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QUANTUM HOLOGRAPHY AND MAGNETIC RESONANCE
TOMOGRAPHY: AN ENSEMBLE QUANTUM

COMPUTING APPROACH

Walter Schempp

Abstract. Coherent wavelets form a unified basis of the multichannel
perfect reconstruction analysis-synthesis filter bank of high resolution
radar imaging and clinical magnetic resonance imaging (MRI). The filter
bank construction is performed by the Kepplerian temporospatial phase
detection strategy which allows for the stroboscopic and synchronous
cross sectional quadrature filtering of phase histories in local frequency
encoding multichannels with respect to the rotating coordinate frame of
reference. The Kepplerian strategy and the associated filter bank con-
struction take place in symplectic affine planes which are immersed as
coadjoint orbits of the Heisenberg two-step nilpotent Lie group G into
the foliated three-dimensional real projective space P

(
R×Lie(G)?

)
. Due

to the factorization of transvections into affine dilations of opposite ratio,
the Heisenberg group G under its natural sub-Riemannian metric acts on
the line bundle realizing the projective space P

(
R× Lie(G)?

)
. Its ellip-

tic non-Euclidean geometry without absolute quadric, associated to the
unitary dual Ĝ, governs the design of the coils inside the bore of the MRI
scanner system. It determines the distributional reproducing kernel of
the tracial read-out process of quantum holograms excited and coexisting
in the MRI scanner system. Thus the pathway of this paper leads from
Keppler’s approach to projective geometry to the Heisenberg approach
to the sub-Riemannian geometry of quantum physics, and finally to the
enormously appealing topic of ensemble quantum computing.
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Dedicated to the pioneers of magnetic resonance technology,
Raymond V. Damadian

and
Paul C. Lauterbur

There is no task more difficult than that of modifying accepted ideas.
– Jean Alexandre Dieudonné (1906-1995)

There is nothing that nuclear spins will not do for you, as long as you treat
them as human beings.
– Erwin Louis Hahn (1949)

In order to understand the principles of MR imaging one must successfully
navigate through an elaborate structure whose essence is very much like a
mathematical structure.
– Alfred L. Horowitz (1995)

The sense we make of the world is governed by our conceptual means. More
specifically, sense is made of nature by projecting a conceptual structure onto
observed events. This is accomplished by means of a semantic filter, which
transforms raw data into semantically significant events.
– George L. Farre (1997)

One might ask, if this MRI is so wonderful, why are so many radiologists re-
luctant to “get into” it? In a word: “physics.”
– Ray H. Hashemi and William G. Bradley, Jr. (1997)

A radar system employs a directional antenna that radiates energy within
a narrow beam in a known direction. One unique feature of the synthetic
aperture radar (SAR) imaging modality is that its spatial resolution capability
is independent of the platform altitude over the subplatform nadir track. This
is a result of the fact that the SAR image is formed by simultaneously storing
the phase histories and the differential time delays in local frequency encoding
subbands of wideband radar, none of which is a function of the range from
the radar sensor to the scene. It is this unique capability which allows the
acquisition of high resolution images from satellite altitude as long as the
received response wavelet has sufficient strength above the noise level.

Magnetic resonance imaging (MRI) scanners are cognitive systems which
reconstruct cross-sectional images of objects and perform the reconstructive
amplification by coherent quantum stochastic resonance as a form of mul-
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tichannel parallelism. The reconstructive process from multichannel phase
histories is through probing the magnetic moments of nuclei employing strong
magnetic flux densities and radiofrequency radiation. The whole process of
MRI is based on perturbing the equilibrium magnetization of the object with
a train of pulses and observing the resulting time-evolving response signal
produced in a coil.

What has made nuclear magnetic resonance (NMR) such a prominent and
exciting modern spectroscopic technique? One fundamental reason, of course,
is that spectroscopy provides direct and incontrovertible evidence of quanti-
zation of energy, and that nowhere is this more simply illustrated than in
NMR experiments. Nuclear spins and the arrays of quantum bits (“qubits”)
they represent can be manipulated in a multitude of different ways in order
to extract site information about molecular structure and dynamic informa-
tion about molecular motion. Due to the spin dynamics, a preparation of the
sample can be achieved such that the reconstructive amplification process by
coherent quantum stochastic resonance is a well posed problem. With NMR
tomography it is possible to observe, non-invasively, cross-sections through
objects, and thus obtain SAR like image information about density, flow, and
spectrally localized chemical composition ([25]). The preparation procedures
of NMR and MRI turn the reconstruction into a well posed problem. Specif-
ically, an application of the blood oxygen level dependent (BOLD) contrast
method of human brain mapping to morphological cranial anatomy ([39]) al-
lows for an observation of activation of the brain in vivo.

