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A REVIEW OF DISPERSIVE LIMITS OF (NON)LINEAR
SCHRÖDINGER-TYPE EQUATIONS

Ingenuin Gasser, Chi-Kun Lin and Peter A. Markowich

Abstract. In this review paper we present the most important math-
ematical properties of dispersive limits of (non)linear Schrödinger type
equations. Different formulations are used to study these singular limits,
e.g., the kinetic formulation of the linear Schrödinger equation based on
the Wigner transform is well suited for global-in-time analysis without
using WKB-(expansion) techniques, while the modified Madelung trans-
formation reformulating Schrödinger equations in terms of a dispersive
perturbation of a quasilinear symmetric hyperbolic system usually only
gives local-in-time results due to the hyperbolic nature of the limit equa-
tions. Deterministic analogues of turbulence are also discussed. There,
turbulent diffusion appears naturally in the zero dispersion limit.

1. INTRODUCTION

It has been known since the early days of quantum mechanics that the
linear Schrödinger equation can be written in hydrodynamical form. In this
formulation, the linear Schrödinger equation is replaced by a system of non-
linear equations which are formally analogous to the equations of motion of
a classical fluid. They are called quantum hydrodynamics equations (QHD
equations). More precisely, the QHD equations originate from the classical
way of rewriting the single state Schröd- inger equation in terms of the par-
ticle density and velocity [18]. Mathematically, these models are dispersively
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regularized hydrodynamic models, where the square of the (scaled) Planck
constant ~ plays the role of the dispersivity.

Very similar model equations have been used for quite a while in other
areas of theoretical and computational physics, namely in superfluidity [23,
24] and in superconductivity [10].

A different way of deriving QHD-models is analogous to the derivation of
the gas-dynamics Euler equation from the Boltzmann equation, namely based
on the so-called moment method. Taking the zeroth, first and second order
velocity moments of the quantum Boltzmann equation (or, in the collisionless
case, Wigner transport equation) [11] results in a hydrodynamical model which
then has to be “closed” in an approximate way, i.e., a reasonable macroscopic
approximation for the quantum heat flow tensor has to be derived by using
additional (quantum) physical properties of the particle ensembles. Also small
mean-free-path asymptotics have been used to derive QHD-models in the case
of high electric fields. The obtained models have linear quantum corrections
[27].

It is a fundamental principle in quantum mechanics that, when the time
and distance scales are large enough relative to the Plank constant ~, the
system will approximately obey the laws of classical, Newtonian mechanics.
This is usually rephrased in a colloquial form as: in the limit as ~→ 0 quan-
tum mechanics becomes Newtonian mechanics. The asymptotics of quantum
variables as ~→ 0 are known as “semiclassical”, which expresses this limiting
behavior.

The quantum-mechanical pressure becomes negligible in the “semiclassi-
cal limit” or WKB limit, when ∇x and ∂t scale like ε as ε → 0 (ε is the
scaled Planck constant), and the initial condition has the form φ(x, 0) =
φI(x)eiSI(x)/ε. In this limit, the Euler equation for an isentropic compress-
ible flow is formally recovered from the nonlinear Schrödinger equation. This
was proven rigorously by Jin, Levermore and McLaughlin [16, 17] for the
one-dimensional integrable case using the inverse scattering technique and by
Grenier [15] for higher dimensions in situations where no vortices are involved
(i.e., time locally).

The semiclassical limit of the general modified nonlinear Schrödinger (GM-
NLS for short) equation can be discussed in the similar strategy as Grenier’s
[15], but the GMNLS equation has a space derivative in the nonlinear term
which causes the so-called derivative loss. Thus the GMNLS equation does not
possess parity and Galilean invariance and therefore the canonical momentum
is not conserved. To overcome this difficulty, we introduce the noncanonical
momentum, which is indeed the conservative quantity of the GMNLS equation,
and represent it as a dispersive perturbation of the modified Euler system.
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Based on Schrödinger’s original idea on reformulation of the quantum me-
chanics in terms of a pair of time-reflection-invariant macroscopic equations,
Schrödinger type equations can be represented as a dispersive perturbation of
a quasilinear symmetric hyperbolic system. In this case, the amplitude of the
wave function must be interpreted as a complex-valued function. However,
due to the hyperbolic nature of the limiting system, this approach only works
before the shocks occur. After the breaking-time the conserved densities can
be expected to have only weak limits.

2. HYDRODYNAMICS OF DISPERSIVE EQUATIONS

As mentioned in the introduction there are different ways to derive QHD-
equations. Here we deal first with a derivation starting from a quantum
mechanical single or mixed state described by one or, resp., a sequence of
Schrödinger equations, and secondly we present the connection to the usual
derivation using the moment method for the Wigner equation.

We start with a single state Schrödinger equation in Rd:

iεψε
t = −ε2

2
∆ψε + V εψε, x ∈ Rd, t ∈ R(2.1a)

subject to the initial condition

ψε(x, t = 0) = ψε
I(x), x ∈ Rd.(2.1b)

The scaled Planck constant is here denoted by ε. The superscript ε in the wave
function ψε(x, t) indicates the ε-dependence. The potential V ε is assumed to
be given or to be described self-consistently by Poisson’s equation

−λ2∆V ε = nε − C,(2.2)

where the particle density nε is defined by

nε(x, t) = ψ̄ε(x, t)ψε(x, t)(2.3)

(“¯” denotes complex conjugation). In semiconductor applications the func-
tion C = C(x) denotes the doping profile. In general, it describes a fixed
background charge. λ is the scaled Debye length. Introducing the (scaled)
phase Sε of the wave function

ψε(x, t) =
√

nε(x, t) exp
( i

ε
Sε(x, t)

)
(2.4)
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and separating real and imaginary parts in the Schrödinger equation (2.1a),
the following irrotational flow equations

nε
t + div(nε∇Sε) = 0,(2.5a)

Sε
t +

1
2

∣∣∣∇Sε
∣∣∣
2
+ V − ε2

2
1√
nε

∆
√

nε = 0(2.5b)

are obtained [18].
The definition of the current density

Jε(x, t) = εIm
(
ψ̄ε(x, t)∇ψε(x, t)

)
(2.6a)

gives

Jε = nε∇Sε .(2.6b)

Taking the gradient of equation (2.5b), multiplying it by nε and using (2.5a),
we obtain QHD flow equations for the density nε and the current density Jε:

nε
t + divJε = 0,(2.7a)

Jε
t + div

[
Jε ⊗ Jε

nε

]
+ nε∇V ε =

ε2

2
nε∇

[
1√
nε

∆
√

nε

]
(2.7b)

