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POINCARÉ RECURRENCES OF COUPLED SUBSYSTEMS
IN SYNCHRONIZED REGIMES

Valentin Afraimovich

Abstract. We introduce a notion of topological synchronization by using
Poincaré recurrences of coupled subsystems. We show that the dimension
of Poincaré recurrences may indicate synchronized behavior.

1. Introduction

It is well-known now that dynamical systems with chaotic behavior can be
synchronized provided that they are coupled by a dissipative coupling (see, for
instance, [11] and references therein). In other words, a system{

ẋ = X(x) + cF (x, y, c),

ẏ = Y (y) + cG(x, y, c),
(1.1)

where x ∈ Rm, y ∈ Rn, c is a coupling parameter, can behave in such a way
that the x-component and the y-component of a solution x(t, x0, y0), y(t, x0, y0),
manifest “similar properties” for t ≥ t0 � 1, independent of initial conditions
(x0, y0) in a large region in Rm+n. In the case of “exact” synchronization, the
following identity holds:

lim
t→∞
|x(t, x0, y0)− y(t, x0, y0)| = 0.(1.2)

Of course, in this case m = n and the right-hand side of the system (1.1)
should satisfy the identity

X(x) + cF (x, x, c) ≡ Y (x) + cG(x, x, c).(1.3)
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For example, it is so if X(x) ≡ Y (x) and F (x, x, c) = G(x, x, c) ≡ 0.
However, if coupled subsystems in (1.1) are nonidentical then we can-

not expect the validity of (1.2) and the notion of “synchronization” may be
treated differently. Specialists introduced notions of phase synchronization
[14], asymptotic synchronization [9], stochastic synchronization [3], general-
ized synchronization [1] and others to point out significant features of the
synchronization phenomena. The present work is of the same spirit. A defi-
nition of synchronization will be introduced which is based on the notion of
Poincaré recurrences.

We start with periodic oscillations. Assume that the system ẋ = X(x) has
a linearly stable limit cycle L1 with the period τ1 and the system ẏ = Y (x) has
a linearly stable limit cycle L2 with the period τ2. Then the system (1.1) for
c = 0 has the attracting torus T0 = L1×L2. If the rotation number ρ0 = τ1/τ2
is rational, then T0 consists of periodic orbits of the system (1.1) for c = 0; if
ρ0 is irrational then every orbit on T0 is dense (on it). For c 6= 0 and small
enough, still there exists an invariant attracting torus Tc in a neighborhood
of T0 [7]. Generally, for an open region in the parameter space, the system
(1.1) has stable limit cycles. The synchronization regime corresponds to the
existence of the stable limit cycle, say Lc, on the torus Tc. The Poincaré
rotation number for these values of parameters is rational, say, m0/n0 ∈ Q,
and it means that the closed curve Lc makes m0 rotations along the generator
L1 of the torus T0 and n0 rotations along another one. In terms of individual
subsystems, we can describe the regime as follows. The orbit Lc corresponds
to the solution x = xc(t), y = yc(t) of the system (1.1), where xc, yc are τc-
periodic vector functions. One can introduce “polar coordinates” (ai, θi) in a
neighborhood of Li, i = 1, 2, in Rm for i = 1, and Rn for i = 2, such that θi is
an angular coordinate along Li and a1(resp. a2) is an “amplitude” coordinate
on a transversal to L1 in Rm (resp. to L2 in Rn). Then (for small values of c)
the solution (xc(t), yc(t)) can be expressed in the new coordinates in the form

a1 = a1(t), θ1 = w1t+ α1(t), mod τc,
a2 = a2(t), θ2 = w2t+ α2(t), mod τc,

(1.4)

where a1, a2, α1, α2 are τc-periodic functions and w1/w2 = n0/m0. For the sake
of simplicity, assume that a1 and a2 are constants, α1 ≡ 0, α2 ≡ 0, m0 = 1.
Then at the moment t = tx = τc/w1 we have θ1(tx) = θ1(0) mod τc and
xc(tx) = xc(0). However, only at the moment t = ty = τc/w2 = n0tx, the
second coordinate yc(ty) = yc(0). In other words, the “period” tc of oscillations
in the x-subspace can be different from the period of those in the y-subspace,
and this difference can be written as the following equation

tx
ty

=
1
n0
.(1.5)
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The same is true if m0 6= 1, and, then,

tx
ty

=
m0

n0
.(1.6)

Assume now that for some parameter values, the system (1.1) has an at-
tractor Ac containing infinitely many orbits, such that for (x0, y0) ∈ Ac the
projections x(t, x0, y0) and y(t, x0, y0) of the solution (x, y)(t, x0, y0) onto the
x-subspace and the y-subspace behave similarly. In order to define rigorously
this similarity, we have to be sure that if (x0, y0) belongs to a periodic orbit
then something like the inequality (1.6) holds and the number m0/n0 is in-
dependent of the choice of the periodic orbit in the attractor. Furthermore,
if (x0, y0) belongs to a nonperiodic orbit we should define some quantities
which are similar to the periods of periodic orbits, and we again have to have
something like the equality (1.6) for these quantities. We use Poincaré recur-
rences in the capacity of desired quantities, and we use Carathéodory-Pesin
[13] approach to compare the Poincaré recurrences for different subsystems.

2. Poincaré Recurrences

Orbits in Hamiltonian systems and limiting orbits in dissipative systems
possess the property of a repetition of their behavior in time. This repetition
can be expressed in terms of Poincaré recurrences.

Consider, first, a dynamical system with discrete time, generated by a map
f : M →M , where M is the phase space of the system which is assumed to be
a complete metric space. Let A be a compact f -invariant subset (for example,
A is an attractor). Given a set U ∈ A and a point z ∈ U , let us denote by
t(z, U) the smallest positive integer for which f t(z,U)z ∈ U again.