The moment of birth of the temporal magnetic resonance phenomenon was
marked by Felix Bloch’s dynamical approach. The great Felix Bloch (1905-
1983), the first graduate student and assistant to Werner Karl Heisenberg in
Leipzig, outlined the NMR experiment in his source paper of 1946 as follows
([24], [34]):

“The first successful experiments to detect magnetic resonance by electromagnetic
effects have been carried out recently and independently at the physics laboratories of Har-
vard and Stanford Universities. The considerations upon which our work was based have
several features in common with the two experiments, previously mentioned, but differ rather
essentially in others. In the first place, the radiofrequency field is deliberately chosen large
enough so as to cause at resonance a considerable change of orientation of the nuclear mo-
ments. In the second place, this change is not observed by its relatively small reaction upon
the driving circuit, but by directly observing the induced electromotive force in a coil, due to
the precession of the nuclear moments around the constant field and in a direction perpen-
dicular both to this field and the applied r-f field. This appearance of a magnetic induction
at right angles to the r-f field is an effect which is of specifically nuclear origin and it is the
main characteristic feature of our experiment. In essence, the observed perpendicular nu-
clear induction indicates a rotation of the total oscillating field around the constant magnetic
field.”
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“Not only a weak r-f field, acting at resonance over very many Larmor periods, can
produce an appreciable nuclear change of orientation, but also a strong field pulse, acting
over only a few periods. Once the nuclear moments have been turned into an angle with the
constant field, they will continue to precess around it and likewise cause a nuclear induction
to occur at an instant when the driving pulse has already disappeared. It seems perfectly
feasible to receive thus an induced nuclear signal of radiofrequency well above the thermal
noise of a narrow band receiver. It is true that, due to the broadening of the Larmor
frequency by internuclear fields or other causes, this signal can last only a comparatively
short time, but for normal fields it will still contain many Larmor periods, i.e., it will be
essentially monochromatic. The main difference between this proposed experiment and the
one which we have actually carried out lies in the fact that it would observe by induction the
free nuclear precession while we have studied the forced precession impressed upon the nuclei
by the applied r-f field. The existence of a resultant macroscopic moment of the nuclei within
the sample under investigation is a common prerequisite for all electromagnetic experiments
with nuclear moments. It is in fact a change of orientation of this macroscopic moment which
causes the observed effects, and irrespective of the changes of orientation of the individual
nuclei which might be induced by a r-f field, their moments would always cancel each other,
if they did so initially, and thus escape observation.”

Because the computer performance was severely limited at the time of the
discovery of NMR spectroscopy, and the fast Fourier transform (FFT) algo-
rithm was not available to Bloch and his coworkers, the enormously appealing
perspective to spin isochromat computers is not present in his dynamical ap-
proach. Such a machine performs a calculation using quantum parallelism
at the molecular level and then amplifies the results to the macroscopic level
via coherent quantum stochastic resonance as a form of multichannel paral-
lelism. Recent experiments in neurobiology verified the amplification effect of
stochastic resonance in the information transfer performed by weak signals in
biological neural networks ([20]).

From the dynamical approach to NMR spectroscopy, however, Hahn’s spin
echo method popped up. As an instructor, Erwin Louis Hahn taught radar
and sonar. Due to its favorable signal-to-noise ratio, his spin echo pulse se-
quence is extensively used both in clinical MRI, NMR spectroscopy and NMR
microscopy ([6]). It plays a major role in the emulation of quantum computers
by NMR spectroscopy ([11], [26], [33]).

The immersion aspect of the spectroscopic approach has been summarized
by Nicolaas Bloembergen, Edward Mills Purcell (1912-1997), and Robert V.
Pound as follows ([24], [34]):

“In nuclear magnetic resonance absorption, energy is transferred from a radiofrequency
circuit to a system of nuclear spins immersed in a magnetic field, H0, as a result of transitions
among the energy levels of the spin system.”

“The exposure of the system to radiation, with consequent absorption of energy, tends to
upset the equilibrium state previously attained, by equalizing the population of the various
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levels. The new equilibrium state in the presence of the radiofrequency field represents a
balance between the processes of absorption of energy by the spins, from the radiation field,
and the transfer of energy to the heat reservoir comprising all other internal degrees of
freedom of the substance containing the nuclei in question.”

“Finally we review briefly the phenomenological theory of magnetic resonance absorp-
tion, before describing the experimental method. The phenomenon lends itself to a variety
of equivalent interpretations. One can begin with static nuclear paramagnetism and proceed
to paramagnetic dispersion, or one can follow Bloch’s analysis, contained in his paper on
nuclear induction, of the dynamics of a system of spins in an oscillating field, which includes
the absorption experiments as a special case. We are interested in absorption, rather than
dispersion or induction, in the presence of weak oscillating fields, the transitions induced by
which can be regarded as non-adiabatic. We therefore prefer to describe the experiment in
optical terms.”