(the symbol ⊗ denotes the tensor product of vectors) with irrotational initial
conditions

nε(x, t = 0) = nε
I(x) ≥ 0, Jε(x, t = 0) = nε

I(x)∇Sε
I (x),(2.7c)

which are associated to the initial wave function

ψε
I(x) =

√
nε

I(x) exp
( i

ε
Sε

I (x)
)
.(2.8)

The equations (2.7) represent a fluid dynamic formulation of the linear Schrödinger
equation and are known as Madelung’s fluid equations [23, 24]. The differ-
ence between the classical zero temperature Euler equations and the equations
(2.7) lies in the quantum correction term of order ε2 in the current equation
(2.7b). This density-dependent term can be interpreted either as internal self-
potential

Qε = −ε2

2
1√
nε

∆
√

nε = −ε2

2
∆|ψε|
|ψε| ,(2.9)
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the so-called Bohm potential, or, using

nε∇
[

1√
nε

∆
√

nε

]
=

1
2
div

[
nε(∇⊗∇) lnnε

]
,

as nondiagonal quantum pressure tensor

pε = −ε2

4
nε(∇⊗∇) lnnε.(2.10)

Defining the kinetic energy density tensor Eε
K as

Eε
K =

1
2

Jε ⊗ Jε

nε
(2.11)

and using (2.7), we obtain the ‘classical’ energy density tensor equation

(Eε
Kls)t +

∂

∂xm

(Jε
m

nε
Eε

Kls

)
+

1
2

(
Jε

l

∂

∂xs
(V ε + Qε)

+Jε
s

∂

∂xl
(V ε + Qε)

)
= 0.

(2.12)

(The indices l, s, m denote the lth, sth, mth component of the corresponding
vector or tensor. Also, the Einstein summation convention is used.) Obviously,
the equation (2.12) is superfluous, since Eε

K is a function of nε and Jε only.
If we define the energy density tensor Eε by

Eε =
1
2

Jε ⊗ Jε

nε
− ε2

8
nε(∇⊗∇) ln nε,(2.13)

then the corresponding energy density tensor equation reads

(Eε
ls)t +

∂

∂xm

[
Jε

m

nε
Eε

ls +
1
2

(Jε
l

nε
pε

sm +
Jε

s

n
pε

lm

)]

+
1
2

(
Jε

l

∂

∂xs
V ε + Jε

s

∂

∂xl
V ε

)
− ε2

8
∂

∂xm

(
nε ∂2

∂xl∂xs

(Jε
m

nε

))
= 0.

(2.14)

The expression

qε
lsm := −ε2

8
nε ∂2

∂xl∂xs

(
Jε

m

nε

)
(2.15)

plays the role of a quantum heat flux tensor. The scalar equation for the
energy density W ε = tr(Eε) follows:

(W ε)t +
∂

∂xm

[
Jε

m

nε
W ε +

Jε
l

nε
pε

lm

]
+ Jε

l

∂

∂xl
V ε

−ε2

8
∂

∂xm

[
nε∆

(
Jε

m

nε

)]
= 0.

(2.16)
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These considerations on energy density equations become important below
when passing from a single state to a mixed state in which additional quantities
like (classical) pressure or temperature are introduced.

We also mention the equivalence of the nonlinear Schrödinger equation

iεψε
t = −ε2

2
∆ψε +

(
V ε + h(ψ̄εψε)

)
ψε(2.17)

and the (irrotational) flow equations

nε
t + divJε = 0,(2.18a)

Jε
t + div

[
Jε ⊗ Jε

nε
+ p(nε)

]
+ nε∇V ε =

ε2

2
nε∇

[
1√
nε

∆
√

nε

]
,(2.18b)

in which the density dependent pressure p(nε) and the enthalpy h(nε) are
related by

p′(nε) = nεh′(nε).(2.19)

The equivalence, which is obtained in the same way as in the case of the lin-
ear Schrödinger equation (2.1a) by using (2.3) and (2.6), does not represent a
physical derivation of the isothermal (p(n) = n) or isentropic (p(n) = nγ , 1 <
γ < 3) QHD equations, since a physical interpretation of the nonlinear term
in the Schrödinger equation is still intricate. Heuristically, h(nε) can be con-
sidered as a self-interaction potential. Nevertheless, the nonlinear Schrödinger
equation (2.17) is very helpful for the mathematical analysis of the isentropic
irrotational QHD-system [14, 16, 17, 35].

A similar hydrodynamical structure holds for general modified nonlinear
Schrö dinger equations (GMNLS for short)in one space dimension (d = 1):

iε ∂tψ
ε = −ε2

2
∂2

xψε − i
ε

2
∂x

(
Φ′(|ψε|2)ψε

)
+ h(|ψε|2)ψε.(2.20)

By using the ansatz (2.3) for the wave function ψε, we obtain the system of two
equations for the so-called Madelung fluid (which is equivalent to the GMNLS
equation (2.20)):

∂tn
ε + ∂x

(
nεSε

x + nεΦ′(nε)− 1
2
Φ(nε)

)
= 0,(2.21a)

∂tS
ε +

1
2
(Sε

x)2 +
1
2
Φ′(nε)Sε

x + h(nε) =
ε2

2
1√
nε

(√
nε

)
xx

.(2.21b)
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These equations are the continuity equation and Hamilton-Jacobi equation for
the “quantum fluid”, respectively. It follows immediately from (1.8a,b) that
the current density Jε defined by (2.6) satisfies the differential equation

∂tJ
ε + ∂x

(
(Jε)2

nε
+

1
2
JεΦ′(nε) + p(nε)

)
+ JεΦ′′(nε)∂xnε

=
~2

4
∂x(nε∂2

x log nε),

(2.22)

which is not a conservation law except when Φ′′(nε) = 0. This is due to the
derivative loss caused by the space derivative nonlinear term, i ε

2∂x

(
Φ′(|ψε|2)ψε

)
.

The continuity equation (2.21a) gives

∂tΦ(nε)+∂x

(
Φ(nε)uε

)
+

(
nεΦ′(nε)− Φ(nε)

)
∂xuε

+∂x

(1
2
nε(Φ′(nε))2

)
= 0

(2.23)

with the fluid velocity uε := (Sε)x. As in [6], we introduce the noncanonical
current density

M ε ≡ Jε + Φ(nε).(2.24)

Even if the fluid velocity vanishes, i.e., uε = 0, the flow has a background
momentum with characteristic speed. This implies that solitons of derivative
nonlinear Schrödinger equations have nontrivial static limit. In the field theo-
retical language, we can say that the spectrum of excitations has always a gap
(like in superfluidity). We have the local conservation laws associated with
the GMNLS equation (2.20):

∂tn
ε + ∂x

(
M ε + nεΦ′ − 3

2
Φ

)
= 0,(2.25a)

∂tM
ε + ∂x

[
M ε

nε

(
M ε + nεΦ′ − 3

2
Φ +

1
2
(nεΦ′ − Φ)

)]

+∂x

[
1
nε

(nεΦ′ − Φ)
(

1
2
nεΦ′ − Φ

)]
+ ∂xp(nε) =

~2

4
∂x(nε∂2

x log nε).(2.25b)

Equation (2.25b) is derived by adding (2.22) and (2.23) together. This equa-
tion also tells us that the space derivative nonlinear term, i ε

2∂x

(
Φ′(|ψε|2)ψε

)
,

not only affects the momentum but also the pressure from the hydrodynam-
ical point of view except when Φ is a linear function. Indeed, if we have
nεΦ′(nε) − Φ(nε) = 0, then ∂x

[
1
nε (nεΦ′ − Φ)(1

2nεΦ′ − Φ)
]

= 0. Equations
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(2.25a) and (2.25b) correspond to the mass and momentum (or current) con-
servation laws.