Definition 2.1. 1. We call t(z, U) the Poincaré recurrence for the set U
specified by the point z (it can be ∞, of course).
2. The quantity

τ(U) = inf
z∈U

t(z, U)(2.1)

is called the Poincaré recurrence for the set U .

It is clear that τ(U) <∞ if U is open, and nonwandering points (in A) are
dense in A. For volume-preserving maps of a Riemannian manifold, τ(U) <∞
if U is open, thanks to the Poincaré recurrence theorem (see for instance [10]).

Consider now the flow (f t,M), where t ∈ R+ and M is the phase space.
Given an open U and a point z ∈ U , let us denote by t1(z, U) the following
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number: if f tz ∈ U for all t ∈ R+, then t1(z, U) =∞; if there is t0 ∈ R+ such
that f t0z 6∈ U , then

t1(z, U) = inf{t0|f t0z 6∈ U}.

Since U is open, therefore if there is t̄ > t1(z, U) such that f t̄z ∈ U , then there
exists a maximal interval (α, β) 3 t̄ such that f tz ∈ U for any t ∈ (α, β). Set

t(z, U) = 0, if t1(z, U) =∞;

t(z, U) = inf
α+ β

2
, if t1(z, U) <∞,

where the infimum is taken over all maximal intervals (α, β) such that α ≥
t1(z, U) and f tz ∈ U if t ∈ (α, β). In particular, f t(z,U)z ∈ U .

Definition 2.2. The number t(z, U) is said to be the Poincaré recurrence
for the set U specified by the point z. The number

τ(U) = inf
z∈U

t(z, U)(2.2)

is called the Poincaré recurrence for the set U .

These definitions are related to the repetition of the motion along orbits
of dynamical systems. However, we are going to deal with the properties of
the repetition along the x-(or the y-) components of the solution of a system
of (1.1) type. We have to extend the definition of Poincaré recurrences to the
case of coupled subsystems.

LetX,Y be complete metric spaces and f t : X×Y → X×Y be a dynamical
system, t ∈ R+ or t ∈ R, in the case of continuous time, and t ∈ N or t ∈ Z
in the case of discrete time. Let A be a compact invariant subset of X × Y
and π1A = A1 ⊂ X, π2A = A2 ⊂ Y be the images under natural projections
of A to the first and the second subspaces respectively. Let

x(t, x∗, y∗) = π1f
t(x∗, y∗) ⊂ A1,

y(t, x∗, y∗) = π2f
t(x∗, y∗) ⊂ A2

be images of the orbit {f t(x∗, y∗)} going through an initial point (x∗, y∗) ∈ A.
Consider, first, the case of the discrete time. Let U1 ⊂ X ∩ A1 (resp.

U2 ⊂ Y ∩ A2) be an open set in A1 (resp. A2), and x0 ∈ U1 (resp. y0 ∈ U2).
Let Yx0 = π2(π−1

1 (x0)∩A), the set of the y-coordinates of all preimages of the
point x0 in A (resp. Xy0 = π1(π−1

2 (y0)∩A)). Denote by tx(z, U1) the smallest
positive integer for which π1(f tx(z,U1)z) ∈ U1, where z = (x0, y), y ∈ Yx0 , and
by ty(z̃, U2) the smallest positive integer for which π2(f ty(z̃,U2)z̃) ∈ U2, where
z̃ = (x, y0), x ∈ Xy0 .
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Definition 2.3. 1. The number

t(x0, U1) := inf
y∈Yx0

tx(z, U1),(2.3)

z = (x0, y), y ∈ Yx0 , is said to be the x-Poincaré recurrence for the set U1
specified by the point x0 ∈ U1. The number

τx(U1) := inf
x0∈U1

t(x0, U1)(2.4)

is said to be the x-Poincaré recurrence for the set U1.

2. The number

t(y0, U2) := inf
x∈Xy0

ty(z̃, U2),(2.5)

z̃ = (x, y0), x ∈ Xy0, is said to be the y-Poincaré recurrence for the set U2
specified by the point y0 ∈ U2. The number

τy(U2) := inf
y0∈U2

t(y0, U2)(2.6)

is said to be the y-Poincaré recurrence.

For the case of continuous time, we proceed in the way of Definition 2.2.
Let U1 ⊂ X ∩ A1 (resp. U2 ⊂ Y ∩ A2) be an open set in A1 (resp. A2), and
x0 ∈ U1 (resp. y0 ∈ U2). As above, denote by Yx0 the set π2(π−1

1 (x0) ∩ A) of
all π1-preimages of the point x0 ∈ A1 (resp. Xy0 = π1(π−1

2 (y0) ∩ A, the set
of all π2-preimages of the point y0 ∈ A2). Introduce the number t1(x0, U1)
(resp. t2(y0, U2)) as follows. If π1(f tz) ∈ U1, t ∈ R+, (resp. π2(f tz̃) ∈
U2, t ∈ R+), where z = (x0, y), y ∈ Yx0 (resp. z̃ = (x, y0), x ∈ Xy0), then
t1(x0, U1) := ∞ (resp. t2(y0, U2) =: ∞). If there exists z = (x0, y), y ∈ Yx0

(resp. z̃ = (x, y0), x ∈ Xy0) such that π1(f t0z) 6∈ U1 for some t0 = t0(y) (resp.
π2(f t0 z̃) 6∈ U2 for some t0 = t0(x)), then

t1(x0, U1) =: inf
y∈Yx0

inf
{
t0(y)|f t0(y)z 6∈ U1

}
(2.7)

(
resp. t2(y0, U2) =: inf

x∈Xy0
inf
{
t0(x)|f t0(x)z̃ 6∈ U2

})
.(2.8)