Bloch and Purcell shared the 1952 Nobel Prize in Physics in recognition
of their pioneering achievements in condensed matter. The methods due to
Bloch and Purcell are not only of high intellectual beauty leading finally to
quantum computing, they also place an analytic method of high efficacy in
the hands of scientists. Therefore, during the next quarter of a century NMR
spectroscopy flourished, and more than 1000 NMR units were manufactured.
The award of the Nobel Prize in Chemistry to Richard Robert Ernst in 1991
later served to highlight the fact that high resolution NMR spectroscopy is
not only an essential physical technique for chemists and biochemists, but also
offers a fascinating application of non-commutative Fourier analysis to system
theory. Ernst summarized the application of Fourier transform spectroscopy
to NMR as follows ([24], [34]):

“It is well-known that the frequency response function and the unit impulse response
of a linear system form a Fourier transform pair. Both functions characterize the system
entirely and thus contain exactly the same information. In magnetic resonance, the frequency
response function is usually called the spectrum and the unit impulse is represented by the
free induction decay. Although a spin system is not a linear system, Lowe and Norberg (1957)
have proved that under some very loose restrictions the spectrum and the free induction
decay after a 90◦ pulse are Fourier transforms of each other. The proof can be generalized
for arbitrary flip angles.”

“For complicated spin systems in solution, the spectrum contains the information in a
more explicit form than does the free induction decay. Hence it is generally assumed that
recording the impulse response does not give any advantages compared to direct spectral
techniques. The present investigations show that the impulse response method can have
significant advantages, especially if the method is generalized to a series of equidistant iden-
tical pulses instead of a single pulse. In order to interpret the result, it is usually necessary
to go to a spectral representation by means of a Fourier transformation. The numerical
transformation can conveniently be handled by a digital computer or by an analog Fourier
analyzer.”

“Here are some features of the pulse technique: (1) It is possible to obtain spectra in a
much shorter time than with the conventional spectral sweep technique. (2) The achievable
sensitivity of the pulse experiment is higher. All spins with resonance frequencies within a
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certain region are simultaneously excited, increasing the information content of the experi-
ment appreciably compared with the spectral sweep technique where only one resonance is
observed at a time.”

Based on the work of the Nobel laureates Pauli, Bloch, Bloembergen, Pur-
cell, Gabor and Ernst, a whole new science culminating in Fourier transform
MRI has been created where none existed before ([34], [46], [45]). This new sci-
ence of ensemble quantum computing needs its own mathematical foundation
based on elliptic geometric analysis. Surprisingly, spin isochromat comput-
ing by NMR spectroscopy has its deep roots in the Kepplerian dynamics of
physical astronomy.

The Kepplerian temporospatial phase detection strategy of physical as-
tronomy is derived from the quadrature conchoid trajectory stratification and
the second fundamental law of planetary motion analysis ([47]), as displayed in
Keppler’s Astronomia Nova of 1609. The dynamics of the quadrature conchoid
trajectory stratification which seems to have almost escaped notice in litera-
ture, is best understood from the viewpoint of projective geometry. Although
Keppler described the projective approach to astronomical observations in the
Paralipomena of 1604, he is not recognized, along with Desargues, as one
of the pioneers of projective geometry which then culminated in Poncelet’s
investigations.

Projective geometry, which is since about the mid 1980′s standard in the
computer vision and robotics literature, allows for the stroboscopic and syn-
chronous cross sectional quadrature filtering of phase histories in local fre-
quency encoding multichannels with respect to the rotating coordinate frame
of reference ([23]), and provides the implementation of a matched filter bank
by orbit stratification in a symplectic affine plane. An application of this pro-
cedure leads to the landmark observation of the earliest SAR pioneer, Carl A.
Wiley, that motion is the solution of the high resolution radar imagery and
phased array antenna problem of holographic recording by quasi-optical sys-
tems ([32], [52]). Whereas the Kepplerian temporospatial strategy is realized
in SAR imaging by the range Doppler principle ([13], [31]), it is the Lauterbur
spectral localization principle ([45]) which takes place in clinical MRI. Having
Damadian’s approach to tumor detection in mind, Lauterbur wrote the follow-
ing observation into his 1971 notebook under the title of “Spatially Resolved
Nuclear Magnetic Resonance Experiments” ([34]):

“The distribution of magnetic nuclei, such as protons, and their relaxation times and dif-
fusion coefficients, may be obtained by imposing magnetic field gradients (ideally, a complete
set of orthogonal spherical harmonics) on a sample, such as an organism or a manufactured
object, and measuring the intensities and relaxation behavior of the resonance as functions
of the applied magnetic field. Additional spatial discrimination may be achieved by the
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application of time-dependent gradient patterns so as to distinguish, for example, protons
that lie at the intersection of the zero-field (relative to the main magnetic field) lines of three
linear gradients.”

“The experiments proposed above can be done most conveniently and accurately by
measurements of the Fourier transform of the pulse response of the system. They should
be capable of providing a detailed three-dimensional map of the distributions of particular
classes of nuclei (classified by nuclear species and relaxation times) within a living organism.
For example, the distribution of mobile protons in tissues, and the differences in relaxation
times that appear to be characteristic of malignant tumors, should be measurable in an
intact organism.”

Thus the Lauterbur spectral localization utilizes affine dilations, imple-
mented on a modular stratification basis by linear magnetic field gradients,
into which transvections factor. The measurements of the one-dimensional
Fourier transform have been refined by the two-dimensional Fourier transform
spectroscopy contributed by Ernst, and the spin-warp version of Fourier trans-
form MRI developed by W.A. Edelstein, J.M.S. Hutchinson, and J. Mallard
of the Aberdeen University group in Scotland.