We now return to the linear Schrödinger equation with given potential
V = V (x). A mixed quantum mechanical state consists of a sequence of single
states with occupation probabilities λl, l = 0, 1, . . . , for the lth single state
described by

iεψl
t = −ε2

2
∆ψl + V ψl,(2.26a)

ψl(x, t = 0) = ψl
I(x) =

√
nl

I(x) exp
( i

ε
Sl

I(x)
)

(2.26b)

(for convenience we drop the superscript ε), or, equivalently, by

nl
t + divJ l = 0,(2.27a)

J l
t + div

[
J l ⊗ J l

nl

]
+ nl∇V =

ε2

2
nl∇

[
1√
nl

∆
√

nl

]
,(2.27b)

nl(x, t = 0) = nl
I(x), J l(x, t = 0) = nl

I(x)∇Sl
I(x).(2.27c)

The occupation probabilities satisfy

∞∑

l=0

λl = 1.(2.28)

The charge density n, the current J , the energy density tensors EK , E of the
mixed state are given by

(2.29a) n(x, t)=
∞∑

l=0

λlnl(x, t),

(2.29b) J(x, t)=
∞∑

l=0

λlJ l(x, t),

(2.29c) EK(x, t)=
∞∑

l=0

λlEl
K(x, t),

(2.29d) E(x, t)=
∞∑

l=0

λlEl(x, t).

El
K , El are defined as in (2.11) and (2.13) for the lth single state. Note that

the flow generated by the mixed state is in general not irrotational anymore.
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The definitions of the “current velocities” uc = J
n , ul

c = J l

nl , l = 0, 1, 2, . . . ,
of the “osmotic velocities” uos = ε

2
∇n
n , ul

os = ε
2
∇nl

nl , l = 0, 1, 2, . . . , and the
relations

uc =
∞∑

l=0

(
λl n

l

n

)
ul

c(2.30a)

uos =
∞∑

l=0

(
λl n

l

n

)
ul

os(2.30b)

allow the definition of a discrete velocity distribution

bl(x, t) = λl n
l(x, t)

n(x, t)
.(2.31)

In analogy to the classical kinetic theory, we call the covariance tensors

Tc =
∞∑

l=0

bl(ul
c − uc)⊗ (ul

c − uc),(2.32a)

Tos =
∞∑

l=0

bl(ul
os − uos)⊗ (ul

os − uos)(2.32b)

current and osmotic temperature, respectively. Multiplication of (2.27a), (2.27b)
by λl and summation over l give

nt + divJ = 0,(2.33a)

Jt + div
[
J ⊗ J

n
+ nT − ε2

4
n(∇⊗∇) lnn

]
+ n∇V = 0(2.33b)

with the total temperature T = Tc + Tos. By (2.32), the constitutive relation
reads

E =
1
2

[
J ⊗ J

n
+ nT − ε2

4
n(∇⊗∇) lnn

]
.

Multiplying the energy density tensor equation (2.11) by λl and summing over
l lead to

(Els)t +
∂

∂xm

[
Jm

n
Els +

1
2
(JlTsm + JsTlm)

−ε2

8

(
Jl

∂2

∂xs∂xm
ln n + Js

∂2

∂xl∂xm
lnn

)]

+
1
2

(
Jl

∂

∂xs
V + Js

∂

∂xl
V

)
+

∂

∂xm
qmls = 0.

(2.33c)
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Obviously, the heat flux tensor q for the mixed state cannot (in general) be
expressed in terms of n, J and T only.

In classical fluid dynamics, additional assumptions are made in order to
obtain a closed set of equations. One is to consider that the temperature is a
scalar (times identity tensor) and another one is to ignore the heat conduction
or, if heat conduction phenomena can be expected to be important in the
system, to set

q = κ∇T.(2.34)

(κ denotes the heat conductivity.) Note that under the constitutive assump-
tion of a scalar temperature it suffices to consider a scalar energy density equa-
tion with heat flux vector instead of an energy density tensor equation with
heat flux tensor. The Fourier term (2.34) was also used for the QHD-equations
(2.33) in semiconductor applications [11, 12]. Other closure conditions for the
QHD-equations are not known to the authors.

Now, let us consider the Wigner function [22, 28]

wε(x, v, t) =
1

(2π)d

∫

Rd
η

ψ̄ε
(
x +

ε

2
η, t

)
ψε

(
x− ε

2
η, t

)
eiη·v dη,(2.35)

where the wave function ψ(x, t) solves the single state Schrödinger equation
(2.1). wε(x, v, t) satisfies the so-called Wigner equation

wε
t + v · ∇xwε − θε[V ]wε = 0, x, v ∈ Rd, t ∈ R,(2.36a)

wε(x, v, t = 0) = wε
I(x, v),(2.36b)

where θε[V ] is the pseudo-differential operator

θε[V ]wε =
i

(2π)d

∫

Rd
v′

∫

Rd
η

V (x + ε
2η)− V (x− ε

2η)
ε

wε(x, v′, t)ei(v−v′)·η dη dv′

and wε
I is the Wigner transform of the initial state ψε

I given by (2.8):

wε
I(x, v) =

1
(2π)d

∫

Rd
η

√
nε

I

(
x +

ε

2
η
)
nε

I

(
x− ε

2
η
)

exp
{

i

ε

(
Sε

I

(
x +

ε

2
η
)
− Sε

I

(
x− ε

2
η
))

+ iη · v
}

dη.