Since the set U1 (resp. U2) is open, then if there exists t̄ > t1(x0, U1) (resp. t̄ >
t2(y0, U2)) such that π1(f t̄(x0, y)) ∈ U1 for some y ∈ Yx0 (resp. π2(f t̄(x, y0)) ∈
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U2 for some x ∈ Xy0), then there is a maximal interval (α, β) 3 t̄ such that
π1(f t(x0, y)) ∈ U1 (resp. π2(f t(x, y0)) ∈ U2) for any t ∈ (α, β). Set

t(x0, U1) := 0 if t1(x0, U1) =∞;

t(x0, U1) := infy∈Yx0
inf

α+ β

2
if t1(x0, U1) <∞,

(2.9)

where the first infimum is taken over all maximal intervals (α, β) such that
α ≥ t1(x0, U1) and π1(f t(x0, y)) ∈ U1 if t ∈ (α, β), y ∈ Yx0 . In particular,
π1(f t(x0,U1)(x0, y)) ∈ U1 for some y ∈ Yx0 . Similarly, introduce

t(y0, U2) := 0 if t2(y0, U2) =∞;

t(y0, U2) := infx∈Xy0 inf
α+ β

2
if t2(y0, U2) <∞,

(2.10)

where the first infimum is taken over all maximal intervals (α, β) such that
α ≥ t2(y0, U2) and

π2(f t(x, y0)) ∈ U2 if t ∈ (α, β), x ∈ Xy0 .

Definition 2.4. The number t(x0, U1) is said to be the x-Poincaré recur-
rence for the set U1 specified by the point x0. The number

τx(U1) := inf
x0∈U1

t(x0, U1)(2.11)

is said to be the x-Poincaré recurrence for the set U1. The number t(y0, U2)
is said to be the y-Poincaré recurrence for the set U2 specified by the point
y0 ∈ U2. The number

τy(U2) := inf
y0∈U2

t(y0, U2)(2.12)

is said to be the y-Poincaré recurrence for the set U2.

The main difference between Definitions 2.1, 2.2 and 2.3, 2.4 is the addi-
tional infimum. We take the infimum not only over all points in the open set
but also over all possible “branches” going through the point in it. Roughly
speaking, the curves x(t) for different initial condititions can intersect each
other (they are not the orbits but only their projections) and at a point of the
intersection we should take into account all possible itineraries. Of course, it
is possible to introduce not the infimum but some other function of different
“branches”, but at the moment, the infimum seems to be a satisfactory one.

3. Topological Synchronization
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We defined in the previous section the quantities which play the role of
the periods. By using them, we may define some kind of “synchronization
equalities” of the type (1.5), (1.6). We should take into account that τx(U1)
and τy(U2) depend on the sets U1, U2. For example, they may go to infinity as
diam (U1)→ 0 (resp. diam (U2)→ 0). Moreover, we have to be prepared for
the fact that not all points on a fixed “curve” x(t), y(t) determine the same
value p/q.

Consider the following example of a periodically perturbed oscillator:

ẍ+ kẋ+ f(x) = a sin θ, θ̇ = 1,(3.1)

where the nonlinearity f(x) is of the Duffing-type. It is well-known (see, for
instance, [9]) that for same values of the parameters the system (3.1) undergoes
the period-doubling bifurcation, and has a stable 4π-periodic limit cycle, say,
L. For the system (3.1), the phase space is the direct product R2 × S1,
where X = {(x, ẋ)} ⊂ R2, Y = {θ,mod 2π} = S1. Let {x = x0(t), ẋ =
ẋ0(t)} ⊂ X, {θ = t,mod 2π} ⊂ S1 be a solution corresponding to L. It
is simple to understand that the curve x = x0(t), ẋ = ẋ0(t), t ∈ [0, 4π],
which is the projection of L onto X, might possess points of self-intersection.
At each of these points, say, (x∗, ẋ∗), we have x∗ = x0(t1) = x0(t2), ẋ∗ =
ẋ0(t1) = ẋ0(t2), t1 6= t2, t1, t2 ∈ (0, 4π). If L is close to limit cycle at
the bifurcation moment, then such points have to exist by simple geometrical
reasons. Evidently, if U1 is a small neighborhood of (x∗, ẋ∗), then τx(U1) <
4π− δ, where δ is independent of diam (U1), while τx(Ũ) ≈ 4π, where Ũ does
not contain points of self-intersection and is small enough. The example shows
that not all points on x(t) (or y(t)) are responsible for the “right” value of
Poincaré recurrences. However, generally, most of them are the desired ones.

Let us emphasize that each point θ(t0) = θ(t0 + 2π),mod 2π, corresponds
to at most two different points on the curve (x, ẋ)(t) : (x, ẋ)(t0) and (x, ẋ)(t0 +
2π), if t0 ∈ [0, 2π).

All features mentioned in the example may serve as the basic ones for
a definition of a synchronization. But before that, we recall that a system
f t : X × Y → X × Y has an attractor A if A is compact and there is an open
set U ⊃ A such that f tŪ ⊂ U, t > 0, and A =

⋂
t>0 f

tU . (In principle, we
might use any definition of the attractor. However, for the sake of definiteness,
we restrict ourselves to this sufficiently appropriate definition).

Definition 3.1. A dynamical system f t : X × Y → X × Y is said to be
(m0/n0)-topologically synchronized if the following hold.

(i). It has an attractor A such that nonwandering (in A) orbits are dense in
A.
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(ii). There is a number N ∈ Z+ such that for any point x0 ∈ π1(A) , the set
Yx0 contains at most N points, and for any point y0 ∈ π2(A) the set Xy0

contains at most N points.
(iii). There is a compact set B ⊂ A (B might be empty) such that if A1 =

π1(A), A2 = π2(A), B1 = π1(B), B2 = π2(B), then

dimB(Bi) < dimH(Ai), i = 1, 2,(3.2)

where dimB (resp. dimH) is the upper box (resp. Hausdorff) dimension
(see below).