With regard to possible applications of his spectral localization method,
Lauterbur drew the following conclusions without explicit citation of Dama-
dian’s paper ([34]):

“Applications of this technique to the study of various inhomogeneous objects, not nec-
essarily restricted in size to those commonly studied by magnetic resonance spectroscopy,
may be anticipated. A possible application of considerable interest at this time would be the
in vivo study of malignant tumors, which have been shown to give proton nuclear magnetic
resonance signals with much longer water spin-lattice relaxation times than those in the
corresponding normal tissues.”

At the background of both the SAR and MRI high resolution imaging tech-
niques lies the construction of a multichannel coherent wavelet reconstruction
analysis-synthesis filter bank of matched filter type ([15], [38], [23]). Beyond
these applications to local frequency encoding subbands, the Kepplerian tem-
porospatial phase detection strategy leads to the concept of Feynman path
integral or summation over phase histories.

As approved by quantum electrodynamics, geometric quantization allows
for a semi-classical approach to the interference pattern of quantum holog-
raphy and the spin excitation profiles of MRI ([42], [43], [44], [45]). Imple-
mentation of interference needs, of course, phases coherency and therefore the
transition to the frequency domain by a duality procedure. Indeed, the uni-
tary dual Ĝ of the Heisenberg group G consisting of the equivalence classes
of irreducible unitary linear representations of G allows for a coadjoint orbit
foliation of symplectic affine leaves Oν (ν 6= 0), spatially located as a stack of
tomographic slices, and decomposing the dual vector space Lie(G)? of the real
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Heisenberg Lie algebra Lie(G) ([40]). This fact is a consequence of the Kirillov
homeomorphism

Ĝ −→ Lie(G)?/CoAdG(G),

which establishes the canonical foliation of the three-dimensional super-encoding
projective space P(R× Lie(G)?).

• The connected, simply connected Heisenberg two-step nilpotent Lie group
G admits a realization by a faithful matrix representationG −→ SL(3,R).

In terms of standard coordinates, the Heisenberg group G is realized by
the set of unipotent matrices

{( 1 x z
0 1 y
0 0 1

)
|x, y, z ∈ R

}

under the matrix multiplication law of the dual pairing presentation 1 x1 z1
0 1 y1
0 0 1

 .
 1 x2 z2

0 1 y2
0 0 1

 =

 1 x1 + x2 z1 + z2 + x1.y2
0 1 y1 + y2
0 0 1

 .
The form of rank one defining the non-commutative matrix multiplication

of G is neither antisymmetric nor non-degenerate. However, it is cohomologous
to the non-degenerate alternating determinant form. It suffices to use any form
which is cohomologous to a non-degenerate alternating bilinear form to define
the multiplication law of G.

The differential operator associated to the natural sub-Riemannian metric
of G is the sub-Laplacian LG on G. Notice that the sub-Riemannian geometry
is to the sub-Laplacian in the sub-elliptic realm what Riemannian geometry
is to the Laplacian in the elliptic realm.

In terms of the coordinates of the dual pairing presentation of G, the sub-
Laplacian LG takes the form of a Hörmander sum of squares

LG = −1
2

(
(
∂

∂x
− y ∂

∂z
)2 + (

∂

∂y
+ x

∂

∂z
)2
)
.

The Heisenberg group G has two presentations that are particularly im-
portant in applications. It is standard that the radical of a bundled alternat-
ing bilinear form is the only invariant of the bundled form. Therefore, the
dual pairing presentation of G is isomorphic to the basic presentation of the
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Heisenberg group G which is given by the multiplication law of the unipotent
matrices { 1 w̄ 1

2 |w|
2 + zi

0 1 w
0 0 1

 ∣∣∣ w ∈ C, z ∈ R

}
.

Computations are usually easiest in the basic presentation of G because the
straight lines through the origin are the one-parameter-subgroups. Due to the
planetary orbit stratification, the Kepplerian temporospatial phase detection
strategy leads to the basic presentation ([45]).

• There is a realization of the Heisenberg group G by a faithful matrix
representation G −→ Sp(4,R) defining the image group as an extension
via matrix multiplication.

In terms of the left-invariant vector fields

W =
∂

∂w
− w̄ ∂

∂z
, W̄ =

∂

∂w̄
+ w

∂

∂z
,

the sub-Laplacian LG takes the form

LG = −1
2

(WW̄ + W̄W ) .

The spectrum of the sub-elliptic operator LG is absolutely continuous with
uniform multiplicity on the longitudinal center frequency axis R, transverse
to the symplectic affine plane R ⊕ R. The density of the spectrum on the
longitudinal center frequency axis R is given by the Pfaffian of G.

• The symmetries of the sub-elliptic differential operator LG reflect the
time reversal of the spin echo methods, and the conjugation of the gra-
dient echo imaging methods.