(2.37)
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The Wigner equation is a quantum mechanical equivalent of the classical
Vlasov equation. Easy calculations show that the lowest-order moments of
the Wigner equation are

∫

Rd
v

wε(x, v, t) dv = nε(x, t),(2.38a)

∫

Rd
v

vwε(x, v, t) dv = Jε(x, t),(2.38b)

∫

Rd
v

v ⊗ vwε(x, v, t) dv =
Jε(x, t)⊗ Jε(x, t)

nε(x, t)

−ε2

4
nε(x, t)(∇⊗∇) lnnε(x, t) = 2Eε

(2.38c)

and that

W ε(x, t) =
1
2

∫

Rd
v

|v|2wε(x, v, t) dv,(2.38d)

−ε2

8
nε(x, t)∆

(
Jε

l (x, t)
nε(x, t)

)
=

1
2

∫

Rd
v

(
vl −

Jε
l (x, t)

nε(x, t)

)

∣∣∣∣v −
Jε(x, t)
nε(x, t)

∣∣∣∣
2

wε(x, v, t) dv

(2.38e)

hold for the energy density and the heat flux vector. Therefore, multiplying
the Wigner equation (2.36a) by 1, v, v ⊗ v, |v|2 and integrating over Rd we
obtain the continuity, momentum, energy tensor and scalar energy equations
(2.7a), (2,7b), (2.14) and (2.16), respectively.

Similar considerations can be made as far as the mixed state is concerned.
The mixed state Wigner function reads

w(x, v, t) =
∞∑

l=0

λlwl(x, v, t),(2.39)

in which wl(x, v, t) denotes the Wigner function of the lth single state. Using
(2.31) and (2.39) it is easy to see that

∫

Rd
v

w(x, v, t) dv = n(x, t),(2.40a)
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∫

Rd
v

vw(x, v, t) dv = J(x, t),(2.40b)

∫

Rd
v

v ⊗ vw(x, v, t) =
J(x, t)⊗ J(x, t)

n(x, t)
+ n(x, t)T (x, t)

−ε2

4
n(x, t)(∇⊗∇) ln n(x, t) = 2E,

(2.40c)

1
2

∫

Rd
v

|v|2w(x, v, t) dv = W = tr(E),(2.40d)

1
2

∫

Rd
v

(
vi − Ji(x, t)

n(x, t)

)(
vj − Jj(x, t)

n(x, t)

)(
vk − Jk(x, t)

n(x, t)

)

w(x, v, t) dv = qijk(x, t).
(2.40e)

Thus, even in the mixed state the QHD equations (2.33) are the lowest-order
moment equations of the Wigner equation.

In classical kinetic theory, the same procedure allows the derivation of the
Euler equations as moment equations of the Vlasov equation. Special assump-
tions on the (classical) space distribution function give scalar temperature and
vanishing centered third-order moment. The main ingredient in the closure
assumptions in classical kinetic theory is the explicit knowledge of an equilib-
rium solution of the Boltzmann collision operator. In quantum kinetics this is
not the case.

3. GLOBAL-IN-TIME ANALYSIS OF THE LINEAR SCHRÖDINGER EQUATION

In the following we investigate the classical limit ε → 0 of the zero tem-
perature QHD equations (2.7). Here we only present the general outline; for
details see [13]. From the previous section we know that the QHD equations
(2.7) are formally equivalent to the single state Schrödinger equation (2.1).
In [13] we have shown rigorously that every solution ψε of the Schrödinger
equation (2.1) generates with

nε = ψ̄εψε, Jε = εIm(ψ̄ε∇ψε),

a weak solution (in the sense of distributions) of the zero temperature QHD
equations (2.7). This result holds even for the nonlinear Schrödinger equation
(2.17) and the associated (isothermal or isentropic) QHD equations (2.21a,b).
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Now, assume the ε-independent irrotational initial conditions

nε
I(x) = nI(x) ≥ 0, Jε

I (x) = nI(x)uI(x) = nI(x)∇SI(x)(3.1)

for the QHD equations (2.6). The classical limit analysis ε → 0 consists of
two major points. In a first step, we have to ascertain the existence of a
limiting density n(x, t) and a limiting current density J(x, t) of the solutions
nε(x, t) and Jε(x, t) of (2.6) with initial conditions (3.1) as ε → 0. Secondly,
we have to verify whether the limits n(x, t) and J(x, t) satisfy the formal limit
equations of (2.6)

nt + divJ = 0,(3.2a)

Jt + div
[
J ⊗ J

n

]
+ n∇V = 0,(3.2b)

n(t = 0) = nI , J(t = 0) = JI .(3.2c)

In the case of the Korteweg deVries equation, the zero dispersion limit
was performed by Lax and Levermore using inverse scattering theory [21].
The same method, the so-called Lax-Levermore procedure, was used by Shan
Jin, Levermore and McLaughlin to establish the semiclassical limit of the one-
dimensional defocusing cubic nonlinear Schrödinger (NLS) equation in [16, 17].
The integrability is exploited to obtain the complete global characterization
of the weak limits of the entire NLS hierarchy of conserved densities as the
field evolves from reflectionless initial data under all the associated commuting
flows. In this case, all the infinite conserved densities can be represented in
terms of derivatives of a potential ε2 log τ(x, t), where the so-called τ -function
is a certain N × N determinant. For the zero-dispersion limit of the KdV
equation [21] and the semiclassical limit of the defocusing NLS hierarchy [16,
17], the τ -function τ(x, t) is the determinant of a matrix I + G(x, t), where
G(x, t) is Hermitian and positive definite. If τ(x, t) is then written as a sum
of the principal minors of G(x, t), it is evidently a sum of positive terms. It
can then be shown that the largest term dominates in the limit, leading to a
variational theory of the semiclassical limits of many integrable equations.

For the one-dimensional focusing cubic nonlinear Schrödinger problem
which is integrable, the matrix G(x, t) is not Hermitian positive definite, and
determining the leading contribution to τ(x, t) in the semiclassical limit re-
mains an open problem. Furthermore, unlike in the defocusing case, the
macroscopic dynamics seem to be governed by elliptic partial differential equa-
tions. For general initial data, except for analytic initial data, the initial value
problem is ill-posed. Thus the semiclassical limit of a sequence of well-posed
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initial value problems is an ill-posed initial value problem. For numerical ex-
periments we refer to [31].

