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STABILITY OF OSCILLATORY SOLUTIONS OF
DIFFERENCE EQUATIONS WITH DELAYS

Sui Sun Cheng, Guang Zhang, and Shu Tang Liu

Abstract. Existence criteria for oscillatory solutions of difference equa-
tions have been obatined by many authors. It is therefore of interest to
obtain additional conditions which are needed to yield stability of these
solutions. In this paper, such conditions are derived for two functional
difference equations.

1. Introduction

Criteria for the existence of oscillatory solutions of differential and differ-
ence equations have been derived by many authors. It is therefore of interest
to know what additional conditions are needed to yield stability of oscillatory
solutions. While such questions have been dealt with in the area of differen-
tial equations [4, 5, 9], to the best of our knowledge, there are only a limited
number of studies which are related to difference equations. As an example, in
[6], Ladas et al. established the following result: Let {p(n)}∞n=0 be a positive
sequence such that

lim sup
n→∞

n∑
i=n−σ

p(i) < 1.

Then every oscillatory solution {xn} of the following difference equation

xn+1 − xn + p(n)xn−σ = 0, n = 0, 1, 2, . . .(1)

tends to zero as n→∞.
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In this paper, we are concerned with two functional difference equations.
The first is the following equation

xn+1 − xn + p(n)f(xσ(n)) = g(n), n = 0, 1, 2, . . . ,(2)

where {p(n)}∞n=0, {g(n)}∞n=0 are real sequences, and σ(n) is an integer-valued
function defined for n ≥ 0 such that σ(n) → ∞ as n → ∞. The function
f : R→ R is nondecreasing and satisfies xf(x) > 0 for x 6= 0.

The second is the equation

∆ (h(n)∆xn) + p(n)f
(
xσ(n)

)
= g(n), n = 0, 1, 2, ...,(3)

where {h(n)}∞n=0 is a positive sequence, and {p(n)}∞n=0, {g(n)}∞n=0, σ(n) as
well as well as f satisfy the same assumptions stated above. We will establish
several stability criteria which are sufficient for every oscillatory solutions of
(2) or (3) to be bounded or to converge to zero.

Since (2) or (3) are recurrence relations, given appropriate conditions on
σ (e.g., σ(n) ≤ n for n ≥ 0), existence and uniqueness theorems for their
solutions are easily formulated and proved. Here, a solution of (2) or (3) is a
sequence {xn} defined for n ≥ σ∗, where σ∗ = infn≥0 σ(n) > −∞. A solution
of (2) or (3) or, in general, a sequence is said to be oscillatory if it is neither
eventually positive nor eventually negative.

Equations of the form (2) or (3) have been studied by a number of au-
thors (see e.g. [2, 3, 8, 10, 11]). Under appropriate conditions on the coefficient
sequences and the functions σ and f , it is known that all solutions are oscilla-
tory. Here we only require oscillatory solutions exist. Such existence criteria
are relatively scarce but not nonexistent (see e.g. [12]).

The ideas in this paper are not completely new since they are variations of
arguments leading to Lyapunov inequalities (see e.g. Cheng [1]), and Kusano
and Onose [5] have employed similar ideas in deriving stability criteria for
oscillatory solutions of second order functional differential equations.

For the sake of convenience, the notations a+ = max{a, 0} and a− =
−min{a, 0} will be adopted. Also, as is customary, an empty sum will be
taken to be zero.

We will need the following properties of an oscillatory sequence. First we
need several terminologies. Let us first say that a sequence x = {xn}bn=a pos-
sesses a positive arch x(α, β) if x(α, β) is a finite subsequence {xα, xα+1, ..., xβ}
of x such that xα−1 ≤ 0, xβ+1 ≤ 0 and xi > 0 for α ≤ i ≤ β. A negative arch
of x is similarly defined. Given two positive arches x(α, β) and x(s, t) of x, the
arch x(α, β) is said to be the immediate predecessor of the positive arch x(s, t)
if the sequence {xβ, xβ+1, ..., xs} does not have any positive arches. Similarly,
given any two positive or negative arches x(α, β) and x(s, t) of x, the arch
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x(α, β) is said to be the immediate predecessor of the arch x(s, t) of x if the
sequence {xβ, xβ+1, ..., xs} does not have any arches. An immediate predeces-
sor and its successor form neighbors.