The coordinate functions 1 x 0
0 1 0
0 0 1

 ,
 1 0 0

0 1 y
0 0 1

 ,
 1 0 z

0 1 0
0 0 1


of G define transvections or shearings of a three-dimensional real vector space
([19]). The multiplicative group of longitudinal dilations transforms the
transvections into the transvections 1 ax 0

0 1 0
0 0 1

 ,
 1 0 0

0 1 ay
0 0 1

 ,
 1 0 a2z

0 1 0
0 0 1


265
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for a 6= 0. With respect to the sub-Riemannian metric of G, each dilation
multiplies lengths by the fixed value |a|. The existence of dilations shows that
small neighborhoods are similar to large neighborhoods in G.

The contact geometry of the quotient projection

G −→ G/center

gives rise to the contact one-form

η = dz +
1
2

(x.dy − y.dx),

where
dη = dx ∧ dy

holds with respect to the laboratory frame of coordinate.
If the unipotent matrices {P,Q, I} denote the canonical basis of the three-

dimensional real vector space Lie(G), where the elementary matrices

expGP =

 1 1 0
0 1 0
0 0 1

 , expGQ =

 1 0 0
0 1 1
0 0 1

 , expGI =

 1 0 1
0 1 0
0 0 1


are given by the matrix exponential diffeomorphism

expG : Lie(G) −→ G,

the coadjoint action of G on Lie(G)? is given by

CoAdG

 1 x z
0 1 y
0 0 1

 =

 1 0 −y
0 1 x
0 0 1

 .
Therefore the action CoAdG reads in terms of the coordinates {α, β, ν} with
respect to the dual basis {P ?, Q?, I?} of the real vector space dual Lie(G)? as
follows:

CoAdG

 1 x z
0 1 y
0 0 1

 (αP ? + βQ? + νI?) = (α− νy)P ? + (β + νx)Q? + νI?.

The linear varieties

Oν = CoAdG(G)(νI?) = RP ? + RQ? + νI? (ν 6= 0)

actually are symplectic affine planes in the sense that they are in the natural
way compatibly endowed with both the structure of an affine plane and a
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symplectic structure. Therefore the trivial line bundle R⊕R on the symplectic
affine plane Oν ↪→ Lie(G)? (ν 6= 0) of connection differential 1-form

ν.(x.dy − y.dx)

and rotational curvature differential 2-form

ων = ν.dx ∧ dy

in the cohomology group∧2
(Oν) ∼= H2(R⊕R,R) (ν 6= 0)

forms the predestinate planar mathematical structure to implement the Kepp-
lerian temporospatial phase detection strategy over the bi-infinite stratigraphic
time line R of time cycles or repetition times. The closed exterior differential
2-form

ων =
1
2
νi dw ∧ dw̄ (ν 6= 0)

is a representative of the magnetic moment referred to in Bloch’s dynamical
approach. In the NMR experiment, the intrinsic dynamics is due to the driving
flat radiofrequency circuit.

In MRI, the symplectic affine linear varieties Oν ↪→ Lie(G)? (ν 6= 0) are
predestinate to carry quantum holograms or spin excitation profiles acting as
multichannel perfect reconstruction analysis-synthesis filter banks ([41], [22]).
The quantum holograms are implemented by the frequency modulation action
of G.

• In radar imaging, ν 6= 0 denotes the center frequency of the transmitted
coherent pulse train, whereas in clinical MRI the center frequency ν is
the frequency of the rotating coordinate system defined by tomographic
slice selection.

The stationary singular plane O∞ ↪→ Lie(G)? of equation

ν = 0

consists of the single point orbits or focal points

O∞ = {ε(α,β) | (α, β) ∈ R⊕R}
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FIG. 1. Quantum hologram of a morphological MRI cranial study (A). The data
line near the center corresponds to a response wavelet of moderately high
amplitude (B).
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FIG. 2. Quantum hologram of the morphological MRI cranial study of Figure 1. The
data line near the boundary corresponds to a response wavelet of low ampli-
tude (C). The tracial read-out process in the laboratory frame of reference
(D).
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corresponding to the one-dimensional representations of G. The elements of
the plane O∞ are the analogs of the resonance “sweet spots” of the conven-
tional spectral sweep technique employed in the early NMR spectroscopy, as
well as the prototype whole-body MRI scanner. The world’s first whole-body
scanner, dubbed “Indomitable” by Damadian to capture the spirit of its seven-
year construction ([45]), provided a technique named FONAR to achieve the
first MRI scan of the human body in vivo, and to convince the medical com-
munity that MRI scanning was, in fact, a reality.

The infinite-dimensional irreducible unitary linear representations of G as-
sociated to the symplectic affine leaves Oν (ν 6= 0) collapse down to characters
of G. The state-vector reduction, or collapse of coherent wavelet can be de-
scribed by the transition

ων ; ε(α,β) dα⊗ dβ (ν 6= 0) .

As an energetic edge, the confocal plane at infinity P(R × O∞) plays a fun-
damental role in the energetic structure of observation ([22]), and specifically
in the coherent optical processing of radar data ([13]), morphological MRI
studies, and neurofunctional MRI detection for the mapping of the activities
of the human brain to morphological cranial anatomy (Figure 4). From there
the reconstructive amplification via the multichannel parallelism of coherent
quantum stochastic resonance takes place.