We use a completely different approach in order to carry out the classi-
cal limit ε → 0 for the zero temperature QHD equations (2.6) with initial
conditions (3.1). From the previous section we know that the single state
Schrödinger equation (2.1) is equivalent to the Wigner equation (2.29) for the
Wigner function wε defined in (2.28). It can be seen easily from (2.28) that
the initial Wigner function wε

I(x, v) associated to the ε-independent initial
conditions (3.1) converges to the measure

wI(x, v) = nI(x)δ(v −∇SI(x))(3.3)

as ε → 0. It is known from the classical limit analysis of the Wigner equation
[22, 26] that the Wigner function wε(x, t) converges to a positive measure
w(x, v, t), which solves the limiting Vlasov equation

wt + v · ∇xw −∇xV · ∇vw = 0(3.4)

with initial condition

w(x, v, t = 0) = wI(x, v).(3.5)

Even the lowest-order moments nε(x, t) and Jε(x, t) of the Wigner function
wε (see (2.38)) converge to the corresponding moments of the measure w:

nε(x, t) =
∫

Rd
v

wε(x, v, t) dv → n(x, t) =
∫

Rd
v

w(x, v, t) dv,(3.6a)

Jε(x, t) =
∫

Rd
v

vwε(x, v, t) dv → J(x, t) =
∫

Rd
v

vw(x, v, t) dv,(3.6b)

if, say, the initial energy is uniformly bounded as ε → 0 (see [13]). Under weak
assumptions on the potential V , the Hamiltonian flow Ht,

Ht(x, v) =
(
x̃(t;x, v), ṽ(t;x, v)

)
,(3.7)

where x̃ and ṽ solve

˙̃x = ṽ, x̃(0) = x,(3.8a)

˙̃v = −∇V (x̃), ṽ(0) = v,(3.8b)

is globally defined and the relation

∫

Rd
x

∫

Rd
v




1
vl

vlvm


σ dw(t) =

∫

Rd
x

∫

Rd
v

(


1
vl

vlvm


σ

)
◦Ht dwI(3.9)
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holds for all bounded continuous functions σ on Rd
x × Rd

v. This relation with
the special form of wI in (3.1) is used to evaluate the limiting density n(x, t),
current density J(x, t) and energy density tensor

E(x, t) =
1
2

∫

Rd
v

v ⊗ vw(x, v, t) dv

at every time t > 0. The first two moment equations of the Vlasov equation
(3.4) are easily obtained

nt + divJ = 0, n(t = 0) = nI ,(3.10a)

Jt + div(2E) + n∇V = 0, J(t = 0) = JI .(3.10b)

Introducing the Radon-Nikodym derivatives u and r of J and E respectively
with respect to n, (3.10) reads

nt + div(un) = 0, n(t = 0) = nI ,(3.11a)

(un)t + div(2rn) + n∇V = 0, u(t = 0) = uI .(3.11b)

Therefore, the limits n and J of nε and Jε solve the formal limit equations
(3.2) if 2r is equal to u⊗ u. We show the following result in [13]:

Theorem 3.1. Let −∞ ≤ T1 ≤ 0 ≤ T2 ≤ ∞. Then n ∈ Cb(Rt;M+(Rd)w−
?), u ∈ L∞(Rt;L1(Rd; dn(t))d) with nu ∈ Cb(Rt;M(Rd)dw − ?) solve

(nσ(u))t + divx(nuσ(u)) + n∇xV · ∇uσ(u) = 0,(3.12a)

n(t = 0) = nI , u(t = 0) = uI(3.12b)

in




D′(Rd
x × (T1, T2)) for T1 < 0 < T2,

D′(Rd
x × [0, T2)) for T1 = 0,

D′(Rd
x × (T1, 0]) for T2 = 0

(3.13)

for every σ = σ(v) ∈ C1(Rd;R) with σ(v)/(1+|v|) ∈ L∞(Rd) and ∇vσ(v)/(1+
|v|2) ∈ L∞(Rd) iff the solution of (3.1) is given by

w(x, v, t) = n(x, t)δ(u(x, t)− v)(3.14)
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in 



D′(Rd
x × (T1, T2)) for T1 < 0 < T2,

D′(Rd
x × [0, T2)) for T1 = 0,

D′(Rd
x × (T1, 0]) for T2 = 0.

Proof. Assume that T1 < 0 < T2 and choose ω = ω(x, t) ∈ D(Rd
x×(T1, T2)).

For given σ ∈ D(Rd
u), the weak formulation of (3.12a,b) reads

∫ T2

T1

∫

Rd
x

σ(u)ωtdn(t)dt +
∫ T2

T1

∫

Rd
x

σ(u)u · ∇xωdn(t)dt

−
∫ T2

T1

∫

Rd
x

∇xV · ∇vσ(u)ωdn(t)dt = 0.

This is exactly the weak formulation of the Vlasov equation (3.1) with the test
function ω(x, t)σ(v), where w is given by (3.12). Now let σl(v) ∈ D(Rd

v) be a
sequence satisfying the conditions stated in the theorem and converging almost
everywhere to σ(v) ∈ C1(Rd) as l → ∞. Lemma 3.3 below and the fact that
the energy is bounded guarantees |u|2 ∈ L∞(Rt; L1(Rd; dn(t))). Therefore, the
dominated convergence theorem implies the assertion.

The equation (3.12a,b) is a renormalized formulation of (3.11a,b). In par-
ticular, (3.12a) is obtained by choosing σ ≡ vi, i = 1, . . . , d. Thus, the limit
densities n and J = nu of the quantum WKB-densities nε and Jε satisfy
(3.12) on a given time interval (T1, T2) if n, nu are renormalized solutions of
(3.12) on (T1, T2) (in the sense defined in Theorem 3.1).

Theorem 3.1 yields

Corollary 3.2. Let uI ∈ C1
b (Rd) and let −∞ ≤ T1 ≤ 0 be an interval

on which the Burger’s equation (3.15) has a solution u ∈ C1
b (Rd

x × (T1, T2)).
Then the limits n, J = nu of the densities nε, Jε satisfy (3.10) on (T1, T2)
with 2r = u⊗ u. Also u is vortex free in (T1, T2).

Proof. Let σ ∈ C1(Rd;R), σ(v)/(1 + |v|) ∈ L∞(Rd), ∇vσ(v)/(1 + |v|2) ∈
L∞(Rd) and multiply (3.18)(a) by σ′(u):

σ(u)t + u · ∇σ(u) +∇V · ∇uσ(u) = 0.

Multiplication by the (regular) solution n of the continuity equation (3.13a)
shows that (n, u) is a renormalized solution on (T1, T2).

If the field driven Burger’s equation

ut + (u · ∇)u +∇V = 0,(3.15a)
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u(x, t = 0) = uI(x)(3.15b)

has a classical solution on a certain time interval, then the limit equations
(3.2) are satisfied by n and J .

The result we obtained in [13] is slightly more general, but it’s formulation
is lengthy and beyond the scope of this presentation. The breakdown of the
classical solution of the Burger’s equation is strictly related to the occurrence
of caustics in the field of characteristic curves:

˙̂x = v̂, x̂(t = 0, x) = x(3.16a)

˙̂v = −∇V (x̂), v̂(t = 0, x) = uI(x).(3.16b)

In [13], a characterization of the behavior of the limits n and J at the break-
down points of the classical solution is also given. In particular, concentration
phenomena in the density n may occur (see examples below).

Lemma 3.3. 2r(·, t) ≥ u(·, t) ⊗ u(·, t) n(·, t)-a.e. in the sense of positive
semidefinite symmetric matrices.

