TAITWANESE JOURNAL OF MATHEMATICS
Vol. 4, No. 4, pp. 661-668, December 2000

EQUIVALENT DOUBLE-LOOP NETWORKS
S. H. Huang, F. K. Hwang and Y. H. Liu

Abstract. Hwang and Xu defined equivalent double-loop networks and
gave one such result showing that the L-shapes of the two equivalent
networks are recombinations of three rectangles. Recently, Rodseth gave
an elegant algebraic theorem for equivalent multi-loop networks. We
show that its double-loop version yields equivalent networks of the 3-
rectangle version. We also show that other seemingly different geometric
recombinations also all turn out to be special cases of the 3-rectangle
version.

1. INTRODUCTION

A double loop DL(n;a,b) has n nodes 0,1,--- ,n — 1 and 2n links of 2
types:

a-links: ¢ — i+ a (mod n),i =0,1,--- ,n—1,
b-links: ¢ — i+ b (mod n),i =0,1,--- ,n— 1.

Double loops have been widely studied (see [4] for literature) as architecture
for local area networks.

The minimum-distance diagram L(n; a, b) of a double loop gives a shortest
path from node u to node v for any u, v. Since a double loop is node-symmetric,
it suffices to give a shortest path from node 0 to any other node. Let 0 occupy
the (0,0)-cell. Then v occupies the (i, j)-cell if a shortest path from 0 to v
consists of ¢ a-links and j b-links. Wong and Coppersmith [6] proved that the
diagram is always an L-shape (a rectangle is considered a degeneration). See
Figure 1 for two examples.

Two double loops DL(n;a,b) and DL(n;a’,V') are called isomorphic [2] if
there exists an h prime to n such that {a’, '} = {ha, hb}. Let d(k) denote the
number of cells (7,7) in an L-shape such that i + j = k. Hwang and Xu [3]
defined two double loops to be equivalent if they have the same d(k) for
every k. In
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Figure 1. Two examples of L-shapes

Figure 2. The 3-rectangle transformation

particular, two equivalent double loops have the same diameter and average
distance. Trivially, isomorphic implies equivalent. Also note that if A and B
are isomorphic, C' and D are isomorphic, then B and C' are equivalent implies
A and D are.

Hwang and Xu proved that DL(n;1,s) and DL(n;1,n+ 1 — s) are equiv-
alent by showing that they correspond to different ways of piling up three
rectangles. We call this the 3-rectangle transformation; see Figure 2.

Rodseth [5] considered the multi-loop M L(n; S), where S = s1,--- , s and
the type-j links are ¢ — i +s; (mod n), j = 1,---,l. Let S = {S,0}. He
proved that M L(n;S) and M L(n;S’) are equivalent if S’ = S — s; for some
s; € S (the other part of Rodseth’s theorem states that isomorphic double
loops are equivalent). For | = 2, we will write (a,b,0) in the order (a,0,b).
Then DL(n;a,b) is equivalent to DL(n;n — a,b — a) and DL(n;a — b,n —b).
Since —1 is prime to n, DL(n;(—1)(n — a),(—=1)(b — a)) = DL(n;a,a — b) is
also equivalent to DL(n;a,b). The Hwang-Xu result then corresponds to the
special case a = 1.

It is curious to know whether Rodseth’s theorem on double loops yields
transformations other than the 3-rectangle kind. We are also interested in the
following two kinds of transformations (see Figure 3) proposed by Fiol, Yebra,
Alegre and Valero [2], which clearly preserves equivalence:

In this paper we prove that Rodseth’s theorem yields only the 3-rectangle
mapping, and the top-turning mapping and the shadow-turning mapping are
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special cases of the 3-rectangle mapping.
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(a) top-turning (b) shadow-turning

Figure 3. Two geometric transformations

Figure 4. L-shape with parameters
2. RODSETH’S THEOREM AND THE 3-RECTANGLE TRANSFORMATION

Let the segments of an L-shape be labeled as shown in Figure 4.

Fiol, Yebra, Alegre and Valero [2] showed that an L-shape always tes-
sellates the plane. In such a tessellation, the length of a step is the usual
Fuclidean distance, not just one step-unit as shown in drawing an L-shape.
By considering their relative positions of lattice points, Fiol et al. derived the
following congruence:

la—nb = (mod N),

0
(1)
—pa+hb = 0 (mod N).
They also stated that the solution (a,b) of (1) is unique up to isomorphism.
Let T'(L) denote the L-shape obtained from L through a 3-rectangle trans-
formation. Then the parameters of T'(L) can be expressed by the parameters
of L as shown in Figure 5.