(iv). For any point (x0, y0) ∈ A\B, there are numbers ε0 > 0 and a1 ≥ a2 ≥ 1
such that: for any open set U1 ⊂ X, U1 3 x0, diam U1 ≤ ε ≤ ε0, there
is an open set U2 ⊂ Y, diam U2 ≤ a1 · diam U1, U2 3 y0, and for any
open set Ũ2 ⊂ Y, Ũ2 3 y0, diam Ũ2 ≤ ε ≤ ε0, there is an open set Ũ1,
diam Ũ1 ≤ a2 · diam U2, Ũ1 3 x0 such that

τy(U2) =
m0

n0
τx(U1) + β2, τx(Ũ1) =

n0

m0
τy(Ũ2) + β1,(3.3)

where m0, n0 ∈ Z+, and β1 = β1(Ũ1, Ũ2), β2 = β2(U1, U2) are bounded
as ε→ 0.

(v). If δ(B) is an open δ-neighborhood of the set B in A where δ is small
enough, then the constants ε0, a1, a2 can be chosen to be the same for
any point (x0, y0) ∈ A \ δ(B). They depend only on δ. Furthermore, the
functions β1,2 = β1,2(U1, U2) can be estimated from above by a constant
β̄ > 0 depending only on δ and ε : |β1,2| ≤ β̄.

(vi). Moreover, for any set U1, U1 3 x∗, x∗ 6∈ π1(δ(B)), diam U1 = ε < ε0,
consider the union ⋃

x0∈U1

⋃
y∈Yx0

U2(x0, y),

where U2(x0, y) is a set with diam U2(x0, y) ≤ a1ε, the existence of which
was assumed in the assumption (iv). We claim that there are finitely
many points x0s ∈ U1, s = 1, · · · , S, such that

⋃
x0∈U1

⋃
y∈Yx0

U2(x0, y) =
S⋃
s=1

⋃
y∈Yx0s

U2(x0s, y).(3.4)

In other words, we claim that if x0 ∈ U1 and U1 ∩ B1 = φ then the set
U2(x0, y) depends, in fact, on the set U1 but not on x0 in U1. Further-
more, we assume that there is a constant S0 = S0(δ) such that S ≤ S0
for any given set U1, U1 3 x0, x0 6∈ π1(δ(B)), diam U1 ≤ ε and ε
is small enough. Similarly, for any set Ũ2 3 y∗, y∗ 6∈ π2(δ(B)), diam
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Ũ2 = ε < ε0, we consider a set Ũ1(y0, x), where y0 ∈ Ũ2, x ∈ Xy0 , diam
Ũ1(y0, x) ≤ a2ε, which was mentioned in (iv). We claim that there are
finitely many points y0s ∈ Ũ2, s = 1, · · · , S, such that

⋃
y0∈Ũ2

⋃
x∈Xy0

Ũ1(x, y0) =
S⋃
s=1

⋃
x∈Xy0s

Ũ1(x, y0s).(3.5)
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Remarks 3.1.

1. The condition (i) tells us that the Poincaré recurrences are finite for any
open set, and, moreover, one should observe synchronization for t � 1
for open set of initial conditions.

2. The condition (ii) claims that the projections π1 and π2 are finite-to-one
maps. It is a natural assumption which is known to be satisfied, for
example, if f t/A is a minimal flow and coupling is unidirectional [6].

3. The inequalities (3.2) mean that the “bad” points occupy a small part
of the attractor.

4. The assumption (iv) tells us that in a neighborhood of a good point we
have some kind of synchronization equalities (1.5), (1.6).

5. If A1, A2 contain infinitely many points, then condition (ii) implies the
impossibility for an uncoupled system (c = 0 in (1.1)) to be synchronized.

6. If for any ε > 0 it is possible to cover A1 (resp. A2) by finitely many
open sets Ui, diam Ui ≤ ε, (resp. Vj , diam Vj ≤ ε), such that there
is a Lipshitz homeomorphism from Ui to Vj(i) provided that Ui ∩ Bi =
φ, Vj(i) ∩ B2 = φ, and if the inverse map Vj(i) → Ui is also Lipshitz-
continuous, then A1 and A2 are locally homeomorphic everywhere except
for a neighborhood of the “bad” sets B1 and B2. In this case, the
assumptions (3.4), (3.5) are satisfied. It is possible to show then that
dimH A1 = dimH A2 (see below).

4. Carathéodory-Pesin Construction

We describe here a general approach developed by Pesin [13] on the basis
of classical Carathéodory results.

Assume that X is a metric space with a distance ρ, and F is a collection of
open subsets of X, or F is the collection of all balls of all diameters. Consider
functions ξ(u), η(u) of subsets u ∈ F satisfying the following properties:

(1) η(u) > 0 if u 6= ∅, ξ(u) ≥ 0.

(2) For any δ > 0, one can find ε > 0 such that η(u) ≤ δ for any u ∈ F with
diam u ≤ ε (diam u = supx,y∈u ρ(x, y)).

The collection F and the functions ξ(u), η(u) of sets in F form a Carathéodory
structure [13]. Fix some Carathéodory structure and consider a finite or count-
able cover G = {ui} of X by sets ui with diam ui ≤ ε. Then introduce the
sum
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M(α, ε,G) =
∑
i

ξ(ui)η(ui)α(4.1)

and consider its infimum

M(α, ε) = inf
G

∑
i

ξ(ui)η(ui)α,(4.2)

where the infimum is taken over all finite or countable covers G with diam
uj ≤ ε, uj ∈ G. The quantity M(α, ε) is a monotone function with respect to
ε; therefore, there exists a limit

m(α) = lim
ε→0

M(α, ε).

It was shown in [13] that there exists a critical value αc ∈ [−∞,∞] such that

m(α) = 0, α > αc, αc 6= +∞,
m(α) =∞, α < αc, αc 6= −∞.

The number αc is said to be the Carathéodory dimension relative to the struc-
ture (F , ξ, η).