The quantum holograms which are generated by neurofunctional MRI ex-
periments represent “matière à pensée” ([9]), or shadows of the mind imple-
mented by the rotationally curved planes of immanence in the philosophy of
constructivism ([16], [17]), or symplectic affine planes of incidence ([22]).

“Ein maschinelles “agencement” ist den Schichten zugewandt, reinen Intensitäten, die
sie zirkulieren läßt um die Selektion der “Konsistenzebene” zu sichern und der sich die Sub-
jekte zuordnen, welchen sie einen Namen nur als Spur einer Intensität läßt.”

The shadows of the mind emulated by MRI scanner systems seem to pro-
vide a promising conceptual approach to the missing science of consciousness.

• The canonical foliation of the three-dimensional super-encoding projec-
tive space P(R× Lie(G)?) allows to deduce the phase coherent wavelet
collapse phenomenon.

• There exists no equivalent of the state-vector reduction, or coherent
wavelet collapse phenomenon in the realm of classical physics.

• The amount of information that can be extracted from a spin isochro-
mat computer is limited by the phenomemon of phase coherent wavelet
collapse.
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In contrast to the coadjoint orbit visualization of the unitary dual Ĝ, the
standard bracket procedures of quantum mechanics provide no implication
that there be any way to deduce the collapse phenomenon as an instance of
the deterministic Schrödinger evolution. Whereas the weak containment of
the identity representation 1 in the tensor product representation provides
a geometric symmetry condition for the decryption of quantum information
from the holographic encryption, there is in standard quantum mechanics no
clear rule as to when the probabilistic collapse rule should be invoked, in place
of the deterministic Schrödinger evolution. This establishes the extraordinary
power of the coadjoint orbit visualization in terms of the three-dimensional real
projective space P(R×Lie(G)?), and the confocal plane at infinity P(R×O∞)
included.

In order to define the transvectional G-action of Ĝ, it is convenient to
immerse the CoAdG(G)-foliation of Lie(G)? with typical fiber R⊕R into its
projective completion P(R×Lie(G)?) by the bi-infinite stratigraphic time line
R. It will be shown that the concept of projective space P(R×Lie(G)?) which
is helpful in the realms of computerized geometric design, computer vision and
robotics, is also useful in non-invasive radiodiagnostics.

• The intrinsic construction provides the foliated three-dimensional super-
encoding projective space P(R× Lie(G)?) as the projective completion
of the dual vector space of the affine dual of any of the tomographic
slices Oν ↪→ Lie(G)? (ν 6= 0) by the bi-infinite stratigraphic time line R.

• The stratigraphic time line R records simultaneously the time cycles or
repetition times of the MRI protocol as well as the superposition of spin
up and spin down states, and the arrays of qubits they are representing
in coexistence.

• The unitary dual Ĝ of the Heisenberg group G can be immersed into the
foliated three-dimensional projective space P(R×Lie(G)?). The confocal
plane P(R×O∞) is the plane at infinity of P(R× Lie(G)?). The two-
dimensional projective varieties P(R×Oν) (ν 6= 0) are contained in its
complement.

• Since every transvection factors into affine dilations, the Lauterbur spec-
tral localization controls the transvectional action of G on the line bundle
model P(R× Lie(G)?) of Ĝ.

• The three-dimensional elliptic non-Euclidean space P(R × Lie(G)?) is
homeomorphic to the compact unit sphere S3 ↪→ R4 under antipodal
point identification via the action of the group {id,−id}.

• The three-dimensional elliptic non-Euclidean space P(R × Lie(G)?) is

271



272 Walter Schempp

homeomorphic to the compact solid ball B3 ↪→ R3 with the antipodal
(diametrically opposite) points of its boundary S2 = ∂B3 identified.

It follows from the classification of the coadjoint orbits of G in the foli-
ated projective space P(R × Lie(G)?) the highly remarkable fact that there
exists no finite-dimensional irreducible unitary linear representation of G hav-
ing dimension > 1. Hence the irreducible unitary linear representations of
G which are not unitary characters are infinite-dimensional and unitarily in-
duced. Their coefficient cross sections for the Hilbert bundle sitting over the
bi-infinite stratigraphic time line R define the holographic transforms which
sum the free induction decays.

• In the data acquisition process, the holographic transform collects the
response of the radiofrequency pulse train as quantum holograms or spin
excitation profiles.

Let C denote the one-dimensional center of G, transverse to the plane
carrying the quantum holograms or spin excitation profiles. Then

C = R. expG I

is spanned by the central transvection expGI . In coordinate-free terms, G
forms the non-split central group extension

C < G −→ G/C,

where the plane G/C is transverse to the line C. Thus G is defined to be the
unique central extension

{0} −→ R −→ G −→ R⊕R −→ {0}

which does not contain any line R as a direct factor. This condition of not
containing R as a factor is equivalent to the 2-cocycle of the extension which
always can be taken to be alternating bilinear, being non-degenerate. The
uniqueness follows from the fact that every pair of non-degenerate such forms
are congruent in GL(2,R), the outer automorphism group of the plane R⊕R.