It is not difficult to see that if a sequence x = {xn}∞n=a is oscillatory and if
it has a positive subsequence, then x has a positive arch x(α, β). Indeed, the
set Ω of integers where xn > 0 is infinite. Since {xn} is not eventually positive,
Ω 6= {a, a + 1, ...}. Thus there is a least integer α in Ω such that xα−1 ≤ 0
and xα > 0. If xα+1 ≤ 0, we may take β = α. Otherwise, there is some integer
m such that xα+1 > 0, ..., xm > 0 and xm+1 ≤ 0. In such a case, we may let
β = m. By induction, we may now easily show that there is a unique sequence
{x(αi, βi)}∞i=1 of positive arches of x such that each x(αi, βi) is the immediate
predecessor of the positive arch x(αi+1, βi+1) and that every positive arch of x
is contained in this sequence. Suppose in addition that lim supn→∞ xn = δ > 0.
Then by examining the positive arches in the sequence {x(αi, βi)}∞i=1 one by
one, we may conclude that x has a sequence {x(si, ti)}∞i=1 of positive arches
such that maxsi≤j≤ti xj > δ/2; and if in addition lim supn→∞ xn = ∞, the
same reasoning will lead to a sequence {x(ui, vi)}∞i=1 such that maxa≤j≤vi xj
is equal to maxui≤j≤vi xj and tends monotonically to ∞ as i→∞. A similar
statement can be made for oscillatory sequences with negative subsequences.
Finally, if {xn}∞n=a oscillates and if lim supn→∞ |xn| = δ > 0, then we may
conclude that x has a sequence {x(si, ti)}∞i=1 of positive arches such that
maxsi≤j≤ti |xj| > δ/2; and if {xn}∞n=a oscillates and lim supn→∞ |xn| = ∞,
then there is a sequence {x(ui, vi)}∞i=1 of arches of x such that maxa≤j≤vi |xj|
is equal to maxui≤j≤vi |xj| and tends monotonically to∞ as i→∞. When the
unique sequence {x(αi, βi)}∞i=1 of neighboring arches of an oscillatory sequence
satisfies βi − αi ≤ c for i ≥ 1, we will say that such a sequence has oscilla-
tion distances bounded by c. An example of such a sequence is a periodic and
oscillatory sequence.

2. Equation (2)

Let {xn} be a bounded and oscillatory solution of (2) and assume that
supn≥σ∗ |xn| = M <∞ and

lim sup
n→∞

|xn| > 2δ > 0.(4)

As asserted in Section 1, there is a sequence {x(αi, βi)}∞i=1 of neighboring
arches of x. By choosing a subsequence if necessary, we further assume that

Mi = max
αi≤j≤βi

|xj| = |xγi | > δ, i = 1, 2, ...,
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where αi ≤ γi ≤ βi. By summing (2) from αi − 1 to γi − 1, we obtain

xγi − xαi−1 = −
γi−1∑

j=αi−1

p(j)f
(
xσ(j)

)
+

γi−1∑
j=αi−1

g(j).

Since |xγi | ≤ |xγi − xαi−1|, we see that

Mi = |xγi | ≤
γi−1∑

j=αi−1

∣∣p(j)f (xσ(j)
)∣∣+ γi−1∑

j=αi−1

|g(j)| .(5)

If, in addition to the properties of the function f, assume further that |f(x)| ≤
f (|x|) , then ∣∣f (xσ(j)

)∣∣ ≤ f (∣∣xσ(j)
∣∣) ≤ f(M)

so that

δ < Mi ≤ f(M)
∞∑

j=αi−1

|p(j)|+
∞∑

j=αi−1

|g(j)| .

By imposing conditions on {p(n)} and {g(n)} such that the two infinite sums
in the last inequality tend to zero as αi tends to infinity, we see that a contra-
diction will be reached. The following is now clear.

Lemma 2.1. Suppose |f(x)| ≤ f (|x|) for all x and

∞∑
j=0

|p(j)| <∞ and
∞∑
j=0

|g(j)| <∞.(6)

Then every bounded oscillatory solution {xn} of (2) tends to zero as n→∞.