Proof. Take ϕ ∈ Cb(Rd). Then, by the definition of u = (u1, . . . , ud) we
have ∫

Rd
x

uiujϕdn =
∫

R2d
x,v

viujϕdw.

Thus, for γ ∈ Cb(Rd;Rd) we obtain

∫

Rd
x

γT u⊗ uγdn=
∫

Rd
x

d∑

i,j=1

uiγiujγjdn =
∫

R2d
x,v

d∑

i=1

viγi

d∑

j=1

ujγjdw

≤
(∫

R2d
x,v

( d∑

i=1

viγi

)2
dw

) 1
2


∫

R2d
x,v

( d∑

j=1

ujγj

)2
dw




1
2

=

(∫

Rd
x

2γT rγdn

) 1
2
(∫

Rd
x

γT u⊗ uγdn

) 1
2

.

Thus, we have just shown

2r(x, t) = u(x, t)⊗ u(x, t) + T (x, t)

holds, where T is a positive semidefinite (temperature) tensor. Obviously,
T ≡ 0 in the regime of classical solutions. Note also that in case of classical
solutions, the Burger’s equation (3.15) can be obtained easily from the limit
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equations (3.2) by using the continuity equation and eliminating n from the
momentum equation.

The following two examples give an idea of the theory presented above.

Example 3.4. Let V (x) ≡ 0 and nI(x) > 0. We set

uI = 11(x<0) + (1− x)11 (0≤x<1).

We obtain the characteristics

x̂(t, x) = (x + t)11 (x<0) + [x + (1− x)t] 11 (0≤x<1) + x11 (1≤x).

Up to time t = 1, they do not intersect. For t > 1, we have intersections in
the region 1 < x ≤ t. The Burger’s equation has a smooth solution up to
t = 1 and a shock with speed s = 1/2 starting at t = 1, x = 1 (as vanishing
viscosity limit of the solutions of the viscous regularized Burger’s equation).

Using (3.9), we obtain

n(x, t) =





nI(x− t)11 (x<t) +
1

1− t
nI

(
x− t

1− t

)
11 (t≤x<1) + nI(x)11 (1<x)

if t < 1,
∫ 1

0
nI(y)dy δ(x− 1) + nI(x− 1)11 (x<1) + nI(x)11 (1<x)

if t = 1,

nIx− t)11 (x≤1) +
[
nI(x− t) +

1
t− 1

nI

(
x− t

1− t

)
+ nI(x)

]

11 (1<x≤t) + nI(x)11 (t<x) if t > 1.

Easy calculations lead to

u(x, t) =





11 (x<t) +
1− x

1− t
11 (t≤x<1), t < 1,

∫ 1
0 nI(y)(1− y)dy∫ 1

0 nI(y)dy
+ 11 (x<1), t = 1,

11 (x≤1) +
nI(x− t) + x−1

(t−1)2
nI

(
x−t
1−t

)

nI(x− t) + 1
t−1nI

(
x−t
1−t

)
+ nI(x)

11 (1<x≤t), t > 1,
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and

2r(x, t) =





11 (x<t) +
(

1− x

1− t

)2

11 (t≤x<1), t < 1,

∫ 1
0 nI(y)(1− y)2dy∫ 1

0 nI(y)dy
+ 11 (x<1) t = 1,

11 (x≤1) +
nI(x− t) + (x−1)2

(t−1)3
nI

(
x−t
1−t

)

nI(x− t) + 1
t−1nI

(
x−t
1−t

)
+ nI(x)

11 (1<x≤t), t > 1.

As we see, u(x, t) is a smooth solution of the Burger’s equation up to t = 1 but
for t > 1 it is not even a weak solution. For t < 1, we have 2r(x, t) = u(x, t)2.
At t = 1, charge concentrates at x = 1.
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Characteristics of Example 3.4.

Characteristics of Example 3.5 in one space dimension.

Example 3.5. Let the potential V = V (x) = |x|2/2 (harmonic oscil-
lator), uI(x) = uI = const. and nI(x) > 0 (d space dimensions). The IVP
(3.16) gives

x̂(t, x) = x cos t + uI sin t,
v̂(t, x) = −x sin t + uI cos t.

All characteristics intersect at time t = ((2k+1)/2)π, k = . . . ,−1, 0, 1, . . . ,
at the point x = uI(−1)k+1. In-between the points t = ((2k + 1)/2)π and
t = ((2k + 3)/2)π, k = . . . ,−1, 0, 1, . . . , we have no intersection and the map
x 7→ x̂(t, ·): Rd → Rd is an isomorphism. The relations (3.9) give

n(x, t) =





1
| cos t|d nI

(
x− uI sin t

cos t

)
, t 6= 2k + 1

2
π,

∫ ∞

−∞
nI(y)dy δ(x− (−1)kuI), t =

2k + 1
2

π,
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J(x, t) =





1
| cos t|d nI

(
x− uI sin t

cos t

)
uI − x sin t

cos t
, t 6= 2k + 1

2
π,

∫ ∞

−∞
nI(y)ydy(−1)k+1δ(x− (−1)kuI), t =

2k + 1
2

π,

2E(x, t) =





1
| cos t|d nI

(
x− uI sin t

cos t

)(
uI − x sin t

cos t

)
⊗

(
uI − x sin t

cos t

)
,

t 6= 2k + 1
2

π,

∫ ∞

−∞
nI(y)y ⊗ ydy(−1)k+1δ(x− (−1)kuI), t =

2k + 1
2

π,

for k = . . . ,−1, 0, 1, . . . and therefore

u(x, t) =





uI − x sin t

cos t
, t 6= 2k + 1

2
π,

∫∞
−∞ nI(y)ydy∫∞
−∞ nI(y)dy

(−1)k+1, t = 2k+1
2 π,

2r(x, t) =





(
uI − x sin t

cos t

)
⊗

(
uI − x sin t

cos t

)
, t 6= 2k + 1

2
π,

∫∞
−∞ nI(y)y ⊗ ydy∫∞

−∞ nI(y)dy
, t =

2k + 1
2

π,

for k = . . . ,−1, 0, 1, . . . . This is an example where the limit equations are
satisfied by n and J even after the breakdown of the classical solution in the
Burger’s equation except at the points t = ((2k+1)/2)π, k = . . . ,−1, 0, 1, . . . ,
of charge concentration.