For example, if F is a collection of balls {B(x, ε)} of all diameters ε > 0,
centered at all points x ∈ X, ξ(B(x, ε)) ≡ 1, η(B(x, ε)) = ε, then

M(α, ε,G) =
N(ε)∑
i=1

[diamB(xi, εi)]α, εi ≤ ε,

and αc = dimH X is the Hausdorff dimension. If the Hausdorff measure
m(αc) = mc is positive and finite, then the average

〈[diamB(xi, εi)]αc〉 ∼
mc

N(ε)
, ε� 1.

Consider another structure (F , ξ, η) on the same set X, and let αc be the
corresponding dimension. If 0 < m(αc) = mc <∞, then the average

〈ξ(ui)η(ui)αc〉 =
1

N(ε)

∑
i

ξ(ui)η(ui)αc ,

where N(ε) is the minimal number of balls of diameter ε needed to cover X.
Hence,

ᾱc = dimBX, the upper box dimension of X, dimBX = limε→0
lnN(ε)
ln 1/ε

,
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and

αc = dimBX, the lower box dimension of X, dimBX = limε→0
lnN(ε)
ln 1/ε

.

If the box dimension exists, i.e., if

dimBX = dimBX = b,

then

N(ε) ∼ ε−b, ε� 1,(4.3)

and for an arbitrary structure (F , ξ, η) we have

〈ξ(ui)η(ui)αc〉 ∼ εb(4.4)

also behaves as mc/N(ε) if ε � 1; here N(ε) is the number of sets ui in a
cover with diam ui ≤ ε.

Now introduce the sum

R(α, ε,G) =
∑
i

ξ(ui)η(ui)α,(4.5)

where {ui} = G is a cover of X by sets ui with diam ui = ε (not ≤ ε as
above!). Consider the infimum

R(α, ε) = inf
G
R(α, ε,G),

where the infimum is taken over all covers G = {ui} with diam ui = ε. We
may expect that the limit of R(α, ε) as ε → 0 does not exist. Consider the
upper and lower limits

r̄(α) = limε→0R(α, ε)

and
r(α) = limε→0R(α, ε).

It was shown in [13] that there are critical values ᾱc ≥ αc such that

r̄(α) =

{
0, α > ᾱc, ᾱc 6= +∞,
∞, α < ᾱc, ᾱc 6= −∞,

and

r(α) =

{
0, α > αc, αc 6= +∞,
∞, α < αc, αc 6= −∞.
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The number ᾱc is said to be the upper and αc the lower capacity relative to
the structure (F , ξ, η).

If we assume, in addition, that

0 < r(dimBX) <∞, 0 < r̄(dimBX) <∞,

then
N(ε̄k) ∼ ε̄−ᾱck , N(εj) ∼ ε

−αc
j ,

where {ε̄k} (resp. {εj}) is a sequence of values of ε such that

limε→0R(ᾱc, ε) = lim
k→∞

R(ᾱc, ε̄k)

(
resp. limε→0R(αc, ε) = lim

j→∞
R(αc, εj)

)
.

For example, if F is the collection of the balls {B(x, ε)} of all diameters
ε ≥ 0 centered at all points x ∈ X and

η(B(x, ε)) = diam B(x, ε) = ε,

then
R(α, ε) = inf

G

∑
i

[diam B(xi, ε)]α = N(ε)εα,

provided that αc = ᾱc = b. Thus, the described construction allows one to
estimate the asymptotic behavior of some average values of functions of sets.
We use it to study Poincaré recurrences [2], [4].

5. Dimension and Capacities for Poincaré Recurrences

We give a definition of “fractal” dimension for Poincaré recurrences [2] [4]
[5]. Consider a dynamical system (f t,M). For any open set u, we introduced
the Poincaré recurrence τ(u).

A desired characteristic should be an average value of τ(u). We use
the Carathéodory-Pesin construction to introduce it. Consider the following
Carathéodory structure: F is the collection of all open sets in the phase space
M, η(u) = diam u, ξ(u) = ϕq[τ(u)], where ϕ(t) is a monotonically decreasing
function and τ(u) is the Poincaré recurrence for the set u ∈ F . Then, consider
the quantities (4.1) in the form

M(α, ε, ϕ, q) = inf
G

∑
i

ϕ(τ(ui))q(diam ui)α,(5.1)

151



152 Valentin Afraimovich

where the infimum is taken over all covers G = {ui}, diam ui ≤ ε, and (4.2)
is considered in the form

R(α, ε, ϕ, q) = inf
H

∑
i

ϕ(τ(ui))q(diam ui)α,(5.2)

where the infimum is taken over all covers H = {ui}, diam ui = ε. Now apply
the general construction and obtain the dimension α(q) and capacities α(q)
and ᾱ(q) for values of the parameter q in an interval. These characteristics
are said to be the spectrum of dimensions and the spectra of capacities for
Poincaré recurrences. It follows from [13] that α(q) ≤ α(q) ≤ ᾱ(q). Assume
that there is a number q0 (resp. q̄0 or q0) such that q0 = sup{q|α(q) >
0}, q̄0 = sup{q|ᾱ(q) > 0}, q0 = sup{q|α(q) > 0}. Then the value q0 (resp. q̄0
or q0) is called the dimension (resp. the upper or lower capacity) for Poincaré
recurrences.

In order to understand the significance of the definition, let us suppose
that q0 = q̄0 = q0 and dimBM = b is the box dimension. Then

〈ϕ(τ(ui))q0〉 ∼ εb, diam ui = ε.(5.3)

It was shown in [2] that in a nonchaotic situation (minimal sets), the function
ϕ(t) = 1/t can serve well. Thus for the case of minimal sets we have〈

1
τ(ui)q0

〉
∼ εb(5.4)

and we can expect that

〈τ(ui)〉 ∼ ε−b/q0 .(5.5)

The example in the next section shows that in chaotic cases we should use
ϕ(t) = e−t, i.e., (5.3) becomes

〈e−q0τ(ui)〉 ∼ εb.(5.6)

6. Spectrum of Capacities for Transitive Topological

Markov Chains

Let A be the matrix of transitions for a topological Markov chain satisfying
the condition of mixing [10]: there exists n0 > 0 such that An0 has only positive
entries. Therefore, we may introduce such a metric on the space of admissible
sequences ΩA for which

diam([i0 · · · in−1]) = a−n, n > n0, a > 1,(6.1)
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where [i0 · · · in−1] is a cylinder, i.e.