Theorem 2.1. Suppose that |f(x)| ≤ f (|x|) for all x, that σ(n) ≤ n+ 1
for n ≥ 0, that (6) holds and that

lim sup
|x|→∞

f(x)
x

= Γ <∞.(7)

Then every oscillatory solution {xn} of (2) is bounded (and hence tends to
zero as n→∞).

Proof. Let {xn} be an oscillatory solution of (2). We assert that it must
be bounded. Assume to the contrary that {xn} is unbounded. As asserted
before, there exists a sequence {x(αi, βi)}∞i=1 of neighboring arches of x. Let

Mi = max
αi≤j≤βi

|xj|, i ≥ 1.
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Since {xn} is unbounded, by choosing a subsequence if necessary, we may
assume that {Mi} is nondecreasing and tends to positive infinity. Thus, we
see that

Mi = max
αi≤j≤βi

|xj| = max
σ∗≤j≤βi

|xj|,

where Mi = |xγi | tends to ∞ monotonically as i → ∞. Clearly, (5) is again
valid. Furthermore, since σ(n) ≤ n+ 1, we have

max
αi≤j≤γi−1

∣∣f (xσ(j)
)∣∣ ≤ max

αi≤j≤γi−1
f
(∣∣xσ(j)

∣∣) ≤ f (Mi) .

It follows that

1 ≤ f(Mi)
Mi

∞∑
j=αi−1

|p(j)|+ 1
Mi

∞∑
j=αi−1

|g(j)|.(8)

By taking limits on both sides of (8), we see that

1 ≤ Γ lim
i→∞

∞∑
j=αi−1

|p(j)|+ 1
M1

lim
i→∞

∞∑
j=αi−1

|g(j)| = 0,

which is a contradiction.

As an example, consider the equation

xn+1 − xn +
1
n!
xn+1 = (−1)n+1n!(n+ 2) + 1

n!(n+ 1)!
.

It is easy to see that the assumptions in Theorem 2.1 hold. Thus any of its
oscillatory solution will tend to zero. Indeed, the sequence {(−1)n/n!} is such
a solution.

We remark that in case σ(n) = n+1, then without any additional assump-
tions on f, (5) is replaced by

Mi≤ f(M)
γi−1∑

j=αi−1

p−(j) +
γi−1∑

j=αi−1

|g(j)|

≤ f(M)
∞∑

j=αi−1

p−(j) +
∞∑

j=αi−1

|g(j)|,

and (8) changes to

1 ≤ f(Mi)
Mi

∞∑
j=αi−1

p−(j) +
1
Mi

∞∑
j=αi−1

|g(j)|.
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Therefore, the following variant of Lemma 2.1 holds.

Lemma 2.2. Suppose σ(n) = n+ 1 for n ≥ 0 and further that

∞∑
j=0

p−(j) <∞ and
∞∑
j=0

|g(j)| <∞.(9)

Then every bounded oscillatory solution of (2) tends to zero as n→∞.

Theorem 2.2. Suppose that σ(n) = n + 1 for n ≥ 0, and that (7) and
(9) hold. Then every oscillatory solution of (2) is bounded (and hence tends
to zero as n→∞).

We remark further that if the solution {xn} of (2) has oscillation distances
bounded by c, then (5) is replaced by

δ < Mi ≤ f(M)
αi+c∑
j=αi−1

|p(j)|+
αi+c∑
j=αi−1

|g(j)| ,

and (8) is replaced by

1 ≤ f(Mi)
Mi

αi+c∑
j=αi−1

p−(j) +
1
Mi

αi+c∑
j=αi−1

|g(j)| .

The following result is now clear.

Theorem 2.3. Suppose |f(x)| ≤ f(|x|) for all x, and

lim
n→∞

n+c+1∑
j=n

|p(j)| = lim
n→∞

n+c+1∑
j=n

‖g(j)| = 0.(10)

Then every bounded (and oscillatory) solution of (2) with oscillatory distances
bounded by c will converge to zero. Suppose in addition that σ(n) ≤ n+ 1 for
n ≥ 0, and that (7) holds. Then every (oscillatory) solution {xn} of (2) with
oscillatory distances bounded by c is bounded (and hence converges to zero).

