordan basis we mean a basis which is composed of K-
semipositive Jordan chains. Following the usage of Hershkowitz and Schneider [59],
we call a basis B for N ((ρ(A)In − A)n) a height basis for A if the number of
vectors in B of order k equals ηk, where ηk is the kth height characteristic number
of A (associated with ρ(A)). (The definition of ηk has already been introduced near
the end of Section 2.)

The following is another main result of [127]:

Theorem 6.5. Let A ∈ π(K). Consider the following conditions :
(a) There exists a K-semipositive Jordan basis for A.
(b) There exists a K-semipositive height basis for A.
(c) For each k, k = 1, . . . , νρ(A)(A), the subspace N ((ρ(A)In − A)k)

contains a K-semipositive basis.

Conditions (b) and (c) are always equivalent, and are implied by (a). When K is
polyhedral, (a) is also another equivalent condition.

In the nonnegative matrix case, the equivalence of conditions (a)–(c) of Theorem
6.5 is known. Another known equivalent condition is that λ(A) = η(A), where
λ(A) is the level characteristic of A associated with ρ(A). In fact, we have men-
tioned only four of the thirty-five known equivalent conditions (see Hershkowitz
and Schneider [60, Theorem 6.6]).

As a preliminary step towards Theorem 6.5, the following result is obtained in
[127], extending Theorem 3.6(ii):

If A ∈ π(K), where K is a polyhedral cone, then there always exists a Jordan
basis for the Perron generalized eigenspace of A such that all chains of maximal
length are K-semipositive.

The proof is again a modification of the method of Harwig, Neumann and Rose.
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6.3. Linear Equations over Cones

In the intended future paper [132], we treat the following linear equations over
cones:

(λIn − A)x = b, x ∈ K(6.1)

and

(A − λIn)x = b, x ∈ K,(6.2)

where A ∈ π(K), 0 �= b ∈ K and λ > 0 are given. Equation (6.1) has been
treated before by a number of people, in the finite-dimensional as well as infinite-
dimensional settings. In particular, it is known that equation (6.1) is solvable if and
only if ρb(A) < λ. Our contribution in [132] is to provide a more complete set of
equivalent conditions for solvability, and to give simpler and more elementary proofs
for the finite-dimensional case. The study of equation (1.2) is relatively new. A
treatment of the equation (by graph-theoretic arguments) for the special case when
λ = ρ(A) and K = Rn

+ can be found in Tam and Wu [133]. In [132], the following
results are obtained in connection with equation (6.2):

Theorem 6.6. Let A ∈ π(K), let 0 �= b ∈ K, and let λ be a given positive
real number such that λ > ρb(A). Then the equation (6.2) is solvable if and only
if λ is a distinguished eigenvalue of A for K and b ∈ Φ(N (λIn − A)

⋂
K). In

this case, for any solution x of (6.2) we have spA(x) = (λ, 1).

Theorem 6.7. Let A ∈ π(K), and let b ∈ K . If the linear equation

(A − ρ(A)In)x = b, x ∈ K

is solvable, then b ∈ Φ(N ((ρ(A)In − A)n)
⋂

K).

Interestingly, the face Φ(N (λIn − A)
⋂

K) [respectively, Φ(N ((ρ(A)In −
A)n)

⋂
K)] involved in the condition of Theorem 6.6 [respectively, Theorem 6.7]

is A-invariant. Similarly, the above-mentioned condition for solvability of equa-
tion (6.1) can also be reformulated as: b ∈ Fλ, where Fλ is the A-invariant face
{y ∈ K : ρy(A) < λ}.

Specializing to the nonnegative matrix case, we have the following:

Corollary 6.8. Let P be an n × n nonnegative matrix, let b ∈ R
n
+, and let λ

be a positive real number such that λ > ρb(P ). Then the equation

(P − λIn)x = b, x ≥ 0
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is solvable if and only if λ is a distinguished eigenvalue of P such that for any
class α of P, if α

⋂
supp(b) �= ∅, then α has access to a distinguished class of P

associated with λ.