[i0 · · · in−1] = {w = (j0 j1 · · ·) ∈ ΩA|j0 = i0, · · · , jn−1 = in−1},

the set of all admissible infinite sequences for which the first n coordinates are
determined by [i0 · · · in−1].

Remark 6.1. Such topological Markov chains appear, for example, when
we describe some repellers of maps with the constant derivative a. The sim-
plest of them is the map x→ ax, mod 1, restricted to a set of orbits belonging
to [0, 1] and forming a topological Markov chain.

We shall calculate the capacity, so we may consider only values of ε =
a−n, n ∈ Z+, (see [13]) and we consider covers of ΩA by cylinders {[i0 · · · in−1]}
for a fixed n. Then the equation (5.2) becomes

Rn(α, q) =
∑

(i0···in−1)

e−qτ(i0···in−1)a−αn,(6.2)

where the sum is taken over all admissible words (i0 · · · in−1). The main idea
is to rewrite (6.2) in the form(

P1e
−q + P2e

−2q + · · ·+ Pmne
−mnq

)
a−αn,(6.3)

where Pk is the number of cylinders [i0 · · · in−1] for which τ([i0 · · · in−1]) = k.
Of course, for that we need to show first that mn < ∞. The following result
holds.

Proposition 6.1. Rn(α, q) can be represented in the form (6.3) where

mn ≤ n+ n0

(n0 is a constant in the condition (6.1) of mixing).

It means that Poincaré recurrence for a cylinder of length n cannot be
greater than n+ n0.

Proof. We need to show that each cylinder [i0 · · · in−1] contains an (n+n0)
periodic point. Indeed, since an0

in−1i0
> 0 by assumption, there exists a collec-

tion (j1, j2, · · · , jn0−1) such that the periodic point (· · · [i0 · · · in−1]j1 · · · jn0−1[i0
· · · in−1]j1 · · · jn0−1 · · ·) belongs to ΩA. This point has period n+n0 and there-
fore τ(ui0···in−1) ≤ n+ n0 for any admissible cylinder [i0 · · · in−1].
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The next proposition tells us that the Poincaré recurrence is realized due
to the existence of periodic points.

Proposition 6.2. τ([i0 · · · in−1]) = the minimal period of all periodic
points belonging to [i0 · · · in−1].

Proof. Let k = min{s : σsw = w, w ∈ [i0 · · · in−1]}, and, on the contrary,
assume that

σ−k1 [i0···in−1] ∩ [i0 · · · in−1] 6= ∅, k1 < k,

i.e., there exists a point

(j1j2 · · · jk1 , i0i1 · · · in−1 · · ·) ∈ [i0 · · · in−1].

But this means that

j1 = i0, j2 = i1, · · · , jk1−1 = ik1 and aik1−1i0 = 1.

Therefore, the sequence w′ = (i0i1 · · · ik1−1, i0i1 · · · ik1−1, · · ·) is admissible and
σk1w′ = w′. It contradicts the assumption that k is the minimal period.

Let λmax = max{λ|λ ∈ spec A}. The number of k-periodic points behaves
asymptotically as λkmax, k � 1. It allows one to estimate the upper and lower
capacities by using Propositions 6.1 and 6.2.

Proposition 6.3. ᾱ(q) < 0 if lnλmax − 1 < 0, and

ᾱ(q) ≤ lnλmax − q
ln a

(6.4)

if lnλmax − q ≥ 0.

Proof. The sum (6.3) satisfies(
P1e
−q + P2e

−2q + Pmne
−mnq) a−αn

≤
(
N1e

−q +N2e
−2q + · · ·+Nn+n0e

−(n+n0)q
)
a−αn,

(6.5)

whereNk is the number of periodic points of period k. Indeed, for each cylinder
[i0 · · · in−1] with τ([i0 · · · in−1]) = k, there exists a periodic point of period k
belonging to it (Proposition 6.2), i.e., Pk ≤ Nk. Therefore,

Mn(α) ≤
n+n0∑
j=1

(
Nje

−jq
)
a−αn

= a−αn ·

n+n0∑
j=1

(
e−q

)j · trAj
 = a−αn

n+n0∑
j=1

(
e−q

)j (
λjmax + λj2 + · · ·+ λjs

)
,
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where λ2, λ3, · · ·λs, λmax ∈ spec A (A is assumed to be an s× s matrix). Let
us note that the number Nj = trAj , and (due to Frobenius-Perron theorem
[10]), λmax > |λi|, i = 2, · · · , s. Therefore

Mn(α) ≤ a−αn ·
n+n0∑
j=1

e−qj · λjmax · s

≤ s · (e−qλmax) · a−αn · (e−qλmax)n+n0+1 − 1
e−qλmax − 1

and
Mn(α)→ 0 as n→∞ if

a−αe−qλmax < 1 or

α >
lnλmax − q

ln a
.

This is the case when e−qλmax > 1.
If e−qλmax = 1, then

Mn(α) ≤ s · a−αn · (n+ n0)→ 0 as α > 0

or α > (lnλmax − q)/ ln a again.
If e−qλmax < 1, then

Mn(α) ≤ jsa−αn 1
1− e−qλmax

and if α ≥ 0 the series converges. By definition of the spectra of capacities we
have that

ᾱ(q) ≤ lnλmax − q
ln a

if λmaxe
−q ≥ 1

and ᾱ(q) ≤ 0 if λmaxe
−q < 1.