Remark 3.6. Peter Lax initiated [19] the modern study of the zero-
dispersion limit in the discrete setting. The Lax-Levermore theory [21] for the
KdV equation has also been carried out on other integrable systems. The semi-
classical limit of the one-dimensional defocusing cubic nonlinear Schrödinger
equation (NLS) was the first to be treated after the KdV equation [16, 17].
Because that work introduced the hierarchical approach, it therefore includes
the defocusing modified KdV (mKdV) equation, which is the next equation
in the NLS hierarchy. Both the KdV and defocusing NLS hierarchies have
self-adjoint Lax operator, so it was a surprise when a zero-dispersion limit
for the focusing mKdV equation was the next to be treated [9]. In that case
the Lax operator is nonselfadjoint Zakharov-Shabat operator. The continuum
limit of the Toda lattice was the next [8]. It was the first discrete system to be
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so analyzed. Recently, a continuum limit for Ablowitz-Ladik lattice has been
carried out [34].

4. LOCAL-IN-TIME ANALYSIS OF (NONINTEGRABLE)
NONLINEAR SCHRÖDINGER EQUATIONS

In this section we shall consider the semiclassical limit of nonintegrable
nonlinear Schrödinger equations. At first we mention that a modified Madelung’s
transformation has been utilized in the short-time study of the semiclassical
limit (WKB limit) of the NLS:

iεψε
t = −ε2

2
∆ψε + h(ψ̄εψε)ψε(4.1)

with initial data: ψε(x, t = 0) =
√

nI(x)eiSI(x)/ε. Grenier [15] showed in
particular that for nI and SI in Hs(Rd), s > 2 + d/2 and h′ > 0, solu-
tions ψε exist on a small time interval [0, T ], T independent of ε. Moreover,
ψε =

√
nε(x, t)eiSε(x,t)/ε, with nε and Sε in L∞([0, T ];Hs) uniformly in ε, and

(nε,∇Sε) converges to the solution (n, u) of the isentropic compressible Euler
equation:

nt + div(nu) = 0,(4.2a)

ut +∇
( |u|2

2
+ h(n)

)
= 0.(4.2b)

We can also rewrite (4.2) in terms of the density and momentum (n, J = nu)
as

nt + div(nu) = 0,(4.3a)

Jt + div
(

J ⊗ J

n

)
+∇p(n) = 0,(4.3b)

where p(n) = nU ′(n) − U(n) and U(n) =
∫

h(n)dn. The condition h′ > 0 or
equivalently p′(n) = nU ′′(n) > 0 which ensures the hyperbolicity of the Euler
system (4.2) or (4.3) means that the pressure p(n) must be a strictly increasing
function of n. This implies that U must be a strictly convex function of n and
thus corresponds to a defocusing NLS equation. In this context, a focusing
nonlinear Schrödinger equation can be understood as a fluid whose pressure
decreases when the mass density increases – a phenomenon leading to the
development of mass concentration.
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The above cited result is only correct as long as the solution of the Euler
system (4.2) or (4.3) remains classical. In this case the limiting energy density
will be given by

E =
1
2
|J |2
n

+ U(n)(4.4)

and satisfies

∂tE + div
(

J

n
(E + p(n))

)
= 0(4.5)

hence, playing the role of a Lax entropy for the Euler system (4.3). Moreover,
the genuinely nonlinear nature of the Euler system ensures that its classi-
cal solution will develop singular behavior (an infinite derivative) for all but
rarefaction initial data.

The same modified Madelung’s transformation used by Grenier also ap-
plied to the derivative and modified nonlinear Schrödinger equations as well.
More precisely, we look for solutions ψε of the form

ψε(x, t) = Aε(x, t) exp
( i

ε
Sε(x, t)

)
,(4.6)

where the complex-valued function Aε = aε +ibε represents the amplitude and
the real-valued Sε represents the phase. Here we allow the phase function Sε

to depend on ε.
Now inserting (4.6) into the GMNLS equation (2.20) and then splitting

into two parts, of order O(1/ε) and O(1) respectively, we obtain

Sε
t +

1
2
(Sε

x)2 +
1
2
Φ′Sε

x + U ′ = 0,(4.7)

iAε
t +

i

2
(AεSε

xx + 2Aε
xSε

x) +
i

2
Φ′Aε

x +
i

2
AεΦ′′∂x(|Aε|2) = −ε

2
Aε

xx.(4.8)

The equations (4.7) are not the same as (2.21a, b) where we split into the
real and imaginary parts. The second-derivative term (the dispersive term)
is highly nonlinear in (2.21a,b) but it is linear in (4.7). Hence the classical
quasilinear hyperbolic theory can be applied to the local-in-time analysis of
the semiclassical limit of Schrödinger-type equations. Considering the change
of variable wε = Sε

x and using Aε = aε + ibε, we have

aε
t + (wε +

1
2
Φ′)aε

x +
1
2
Φ′′aε

[
(aε)2 + (bε)2

]
x

+
1
2
aεwε

x = −ε

2
bε
xx,(4.8a)
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bε
t + (wε +

1
2
Φ′)bε

x +
1
2
Φ′′bε

[
(aε)2 + (bε)2

]
x

+
1
2
bεwε

x =
ε

2
aε

xx,(4.8b)

wε
t + (wε +

1
2
Φ′)wε

x + (
1
2
Φ′′wε + U ′′)

[
(aε)2 + (bε)2

]
x

= 0.(4.8c)

This system can be written in the form

V ε
t +A(V ε)V ε

x =
ε

2
L(V ε), V ε = (aε, bε, wε)t,(4.9)

where

A(V ε) ≡




wε + 1
2Φ′ + (aε)2Φ′′ aεbεΦ′′ 1

2aε

aεbεΦ′′ wε + 1
2Φ′ + (bε)2Φ′′ 1

2bε

aε(wεΦ′′ + 2U ′′) bε(wεΦ′′ + 2U ′′) wε + 1
2Φ′


(4.10)

and

L(V ε) =




0 −∂2
x 0

∂2
x 0 0
0 0 0







aε

bε

wε


 =




−bε
xx

aε
xx

0


(4.11)

is an antisymmetric matrix. The matrix A(V ε) can be symmetrized by

S(V ε) =




2wεΦ′′ + 4U ′′ 0 0
0 2wεΦ′′ + 4U ′′ 0
0 0 1


 ,(4.12)

which is symmetric and positive if wεΦ′′ + 2U ′′ > 0 for all V ε. Thus, we
wrote the general modified nonlinear Schrödinger equation (2.20) as a linear
dispersive perturbation of a quasilinear symmetric hyperbolic system:

S(V )Vt + Ã(V )Vx =
ε

2
L̃(V ),(4.13)

where Ã = SA is a symmetric matrix (we omit ε for convenience). The an-
tisymmetric operator (ε/2)L̃ = (ε/2)SL reflects the dispersive nature of the
equations. Moreover, the classical energy estimate shows that this term con-
tributes nothing to the estimate, i.e., the singular perturbation does not create
energy. Therefore, the existence of the classical solutions and its semiclassical
limit proceed along the lines of the classical theory of quasilinear symmetric
hyperbolic systems (with some modifications). Indeed, we have the following
theorems [6, 7].
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Theorem 4.1. Let Φ, U ∈ C∞(R+,R) with ∂
∂xSε

IΦ
′′(nI) + 2U ′′(nI) > 0.