The irreducible unitary linear representations of G associated to the pro-
jective coadjoint orbits P(R × Oν) ↪→ P(R × Lie(G)?) (ν 6= 0) are unitarily
induced in stages by the unitary characters of closed normal abelian subgroups
which provide a fibration of G sitting over the bi-infinite stratigraphic time
line R. The elements w ∈ O1 of the typical fiber are represented by complex
numbers of the form(

x −y
y x

)
=
(
x 0
0 x

)
+
(
y 0
0 y

)
.

(
0 −1
1 0

)
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including the differential phase (
x 0
0 x

)
and the local frequency (

y 0
0 y

)
as real coordinates with respect to the frame of reference rotating with center
frequency ν 6= 0. The alternating matrix

J =
(

0 −1
1 0

)
of Pfaffian

Pf(J) = 1

acts as imaginary unit of the basic presentation of G. It generates the spe-
cial orthogonal group SO(2,R) ↪→ O(2,R). Together with the reflection of
improper matrix (

1 0
0 −1

)
,

the non-diagonalizable matrix J generates the orthogonal group O(2,R). The
group O(2,R) can be lifted to the group of all isometries of G with respect to
the natural sub-Riemannian metric of G.

It becomes obvious that |w|2 = detw and that the rotational curvature
differential 2-form ων of Oν is exactly the standard symplectic form of R⊕R,
dilated by the center frequency ν 6= 0. Thus G implements the oscillator
driven dynamical system

R< R⊕R

of longitudinal center frequency axis R, transverse to the symplectic affine
plane R ⊕R. Keppler described the idea of an oscillator driven cyclic clock-
work as an act of profanation:

”Mein Ziel ist es, zu zeigen, daß die himmlische Maschinerie nicht von der Art eines
göttlichen Lebewesens, sondern von der eines Uhrwerks ist, daß die ganze Mannigfaltigkeit
ihrer Bewegungen von einer einfachsten magnetischen körperlichen Kraft herrührt, so wie
alle Bewegungen des Uhrwerks allein von dem es treibenden Gewicht.”

The R-linear isomorphism

(x, y) ;

(
x −y
y x

)
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of O1 onto the realification C(R ⊕ R) of the field C of complex numbers
suggests an extension from two dimensions to three dimensions via the real
quaternion skew-field H. The R-linear mapping

(w,w′) ;

(
w w′

−w̄′ w̄

)
provides an isomorphism from the image of C2 onto H. In terms of the
matrices of this type, the multiplication in H reads(

w1 w1
′

−w̄1
′ w̄1

)
.

(
w2 w2

′

−w̄2
′ w̄2

)
=
(

w1w2 − w1
′w̄2
′ w1w2

′ + w1
′w̄2

−(w̄1w̄2
′ + w̄1

′w2) w̄1w̄2 − w̄1
′w2
′

)
.

The tangent space of S3 ↪→ R4 at the neutral element of SU(2,C) is
isomorphic to the vector space R3. The isomorphism suggests to introduce the
Pauli spin matrices forming the canonical basis of the Lie algebra associated
to SU(2,C), and the real Clifford algebra C`(3,0)(R). These matrices generate
analyzing one-parameter subgroups of the group SU(2,C). The corresponding
elements in the skew-field H are given by the pure or traceless quaternions.

• The group S3 is the non-trivial covering Spin(3,R) of the rotation group
SO(3,R). The group SO(3,R) contains two normal subgroups, both
isomorphic to S3, which give rise to the Clifford translations acting tran-
sitively on the foliated projective space P(R× Lie(G)?).

• Identification of the group S3 ↪→ R4 with the unit sphere of the skew-
field H provides the multi-slice imaging capability of the MRI modality
via the abelian groups SO(2,R) of Clifford translations of tomographic
slices in the elliptic non-Euclidean space P(R× Lie(G)?).

• Identification of the unit sphere S3 ↪→ R4 with the compact group
SU(2,C), or the compact homogeneous manifolds (SU(2,C)×SU(2,C))
/SU(2,C), or SO(4,R)/SO(3,R) provides the design of pairs of surface
coils of the MRI scanner bore via zonal spherical harmonics.

The interleaving of data acquisition through multi-slice imaging provides
a simple means of acquiring data in all three dimensions, and is widely used
in clinical imaging. Due to the multiplanar imaging capability of MRI, direct
transverse slices of superior to inferior orientation of the plane normal, sagittal
slices of anterior to posterior orientation of the normal, and coronal slices of
left to right orientation of the normal, as well as oblique plane selections can
be performed without changing the patient’s position. In X-ray computed to-
mography (XCT) imaging, sagittal and coronal images are reconstructed from
a set of contiguous images. The orthogonal and oblique scan plane selection
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offer clinical advantages of MRI over XCT. Actually, MRI is closer to high
resolution radar imaging than to XCT. The high soft-tissue contrast resolu-
tion is another advantage over XCT. Neuroradiologists think that if history
of science was rewritten, and XCT invented after MRI, nobody would bother
to pursue XCT imaging. For whole-body imaging radiologists, however, the
predictions of XCT’s imminent demise and MRI’s ascendency no longer seem
so prescient.