Proposition 6.4. The upper capacity ᾱc(q) satisfies

ᾱc(q) ≤
lnλmax − q

ln a
.(6.7)

Proof. Trivially, the sum

Mn(α) ≥ Pne−qna−αn.

The number Pn = P
(1)
n +P (2)

n , where P (1)
n is the number of cylinders [i0 · · · in−1]

containing the periodic point ((i0 · · · in−1)(i0 · · · in−1) · · ·) for different collec-
tions (i0 · · · in−1). Assume that n is a prime number. Then

P
(1)
n ≥ Nn, and

Mn(α) ≥ Nne
−qna−αn ≥ λnmaxe

−qna−αn.
(6.8)
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The inequality (6.8) implies that

limn→∞Mn(α) ≥ lim
n→∞

n is prime

Mn(α) =∞

if
λmaxe

−qa−α > 1, or

α <
lnλmax − q

ln a
.(6.9)

Thus,

ᾱc(q) ≥
lnλmax − q

ln a
.

Comparing (6.4) and (6.7) we have

Theorem 6.1. (1) If q ≤ htop, then ᾱ(q) = (htop − q)/ ln a.
(2) q̄0 = htop = lnλmax.

Remark 6.2. Taking into account that the number of admissible words
{[i0 · · · in−1]} is asymptotically equal to exp(nhtop) = eq0n, we can write that

〈e−q0τ([i0···in−1])〉 ∼ e−q0n or

〈τ([i0 · · · in−1])〉 ∼= − ln ε/ ln a(6.10)

(ε = a−n). Thus, ϕ(t) = e−t works well in an ideal chaotic situation.

In our considerations, the constant a served as a rate of expansion of the
shift map σ at every point w = (i0, i1, · · ·). We saw that the capacity q̄0 is
just the topological entropy and does not carry new information. In a more
realistic hyperbolic situation when the rates of expansion (and contraction)
depend on a point, we may expect that the capacities q̄0 and the topological
entropy are independent characteristics.

Remark 6.3. It was shown in [12] that a dimension for Poincaré re-
currences (which is defined in a slightly different way) equals the topological
entropy for subshifts of finite type and β-subshifts. It was conjectured there
that the topological entropy is a lower bound for dimension for Poincaré re-
currences.
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7. Hausdorff Dimensions of Projections of the Attractor

We show here that under the assumptions of Definition 3.1 the “individual
attractors” A1 and A2 have the same Hausdorff dimensions.

Theorem 7.1. Assume that a dynamical system f t : X × Y → X × Y is
topologically synchronized (with respect to an attractor A). Then

dimH(A1) = dimH(A2)(7.1)

(dimH means the Hausdorff dimension).

Proof.

1. Let δn(B) be the open δn-neighborhood of the setB inA, A1\π1(δn(B)) =:
A1n, and A2\π2(δn(B)) =: A2n, where δn → 0 as n → ∞. The set Ain
does not contain the set Bi together with some of its open neighbor-
hood, i = 1, 2. Therefore, thanks to the assumption (vi) in Definition
3.1, the constant ε0 = ε0n, ai = ain, can be chosen to be independent of
(x0, y0) ∈ A\δn(B), i = 1, 2. Furthermore, Ai\Bi =

⋃
Ain, i = 1, 2, and

thus (see [7])

dimH Ai = sup{dimH(Ai\Bi), dimH Bi}

= dimH(Ai\Bi) = supn{dimH Ain}, i = 1, 2.
(7.2)

We take into account here that, by (3.2),

dimH Ai > dimB Bi.

2. Let αin = dimH Ain, i = 1, 2, n ∈ Z+. We show that

α1n = α2n, n ≥ n0 ∈ Z+.(7.3)

Given α > α2n, K > 0, consider a finite cover {Ũ2j} of the set A2n by
open sets with diam Ũ2i ≤ ε ≤ ε0, such that∑

j

(diam Ũ2j)α ≤ K.(7.4)

Such a cover exists by the definition of the Hausdorff dimension. Given
Ũ2j and y0 ∈ Ũ2j , consider Xy0 , and for any x ∈ Xy0 choose a set
Ũ1j(x, y0) 3 x with diam Ũ1j(x, y0) ≤ a2ε, which exists thanks to the
assumption (iv) in Definition 3.1. We have⋃

j

⋃
y0∈Ũ2j

⋃
x∈Xy0

Ũ1j(x, y0) ⊃ A1n.
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Thanks to (3.5), we have⋃
j

⋃
yos

⋃
x∈Xyos

Ũ1j(x, yos) ⊃ A1n,

i.e., the sets {Ũ1j(x, yos)} form a finite cover of the set A1n. Now, thanks
to assumptions (ii), (iv), (v) in Definition 3.1 and (7.4), we obtain∑(

diam Ũ1j(x, yos)
)α

=
∑
j

∑
yos

∑
x∈Xyos

(
diam Ũ1j(x, yos)

)α

≤ N · S0(δ) · aα2 ·
∑
j

(diam Ũ2j)α ≤ NS0(δ)aα2 ·K.(7.5)

Since K is an arbitrary small number, this means that

α > α1n, i.e., α2n ≥ α1n.

3. Similarly, we may start with a cover {U1j} of the set A1n and obtain
the opposite inequality α1n ≥ α2n. Thus, α1n = α2n. Combining it with
(7.2), we obtain the desired result.