Corollary 6.9. Let A be an n×n singularM -matrix, and let c be a nonpositive
vector. If there is a nonnegative vector x such that Ax = c, then for each class α

for which α
⋂

supp(c) �= ∅, α has access to some basic class.

In [132], we also apply the results of Theorem 6.6 or 6.7 to determine when
the inequalities in (3.1) (of Subsection 3.1.3) become equalities. It is proved that
RA(x) = ρx(A) if and only if x can be written as x1 + x2, where x1 is an
eigenvector of A corresponding to ρx(A) and x2 satisfies ρx2(A) < ρx(A) and
RA(x2) ≤ ρx(A). As for when the equality rA(x) = ρx(A) holds, only a partial
result is obtained.

6.4. Geometric Spectral Theory

In [131, Lemma 6.10 and Theorem 6.7], it is shown that cone-preserving maps
on a strictly convex cone (i.e., a proper cone each of whose boundary vectors is
an extreme vector) and those on a polyhedral cone share the following common
properties:

(i) If F is a semi-distinguishedA-invariant face, then spA(F ) � spA(G) for all
A-invariant faces G properly included in F .

(ii) Any A-invariant face which contains in its relative interior a generalized
eigenvector of A corresponding to λ can be expressed as a join of semi-distinguished
A-invariant faces associated with λ.

On the other hand, by the following result, due to Gritzmann, Klee and Tam
[52, Corollary 3.2], cone-preserving maps on a strictly convex cone can have special
properties of their own:

If A ∈ π(K), where K is a strictly convex cone, then A cannot have more than
two distinct distinguished eigenvalues for K.

Surely, the spectral theory of a cone-preserving map depends much on the geom-
etry of the underlying cone. Since the class of perfect cones contains the nonnegative
orthants and also the positive cones of finite-dimensional C∗-algebras (see Subsec-
tion 5.4), the spectral theory of cone-preserving maps on perfect cones seems worthy
of study.

6.5. Use of π(K) as a Tool

Before this author started his study on the spectral theory of positive linear
operators, he had more than ten years of working experience with convex cones.
He had successfully applied the theory of cones to the study of generalized inverses
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and semigroups of nonnegative matrices (see [117, 118]), and to the study of the
Green’s relations on the semigroup of nonnegative matrices (see [118, 120]). He
had also studied the structure of π(K) as a cone or as a semiring (see [115, 116,
124, 125]). Apparently, these studies are remote from the study of the spectral
theory of a single positive linear operator. But this author has benefited much from
such studies; at least, his geometric intuition and the abilities to construct delicate
examples or counterexamples are greatly sharpened as a result. In Subsections 4.8.3
and 6.1.1–6.1.2, we have already seen how some old results from [117] play a key
role in our latest investigations. We have also mentioned that the cone π(K) plays
a role in the proof of Theorem 6.4. Now we would like to give two other evidences
which “explain” why a study of the cone π(K) is somehow relevant to the study
of individual operators in π(K):

First, if A belongs to π(K), then π(K) includes the cone cl(pos {Ai : i =
0, 1, . . .}); but the spectral property of A and the geometry of the latter cone are
related (see Corollary 5.7).

Second, if A ∈ π(K), then the linear operator LA on span π(K), defined by
LA(X) = AX , belongs to π(π(K)). Also, the spectral properties of A and those
of LA are closely related.

6.5.1. Automorphisms of Polyhedral Cones

Here is another example where a knowledge of the cone π(K) comes into play.
We call a proper cone K decomposable if it can be expressed as a direct sum of
two nonzero subcones; otherwise, K is indecomposable. According to a result of
Loewy and Schneider [74, Theorem 3.3] (see also Tam [125] for extensions), K is
indecomposable if and only if the face Φ(In) is an extreme ray of the cone π(K).
Based on this result, very recently this author [128] obtained the following:

Theorem 6.10. Let A be an n×n real matrix, where n ≥ 3. Then there exists
an indecomposable polyhedral cone K such that A ∈ Aut(K) if and only if A is
nonzero, diagonalizable, ρ(A) is an eigenvalue of A, and every eigenvalue of A is
equal to ρ(A) times a root of unity.