Theorem 1. L(N;N — a,b — a) can be obtained from L(N;a,b) through
the 3-rectangle transformation.
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Figure 5. The 3-rectangle transformation with parameters

Figure 6. The dual 3-rectangle transformation

Proof. Tt suffices to show that (N — a,b — a) is a solution of (1) with the
parameters of T'(L). Note that

(m+q)(N —a)—q(b—a)=—(ma+qgb) =0 (mod N),

since in L, m a-steps and ¢ b-steps reach the cell at the upper corner of the
L-shape which contains the element 0. Furthermore,

—(n—p+q(N—a)+(n+q)(b—a)=—-pa+hb=0 (mod N). -

By symmetry, we can define a dual 3-rectangle transformation as shown
in Figure 6, denoted by T"(L).

By an argument analogous to the proof of theorem 1, we have

Theorem 2. L(N;a — b, N — b) can be obtained from L(N;a,b) through
the dual 3-rectangle transformation.

Chen and Hwang [1] proved that L(N;a,b) always satisfies £ > n and
h > p. So L is well-defined, and L(N;a,b) always has the 3-rectangle trans-
formation as well as its dual.
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Example 1.

Figure 7. An example

3. SPECIAL CASES

Three types of 2-rectangle transformations (see Figure 8) have been men-

tioned in [1].

Let us also denote the two L-shapes obtained by interchanging rows and

columns of T'(L) and T'(L) by T—(L) and T'~'(L). By comparing Figure 8
(b), (c), (d) with T(L), T'(L), T~*(L) and T'~'(L), we obtain

Theorem 3.

(1) If n = p, then (d) =T(L), (b) =T'(L).

(2) If p=q, then (¢) =T(L).

(3) If m = n, then (¢) =T'(L).

(4) If m +p=n+q, then (d) =T (L), (b) =T YL).

Example 2. Since n = p = 2 in L(20; 3, 2), L(20;17,19) is the side-turning

transformation and L(20;1,18) is the top-turning transformation.
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Example 3. Since p = ¢ = 2 in L(14;3,4), L(14,11,1) is the shadow-
turning transformation.
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Figure 8. Some 2-rectangle transformations

Figure 9. p=gq

Example 4. Since m = n = 3 in L(19;1,8), L(19;12,11) is the shadow-
turning transformation.

Example 5. Since m +p = n+¢q = 5 in L(16;1,7), the inverse of
L(16;15,6), which is L(16;6,15), is a top-turning transformation, and the
inverse of L(16;10,9), which is L(16;9,10), is a side-turning transformation.



Equivalent Double-Loop Networks 669

Figure 10. m=n

Figure 11. m+p=n-+p

4. CONCLUSION

One of the main criteria in designing a local area network is its diameter (or
sometimes average distance). Since equivalent double-loop networks have the
same diameter and average distance, instead of searching over all networks
for minimum diameter (or average distance), we could search just over the
equivalent classes, a significant reduction of work.

In this paper, we showed that all equivalent transformations obtained from
Rodseth’s theorem are 3-rectangle transformations and their duals, a surpris-
ing relation between the algebraic analysis and the geometric interpretation.
We also showed that other seemingly different geometric transformations are
special cases of the 3-rectangle transformation. Our findings raise the inter-
esting question whether two L-shapes are equivalent if and only if one is a
3-rectangle (or dual) transformation of the other. (This question was settled
in the negative recently by a forthcoming paper of Chen and Hwang.)



670

S.H

S. H. Huang, F. K. Hwang and Y. H. Liu

REFERENCES

. C. Chen and F. K. Hwang, The minimum distance diagram of double-loop
networks, IEEE Trans. Comput., to appear.

. M. A. Fiol, J. L. A. Yebra, I. Alegre and M. Valero, A discrete optimization
problem in local networks and data alignment, IEEE Trans. Comput. C-36
(1957), 702-713.

. F. H. Hwang and Y. H. Xu, Double loop networks with minimum delay, Discrete
Math. 66 (1987), 109-118.

. J. M. Peha and F. A. Tobagi, Analyzing the fault tolerance of double-loop
networks, IEEE Trans. Network 2 (1994), 363-373.

. 0. J. Rodseth, Weighted multi-connected loop networks, Discrete Math. 148
(1996), 161-173.

. C. K. Wong and D. Coppersmith, A combinatorial problem related to multi-
module memory organizations, J. Assoc. Comput. Mach. 21 (1974), 392-402.

. Huang

10-1, Lane 22, Hsin-Yi Road, Tzyy-Kuan Hsing, Kaohsiung Hsien, 826, Taiwan
E-mail: u8622522@math.nctu.edu.tw

F. K. Hwang

Department of Applied Mathematics

National Chiao Tung University, Hsinchu 30050, Taiwan
E-mail: fhwang@math.nctu.edu.tw

Y. H. Liu
4F, 2-1, Alley 8, Lane 76, Sec. 6, Hsin-Yi Road, Taipei, Taiwan
E-mail: gis86555Qcis.nctu.edu.tw