A similar statement can be made in case σ(n) = n+ 1 for n ≥ 0.

Theorem 2.4. Suppose |f(x)| ≤ f(|x|) for all x, and σ(n) ≤ n + 1 for
n ≥ 0, and

lim
n→∞

n+c+1∑
j=n

p−(j) = lim
n→∞

n+c+1∑
j=n

|g(j)| = 0.



Delay Difference Equations 509

Then every bounded (and oscillatory) solution with oscillation distances bounded
by c will converge to zero. If in addition that (7) holds, then every (oscillatory)
solution of (2) with oscillation distances bounded by c will converge to zero.

Under the condition that the forcing term in (2) is identically zero, (8)
becomes

1 ≤ f(Mi)
Mi

αi+c∑
j=αi−1

|p(j)|.

Therefore, if

lim sup
n→∞

n+c+1∑
j=n

|p(j)| < 1
Γ
,(11)

then a contradiction will be obtained.

Theorem 2.5. Suppose that g(n) ≡ 0, and that (7) holds. If in addition,
either (i) |f(x)| ≤ f(|x|) for all x, and σ(n) ≤ n+ 1 for n ≥ 0 and (11) holds,
or, (ii) σ(n) = n+ 1 for n ≥ 0 and

lim sup
n→∞

n+c+1∑
j=n

p−(j) <
1
Γ

holds, then every (oscillatory) solution {xn} with oscillatory distances bounded
by c is bounded.

As an example, consider the case where p(n) ≥ 0 for n ≥ 0 and g(n) =
∆G(n) for n ≥ 0, where {G(n)} is a real sequence which has a nonpositive
subsequence {G(nk)}. If (2) has an eventually positive solution, then

∆(xn −G(n)) = −p(n)f(xσ(n)) ≤ 0

for all large n. The nonincreasing sequence {xn−G(n)} cannot be eventually
nonpositive, for otherwise

0 < xnk ≤ G(nk) ≤ 0

for all large k, which is a contradiction. Thus {xn − G(n)} is eventually
positive. This implies

xn > G+(n)

for all large n. Furthermore,

∆ (xn −G(n)) ≤ −p(n)f
(
xσ(n)

)
≤ −p(n)f

(
G+(σ(n))

)
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for all large n. Summing the above inequality from N to k, we obtain

0 > − (xk+1 −G(k + 1)) ≥ −x(N) +G(N) +
k∑

n=N

p(n)f
(
G+(σ(n))

)
.

If the condition
∞∑
j=N

p(n)f
(
G+(σ(n))

)
=∞

is imposed, a contradiction will be reached. The following is now not difficult
to see: Suppose p(n) ≥ 0 for n ≥ 0, suppose there is an oscillatory sequence
{G(n)} which satisfies ∆G(n) = g(n) for n ≥ 0, and suppose further that

∞∑
n=0

p(n)f
(
G+(σ(n))

)
=
∞∑
n=0

p(n)f
(
G−(σ(n))

)
=∞.(12)

Then every solution of (2) oscillates.
In particular, if p(n) ≥ n for n ≥ 0, then all solutions of the following

equation

∆xn + p(n)xn+1 = (−1)n+1
{

1
(n+ 1)2

+
1
n2

}
converge to zero. This is easily seen by taking G(n) = (−1)n/n2 and then
verifying the validity of the conditions (7), (9) and (12).

3. Equation (3)

Let {xn} be a bounded and oscillatory solution of (3) and assume that
supn≥σ∗ |xn| = M <∞, and

lim sup
n→∞

|xn| > 2δ > 0.