The above theorem, in turn, leads to the following characterization of real ma-
trices that are automorphisms of some polyhedral cones:

Theorem 6.11. Let A be an n × n real matrix. In order that there exists a
polyhedral cone K such that A ∈ Aut(K), it is necessary and sufficient that A is
nonsingular, and for any eigenvalue λ of A, λ equals |λ| times a root of unity and
|λ| is also an eigenvalue of A.

In passing, we would like to point out that Theorem 4.10 yields immediately
the following new result:
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Theorem 6.12. Let A be an n × n real matrix. Then there exists a proper
cone K in R

n such that A ∈ Aut(K) and A is K-irreducible if and only if A is
nonzero, diagonalizable, all eigenvalues of A are of the same modulus, and ρ(A)
is a simple eigenvalue.

As far as we know, the following question is still open:

Question 6.13. Find an equivalent condition on a given n × n real matrix A

so that there exists a proper cone K in R
n such that A ∈ Aut(K).

6.6. Matrices with a Fully Cyclic Peripheral Spectrum

In the study of positive operators on infinite-dimensional spaces, lots of work
have been done on the cyclic properties of the peripheral spectrum (or spectrum) of
the operator, extending part (ii) of the Frobenius theorem (Theorem 1.2). (For works
in the setting of Banach lattices, see Schaefer [96] and Meyer-Nieberg [78]; in the
setting of finite-dimensional C∗-algebras, see Groh [53]; and for Banach lattice
algebras, see Burger and Grobler [22].) Besides, for the (point) peripheral spectrum
of a positive operator, there is a stronger property, which has also attracted much
attention; namely, its full cyclicity. We say the peripheral spectrum of an n × n
matrix A is fully cyclic if whenever ρ(A)αx = Ax, 0 �= x ∈ Cn, |α| = 1, then
|x|(sgn x)k is an eigenvector of A corresponding to ρ(A)αk for all k ∈ Z. Here
for any x = (ξ1, . . . , ξn)T ∈ C

n and k ∈ Z, we use |x|(sgn x)k to denote the
vector (|ξ1|(sgn ξ1)k, . . . , |ξn|(sgn ξn)k)T , where sgn δ equals δ/|δ| if δ �= 0 and
equals 1 if δ = 0. It is well-known that the peripheral spectrum of every irreducible
nonnegative matrix is fully cylic (see Schaefer [96, Proposition 1.2.8], and also
[96, Proposition 5.4.6] for an extension in the setting of a Banach function lattice).
Ten years ago, in [122] this author has found some necessary conditions and a set
of sufficient conditions for a nonnegative matrix to have a fully cyclic peripheral
spectrum. The conditions are given in terms of the classes of the nonnegative matrix.
Recently, these results were extended by Förster and Nagy [42] to the setting of a
nonnegative linear operator A on a Banach lattice for which ρ(A) is a pole of the
resolvent of A.

6.7. Matrices with Cyclic Structure

Recently, this author [126] also obtained another extension of part (ii) of the
Frobenius theorem by dropping the nonnegativity assumption. In the context of a
general square complex matrix, he examined the logical relations among the condi-
tions that appear in part (ii) of the Frobenius theorem, and some other conditions.
Calling a square matrix m-cyclic if it is permutationally similar to a matrix of the
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form ⎡
⎢⎢⎢⎢⎢⎢⎣

0 A12

0 A23

0
. . .
. . . Am−1,m

Am1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where the blocks along the diagonal are all square, he obtained the following result
[126, Theorem 4.1]:

Theorem 6.14. Let A be a square complex matrix, and let m ≥ 2 be a positive
integer. Consider the following conditions :

(a) A is m-cyclic.
(b) A is diagonally similar to e2πi/mA.
(c) All cycles of G(A) have signed length an integral multiple of m.
(d) All circuits of G(A) have length an integral multiple of m.