Let s > 5/2 be such that Aε
I and ∂xSI are uniformly bounded in Hs. Then

a solution ψε of the GMNLS equation (2.20) exists on a small time interval
[0, T ], T independent of ε. Moreover, ψε(x, t) = Aε(x, t) exp((i/ε)Sε(x, t))
with Aε and Sε

x bounded in L∞((0, T );Hs) uniformly in ε and limit points of
(Aε, Sε

x) are solutions of the modified Euler equation (2.25a,b)

Theorem 4.2. Let (n,M) be a solution of the quasilinear hyperbolic sys-
tem (2.25a,b) (the modified Euler equations) for 0 ≤ t ≤ T with initial condi-
tion

nI(x)= n(x, t = 0) = |AI(x)|2,
MI(x)= M(x, t = 0) = |AI(x)|2∂xSI(x) + Φ(|AI(x)|2).

Then there exists a critical value of ε, εc, and a constant C > 0 such that
under the hypotheses

(1) Aε
I(x) converges strongly to AI in Hs as ε tends to 0,

(2) ‖nI‖Hs < ∞, ‖MI‖Hs < ∞, s ≥ 3,

(3) 0 < ε < εc,

the initial value problem for the GMNLS equation (2.20) has a unique classical
solution of the form ψε(x, t) = Aε(x, t) exp((i/ε)Sε(x, t)) on [0, T ]. Moreover,
Aε and Sε

x are bounded in L∞((0, T );Hs) uniformly in ε.

The question of how to analyze dispersive limits of nonintegrable nonlinear
Schrödinger equations globally in time is widely open. Simple modulation
theories have been worked out, and there have been some very preliminary
analytical results, but the gaps are enormous to our knowledge.

5. DETERMINISTIC ANALOGUE OF TURBULENCE VIA ZERO DISPERSION LIMIT

Some of the basic ideas of turbulence can be addressed in a deterministic
setting instead of introducing random realizations of the fluid. In particular,
the weak limits of oscillatory sequences of dispersive (quantum) compressible
flows show a remarkable resemblance to the ensemble average of classical tur-
bulence flow. Remarkably, the weak limit satisfies an equation with an extra
diffusion, hence the name turbulent diffusion appears naturally. Following the
program initiated by Peter D. Lax [20], the diffusive property of the limit was
analyzed by C. Bardos, J-M Ghidaglia and S. Kamvissis in [5]. The specific
problem under consideration is the defocusing 1-d cubic nonlinear Schrödinger
equation given by

iεψε
t +

ε2

2
ψε

xx + (1− |ψε|2)ψε = 0(5.1)
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with the far-field boundary condition

ψε(x, t) ∼ exp
(
± i

ε
S∞

)
as x → ±∞,

for some S∞ ∈ R, and the initial condition

ψε(x, t = 0) =
√

n(x) exp
( i

ε
S(x)

)
(5.2)

with smooth functions n(x) and S(x) which are independent of ε and consis-
tent with the far-field boundary conditions. The defocusing NLS equation is
equivalent to the system

nε
t + Jε

x = 0,(5.3a)

Jt +
(

(Jε)2

nε
+

(nε)2

2

)

x

=
ε2

4
(nε(log nε)xx)x.(5.3b)

The equation (5.1) is time reversible and (5.3a,b) is a reversible perturbation
of the usual isentropic compressible Euler equation. For ε going to zero the
function nε and Jε converge weakly (because of the uniform energy bound)
to

n̄ = weak- lim
ε→0

nε,(5.4a)

J̄ = weak- lim
ε→0

Jε,(5.4b)

respectively. The weak limit of the energy is given by

Q̄ = weak- lim
ε→0

Q(nε, Jε) ≡ weak- lim
ε→0

(Jε)2

nε
+

(nε)2

2
.(5.5)

The limit equation is

n̄t + J̄x = 0,(5.6a)

J̄t +
(

J̄2

n̄
+

n̄2

2

)

x

+
(
Q̄−Q(n̄, J̄)

)
x

= 0.(5.6b)

In the context of the semiclassical limit of the defocusing cubic nonlinear
Schrödinger hierarchy, it is known [17] that the conserved densities converge in
the weak-L1

loc topology. In the prebreaking regime the weak-L1
loc convergence

can be strengthened to strong-L1 convergence by using conservation of the
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densities and the convexity of the energy. Thus, in the region where strong
convergence occurs one has

Q̄−Q(n̄, J̄) = 0.(5.7)

As expected, in these regions (5.6) is the compressible Euler equation for an
isentropic fluid:

n̄t + J̄x = 0,(5.8a)

J̄t +
(

J̄2

n̄
+

n̄2

2

)

x

= 0.(5.8b)

However, the strong convergence does not hold everywhere except in the pre-
breaking regime. The regions where strong convergence fails are called the
Whitham regions. Since the function (n, J) 7→ Q(n, J) is convex, the convex-
ity argument implies

Q̄−Q(n̄, J̄) > 0(5.9)

in the Whitham region. Define

ν =
Q̄−Q(n̄, J̄)

J̄x
.(5.10)

Then (5.6) become

n̄t + J̄x = 0,(5.11a)

J̄t +
(

J̄2

n̄
+

n̄2

2

)

x

+ (νJ̄x)x = 0.(5.11b)

The term (νJ̄x)x plays the role of the turbulent diffusion. The existence of
the turbulent model requires that ν be nonnegative, which is equivalent to the
property

ν =
Q̄−Q(n̄, J̄)

J̄x
≥ 0 ⇐⇒ J̄x > 0.(5.12)

Since diffusive properties may appear on a larger time scale, it is natural to
explore the properties (5.13) for large time. Assume that the initial datum√

n(x) is a single up-side-down positive bump with a unique minimum and a
horizontal asymptotic of 1 as |x| → ∞ which is also its upper bound. Then
the scattering data for

√
n(x) and S(x) can be computed asymptotically for
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small ε in terms of the associated Riemann invariants using the semiclassical
(WKB) method. Observe that the existence for large time of a diffusive regime
would be given by J̄x ≥ 0 in the Whitham region and with the conservation
of mass (5.11a) this is equivalent to n̄t ≤ 0. This can be discussed in detail
with the help of the Weyl formula [17].

The above observation concerns the appearance of the positive turbulent
viscosity in the limit equation satisfied by (n̄, J̄) for the NLS dispersive limit.
This is clearly related to the appearance of irreversibility in the weak limit of
reversible model [5].
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