As asserted in Section 1, the sequence x has a sequence {x(αi, βi)} of arches.
By choosing a subsequence if necessary, we may further assume that

Mi = max
αi≤j≤βi

|xj| = |xγi | > δ, j = 1, 2, ...,

where αi ≤ γi ≤ βi. Upon summing (3) from j ∈ {αi − 1, αi, ..., γi − 1} to
γi − 1, we obtain

h(γi)∆xγi − h(j)∆xj = −
γi−1∑
k=j

p(k)f
(
xσ(k)

)
+

γi−1∑
k=j

g(k).
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Assume that x(αi, βi) is a positive arch. Then ∆xγi ≤ 0, so that

∆xj ≤
1

h(j)

γi−1∑
k=j

p(k)f
(
xσ(k)

)
− 1
h(j)

γi−1∑
k=j

g(k),

and
γi−1∑

j=αi−1

∆xj =xγi − xαi−1 ≤
γi−1∑

j=αi−1

1
h(j)

γi−1∑
k=j

p(k)f
(
xσ(k)

)

−
γi−1∑

j=αi−1

1
h(j)

γi−1∑
k=j

g(k).

Since xαi−1 ≤ 0, we see that

Mi = xγi ≤
γi−1∑

j=αi−1

1
h(j)

γi−1∑
k=j

∣∣p(k)f
(
xσ(k)

)∣∣+ γi−1∑
j=αi−1

1
h(j)

γi−1∑
k=j

|g(k)| .(13)

Under the additional assumption that |f (x)| ≤ f (|x|) , we see further that

Mi≤ f(M)
γi−1∑

j=αi−1

1
h(j)

γi−1∑
k=j

|p(k)|+
γi−1∑

j=αi−1

1
h(j)

γi−1∑
k=j

|g(k)|

≤ f(M)
∞∑

j=αi−1

∞∑
k=j

|p(k)|
h(j)

+
∞∑

j=αi−1

∞∑
k=j

|g(k)|
h(j)

.

In case the arch x(αi, βi) is negative, a similar argument leads to the above
inequality again. By imposing conditions on {h(n)} and {p(n)} such that the
two double sums tend to zero as j tends to infinity, we see that a contradiction
will be reached.

Lemma 3.1. Suppose |f (x)| ≤ f (|x|) for all x, and

∞∑
i=0

1
h(i)

=∞,
∞∑
k=0

k∑
j=0

|p(k)|
h(j)

<∞ and
∞∑
k=0

k∑
j=0

|g(k)|
h(j)

<∞,(14)

or
∞∑
i=0

1
h(i)

<∞,
∞∑
k=0

|p(k)| <∞ and
∞∑
k=0

|q(k)| <∞.(15)

Then every bounded oscillatory solution of (3) tends to zero as n→∞.

Indeed, it is not difficult to see that (15) implies
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lim
i→∞

∞∑
j=i

∞∑
k=j

|p(k)|
h(j)

= lim
i→∞

∞∑
j=i

∞∑
k=j

|g(k)|
h(j)

= 0.(16)

Furthermore, note that (14) implies

∞∑
j=0

∞∑
k=j

|p(k)|
h(j)

<∞

and
∞∑
j=0

∞∑
k=j

|g(k)|
h(j)

<∞,

and thus the same conclusion (16) holds.

Theorem 3.1. Suppose that |f(x)| ≤ f (|x|) for all x, and, either (14) or
(15) holds. Suppose further that σ(n) ≤ n+ 1 for n ≥ 0 and

lim sup
|x|→∞

f(x)
x

= Γ <∞.(17)

Then every oscillatory solution {xn} of (3) is bounded (and hence tends to
zero as n→∞).

Proof. Let {xn} be an oscillatory solution of (3). We assert that it must be
bounded. Otherwise, as seen in the proof of Theorem 2.1, there is a sequence
{x(αi, βi)}∞i=1 of arches such that

Mi = max
αi≤j≤βi

|xj| = max
σ∗≤j≤βi

|xj| ,

where Mi = |xγi | increases to infinity as i → ∞. Clearly, (13) is again valid.
Furthermore, since σ(n) ≤ n+ 1, we have

max
j≤k≤γi−1

∣∣f (xσ(k)
)∣∣ ≤ f (Mi) .