8. Dimension for Poincaré Recurrences as an Indicator of

Synchronized Regimes

Let us define, first, the dimension and capacities for x- and y-Poincaré
recurrences. We restrict ourselves to the case of chaotic behavior, i.e., we
use the function e−t in the capacity of ϕ(t) in (5.1), (5.2), and consider the
spectrum of dimension for the x- and y-Poincaré recurrences. For that, as in
Section 5, we consider the sums

Mx(α, ε, e−t, q) = inf
G1

∑
i

e−qτx(U1i)(diam U1i)αx(8.1)

and

My(α, ε, e−t, q) = inf
G2

∑
i

e−qτy(U2i)(diam U2i)αy ,(8.2)

where in each sum the infimum is taken over all covers G1 (resp. G2) of the set
A1 (resp. A2) by open sets with diameters ≤ ε. The critical values αx(q) in
(5.1) and αy(q) in (5.2) will be the desired spectra of dimensions for Poincaré
recurrences. The main result of the present paper is the following statement.
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Theorem 8.1. If a dynamical system f t : X × Y → X × Y is (m0/n0)-
topologically synchronized, then

dimP (A2\B2) =
m0

n0
dimP (A1\B1),(8.3)

where dimP is the dimension for Poincaré recurrences.

Proof. 1. We shall follow the proof of Theorem 7.1; in particular, we
assume that Ain are the same sets as the ones over there. Given α > αy(q, A2n)
and K > 0, consider a finite cover {Ũ2j} of the set A2n by open sets, diam
Ũ2j ≤ ε ≤ ε0, such that∑

j

exp
(
−qτ

(
Ũ2j

))
·
(
diamŨ2j

)α
≤ K.(8.4)

By the definition of the spectrum for dimensions, such a cover exists. As in the
proof of Theorem 7.1, we choose a cover of A1n by sets Ũ1j(x, yos), x ∈ Xyos .
By using the assumptions of (ii), (iv), (v) in Definition 3.1 and the inequality
(8.4), we obtain

∑
exp

(
−q n0

m0
τx
(
Ũ1j(x, yos)

))
·
(
diam Ũ1j(x, yos)

)α
=
∑
j

∑
yos

∑
x∈Xyos

exp
(
−q n0

m0
τx
(
Ũ1j(x, yos)

))
·
(
diam Ũ1j(x, yos)

)α
≤N · S0(δ) · aα2 e

β̄· n0
m0

q∑
j exp

(
−qτy

(
Ũ2j

))
·
(
diam Ũ2j

)α
≤N · S0(δ) · aα2 · e

n0
m0

β̄q ·K.

(8.5)

Since K is an arbitrary small number, the inequality (8.5) means that

αx

(
n0

m0
q, A1n

)
≤ αy(q, A2n), q > 0.(8.6)

2. Starting with a cover {U1j} of the set A1n for which∑
j

exp (−qτx (U1j)) (diam U1j)
α ≤ K,

and repeating the proof above, we obtain that

αy

(
m0

n0
q, A2n

)
≤ αx(q, A1n), q > 0.(8.7)
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Now, assume that q(x)
on =: dimP (A1n) is the dimension for Poincaré recurrences

of the set A1n, αx
(
q

(x)
on

)
= 0, and q

(y)
on =: dimP (A2n) is the dimension for

Poincaré recurrences of the set A2n, i.e., αy
(
q

(y)
on

)
= 0. Since αx(q) and αy(q)

are monotone functions, (8.6) implies that αx
(
(n0/m0) q(y)

on

)
≤ 0, i.e.,

q(x)
on ≥

n0

m0
q(y)
on .(8.8)

Similarly, (8.7) implies that αy
(
(m0/n0) q(x)

on

)
≤ 0, i.e.,

q(y)
on ≥

m0

n0
q(x)
on .(8.9)

It follows that q(y)
on = (m0/n0) q(x)

on , i.e.,

dimP (A2n) =
m0

n0
dimP (A1n) .(8.10)

3. It follows from [13, Theorem 1.1] and (8.10) that

dimP (A2\B2)= supn dimP (A2n) =
m0

n0
sup
n

dimP (A1n)

=
m0

n0
dimP (A1\B1).

(8.11)

Remark 8.1. We believe that (under some general conditions), dimP (A2)
= (m0/n0) dimP (A1) as well. Of course, the Poincaré recurrences on the
“bad” sets B1 and B2 can be different from those on A1\B1 and A2\B2. How-
ever, since dimBBi < dimH(Ai\Bi), i = 1, 2, by assumption, we believe that
a “randomly chosen” point on Ai belongs to Ai\Bi. In numerical simulations
we may neglect “bad points” and treat the equality (8.3) as an indicator of
(m0/n0)-synchronization.

9. Concluding Remarks

The asymptotic equality (5.6) shows that we may expect〈
exp

(
−q(x)

0 τ(U1j)
)〉
∼ εb1 ,〈

exp
(
−q(y)

0 τ(U2j)
)〉
∼ εb2 ,

(9.1)
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where q(x)
0 = dimP (A1), q(y)

0 = dimB(A2) and bi = dimP Ai, i = 1, 2. We
may expect also that dimB(Ai) = dimH(Ai). In this case, (9.1) may imply
the asymptotic equalities

〈τ(U1j)〉 ∼ −
b

q
(x)
0

ln ε,

〈τ(U2j)〉 ∼ −
b

q
(y)
0

ln ε,
(9.2)

where b = b1 = b2, and {Uij} is a cover of Ai by balls of diameter ε, i = 1, 2.
The formulas (9.2) can serve as the basic ones for some algorithms for the
indication of synchronized regimes. Some preliminary results with W.-W. Lin
show that such algorithms work, and we hope to present the results in the
nearest furture.

Acknowledgments

I would like to express my gratitude to Professors S.-B. Hsu and W.-W.
Lin for valuable discussions. The work was supported by the National Science
Council, R.O.C., Grant NSC86-2115-M-007-018.

References

1. H. D. I. Abarbanel, N. F. Rulkov and M. M. Sushchik, Generalized synchro-
nization of chaos: The auxiliary system approach, Phys. Rev. E 53 (1996),
4528-4535.

2. V. Afraimovich, Pesin’s dimension for Poincaré recurrences, Chaos 7 (1997),
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