The implication (a)=⇒(b) always holds, and conditions (b), (c) are always equiv-
alent. When G(A) has at least one cycle with nonzero signed length, conditions
(a)–(c) are equivalent. When A is irreducible, condition (d) is also an equivalent
condition. When A is irreducible, nonnegative, the following conditions are each
an additional equivalent condition :

(e) A and e2πi/mA are similar.
(f) A and e2πi/mA have the same characteristic polynomial.
(g) A and e2πi/mA have the same peripheral spectrum.

In the above theorem, by a circuit we mean as usual a simple closed directed
walk. A cycle and its signed length are less common concepts. We refer the
interested reader to the paper for the details.

6.8. Perron-Frobenius Type Results on the Numerical Range

By the numerical range of an n×n complex matrix A, we mean the set W (A)
given by: W (A) = {z∗Az : z ∈ C

n, z∗z = 1}. It is well-known that W (A) is
always a compact convex set in the complex plane, which includes the spectrum of
A.

If A is an irreducible nonnegative matrix with index of imprimitivity h > 1,
then the numerical range of A possesses certain properties similar to those for its
spectrum as given in part (ii) of the Frobenius theorem. Indeed, in this case, by
Wielandt’s Lemma (see, for instance, Berman and Plemmons [17, Theorem 2.2.14]),
there exists a unitary diagonal matrix D such that e2πi/hA = D−1AD. Since the
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numerical range of a matrix is invariant under unitary similarity, it follows that we
have e2πi/hW (A) = W (A), i.e., the numerical range of A, like its spectrum, is
invariant under a rotation about the origin through an angle of 2π/h. The following
reformulated unpublished main result of Issos [66, Theorem 7] shows that the ele-
ments of maximum modulus in the numerical range of an irreducible nonnegative
matrix are also equally spaced around a circle with center at the origin and with
one element on the positive real axis, like its peripheral spectrum. By the numerical
radius of A, denoted by r(A), we mean the quantity max {|w| : w ∈ W (A)}.

Theorem 6.15. Let A be an irreducible nonnegative matrix with index of
imprimitivity h. For any complex number λ ∈ W (A), |λ| = r(A) if and only if λ
equals r(A) times a hth root of unity.

The proof given by Issos for the above result depends on a number of auxillary
results and is rather involved. Recently, Tam and Yang [134] offered a different,
more conceptual proof. Other results on the numerical range of a nonnegative matrix
can also be found in [134].

6.9. Other Perron-Frobenius Type Results

Due to the limitation of space, time and the knowledge of this author, this review
is not intended to be comprehensive. Nowadays, in the literature, there are many
research works that are given under the name “Perron-Frobenius”. Below we give
a list of some of them, together with some references. We leave to the interested
reader to explore whether our geometric spectral theory of positive linear operators
has any connections with these works.

(i) Nonlinear Perron-Frobenius theory (see Solow and Samuelson [111], Schaefer
[94], Brualdi, Parter and Schneider [21], Morishima [80], Schneider and Turner
[105], Morishima and Fujimoto [81], Fujimoto [49, 50], Menon and Schneider
[77], Nussbaum [85, 86], Sine [110], and Hyers, Isac and Rassias [65, Chapter 2]);

(ii) Perron-Frobenius theorems in relative spectral theory (see Bidard and Zerner
[18], R. Stern and H. Wolkowicz [112], and Bapat, Olesky and Van Den Driessche
[3]);

(iii) Perron-Frobenius theory in operator polynomial (see Förster and Nagy [39]);
(iv) Perron-Frobenius theory over real closed ordered fields and fractional power

series expansions (see Eaves, Rothblum and Schneider [32]);
(v) Perron-Frobenius type theorems for cross-positive matrices (see Schneider

and Vidyasagar [106], Elsner [34], and Berman, Neumann and Stern [16]).
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