It follows that

1≤ f (Mi)
Mi

∞∑
j=αi

∞∑
k=j

|p(k)|
h(j)

+
1
Mi

∞∑
j=αi

∞∑
k=j

|g(k)|
h(j)

≤ Γ
∞∑
j=αi

∞∑
k=j

|p(k)|
h(j)

+
1
M1

∞∑
j=αi

∞∑
k=j

|g(k)|
h(j)

,

which is contrary to either (14) or (15). The proof is complete.
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We remark that in case σ(n) = n+ 1, then (13) is replaced by

Mi≤
γi−1∑

j=αi−1

1
h(j)

γi−1∑
k=j

p+(k)f(xk+1) +
γi−1∑

j=αi−1

1
h(j)

γi−1∑
k=j

|g(k)|

≤ f (Mi)
γi−1∑

j=αi−1

1
h(j)

γi−1∑
k=j

p+(k) +
γi−1∑

j=αi−1

1
h(j)

γi−1∑
k=j

|g(k)| .

Therefore, the following variant of Lemma 3.1 is valid.

Lemma 3.2. Suppose σ(n) = n+ 1 for n ≥ 0. Suppose

∞∑
i=0

1
h(i)

=∞,
∞∑
k=0

k∑
j=0

p+(k)
h(j)

<∞ and
∞∑
k=0

k∑
j=0

|g(k)|
h(j)

<∞,(18)

or

∞∑
i=0

1
h(i)

<∞,
∞∑
k=0

p+(k) <∞ and
∞∑
k=0

|g(k)| <∞.(19)

Then every bounded oscillatory solution of (3) tends to zero as n→∞.

Furthermore, the following variant of Theorem 3.1 is valid.

Theorem 3.2. Suppose σ(n) = n + 1 for n ≥ 0, that either (18) or
(19) holds, and that (17) holds. Then every oscillatory solution {xn} of (3) is
bounded (and hence tends to zero as n→∞).

We remark further that if the solution {xn} has oscillation distances bounded
by c, then (13) is replaced by

Mi ≤ f (Mi)
αi+c∑
j=αi−1

1
h(j)

∞∑
k=j

|p(k)|+
αi+c∑
j=αi−1

1
h(j)

∞∑
k=j

|g(k)| .(20)

By imposing conditions on {h(n)}, {p(n)} and {g(n)} such that the two double
sums in the last two inequalities tend to zero as j tends to infinity, we see that
a contradiction will be reached. The following variant of Lemma 3.1 is now
clear.

Lemma 3.3. Suppose |f(x)| ≤ f(|x|) for all x, and

∞∑
i=0

|p(n)| <∞,
∞∑
i=0

|g(n)| <∞ and lim sup
n→∞

n+c+1∑
i=n

1
h(i)

<∞.(21)
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Then every bounded (and oscillatory) solution of (3) with oscillation distances
bounded by c converges to zero.

Dividing (20) through by Mi and then invoking (17) as in the proof of
Theorem 3.1, we see that

1 ≤ f (Mi)
Mi

αi+c∑
j=αi−1

1
h(j)

∞∑
k=j

|p(k)|+ 1
M1

αi+c∑
j=αi−1

1
h(j)

∞∑
k=j

|g(k)| .

The following variant of Theorem 3.1 is also clear.

Theorem 3.3. Suppose that |f(x)| ≤ f(|x|) for all x, that σ(n) ≤ n + 1
for n ≥ 0, that (21) and (17) hold. Then every (oscillatory) solution of (3)
with oscillation distances bounded by c converges to zero.

Theorem 3.4. Suppose σ(n) = n+ 1 for n ≥ 0 and suppose

∞∑
i=0

p+(n) <∞,
∞∑
i=0

|g(n)| <∞ and lim sup
n→∞

n+c+1∑
i=n

1
h(i)

<∞.(22)

Then every bounded (and oscillatory) solution of (3) with oscillation distances
bounded by c converges to zero. If in addition (17) holds, then every (oscillatory)
solution of (3) with oscillation distances bounded by c converges to zero.

As our final example, consider the equation

∆2xn+
1

(n+ 1)3
x

1/3
n+1 =

1
(n+ 2)3

sin(n+ 2)− 2
(n+ 1)3

sin(n+ 1)

+
1
n3

sinn+
1

(n+ 1)4
sin 1/3(n+ 1).

It is easy to see that the assumptions in Theorem 3.2 are satisfied, so that
every oscillatory solution of this equation tends to zero. Such a solution is
given by {sinn/n3}.
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