The bundle-theoretic interpretation of the inducing mechanism gives rise
to the pair of isomorphic irreducible unitary linear representations

(Uν , V ν) (ν 6= 0)

ofG unitarily induced in quadrature by the unitary characters of the associated
closed normal abelian subgroups of G. The induced Hilbert bundles sitting in
quadrature over the bi-infinite stratigraphic time line R, admit for any Fourier
transformed pair of exciting phase coherent wavelets

(ψ,ϕ)

in the frequency modulation space L2
C(R), and element z ∈ C the contiguous

cross-sections of a phase-splitting network of uncorrelated multichannels in
quadrature format ([23], [22])

(
x0, e

2πiν(z−(x−x0)y).ψ(−x)
)
,
(
y0, e

2πiν(z+x(y−y0)).ϕ(y)
)

((x0, y0) ∈ T ⊕ S)

where x0 ∈ T denotes the phase reference of the stroboscopic phase cycling
at which system state change. Moreover, y0 ∈ S denotes the intermediate
frequency reference of the synchronous period cycling clockwork of transitions
determined by the computer’s programming, and

ϕ = FRψ

where the phase coherent wavelet ϕ is the Fourier transform of ψ. The linear
representation Uν of G and its swapped copy V ν are globally square integrable
mod C. Indeed, it is well-known that a coadjoint orbit is a linear variety if
and only if one (and hence all) of the corresponding irreducible unitary linear
representations is globally square integrable modulo its kernel. An equivalent
characterization of square integrability mod C is that the Pfaffian of G does
not vanish at the center frequency ν.

It is reasonable to regard global square integrability as an essential part of
the Stone-von Neumann theorem of quantum physics, because a representation
of a nilpotent Lie group is determined by its central unitary character χν if and
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only if it is globally square integrable mod C. Thus χν allows for selection in
the tomographic slice P(R×Oν) ↪→ P(R×Lie(G)?) (ν 6= 0) a coordinate frame
rotating with center frequency ν 6= 0 via an affine dilation in the longitudinal
direction of the line C. The corresponding equivalence classes of irreducible,
unitarily induced, linear representations Uν of G acting on the complex Hilbert
space of globally square integrable cross sections for the Hilbert bundle sitting
over the bi-infinite stratigraphic time line R are infinite-dimensional and can
be realized as Hilbert-Schmidt integral operators with kernels Kν ∈ L2(R⊕R)
([40], [42], [43], [44], [45]). The derived representation

Uν(LG),

evaluated on the sub-Laplacian LG of G in the universal enveloping algebra of
Lie(G), is the harmonic oscillator Hamiltonian of center frequency ν 6= 0. Due
to the global square integrability mod C of Uν for ν 6= 0, the center of Lie(G)
coincides with the center of the universal enveloping algebra of Lie(G).

The center of the product group S3 × S3 is given by the set

{1,−1} × {1,−1} ,

and therefore has order 4. It contains the kernel

{1, 1} × {−1,−1}

of order 2 of the natural group epimorphism S3 × S3 −→ SO(4,R).
Due to the antipodal point identification of S3, the realization of the fo-

liated three-dimensional super-encoding projective space P(R × Lie(G)?) is
diffeomorphic to the quotient of S3 by the action of the group {id,−id}. As a
result, the center of S3×S3 in the direction plane R⊕R of P(R×Oν) (ν 6= 0)
gives rise to the distributional reproducing kernel

1ν ⊗ 1ν

on P(R × Oν) ↪→ P(R × Lie(G)?) corresponding to the rotational curvature
differential 2-form

ων ∈ H2(R⊕R,R) (ν 6= 0).

It defines the symplectically reformatted two-dimensional Fourier transform

?(1ν ⊗ 1ν)

acting as a spectral sweep by symplectic convolution ([44], [45]) on the sym-
plectic spinors of P(R × Oν) ↪→ P(R × Lie(G)?) (ν 6= 0). In contrast to
the conventional two-dimensional Fourier transform of order 4, the symplectic
Fourier transform admits order 2 ([43], [44]). This corresponds to the involu-
tory entangling map W ; W̄ of quantum computation ([45]).
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• The kernel functionKν ∈ L2(R⊕R) associated to the irreducible unitary
linear representation Uν of central unitary character χν = Uν | C imple-
ments a multichannel coherent wavelet perfect reconstruction analysis-
synthesis filter bank of matched filter type.

In order to paratactically synchronize the rotating coordinate frame to the
laboratory frame of reference, the kernel function Kν has to be composed
with the symbol map σ which is defined by the Hopf fibration

S3 −→ S2

with fiber S1 into Clifford parallel circles S1 ↪→ S3. The Clifford parallelism
is understood in the sense of the elliptic non-Euclidean geometry.

• The decomposition of the complement of P(R×O∞) in the real projec-
tive space P(R×Lie(G)?) by the canonical foliation P(R×Oν) (ν 6= 0)
corresponds to the decomposition of the unit sphere S3 ↪→ R4 by the
Hopf fibration.

In terms of a partial Fourier cotransform, the symbol of Kν takes the explicit
form

σ(Kν)(x, y) = e−2πiνxyF̄2
R⊕RK

ν(x, y) ((x, y) ∈ R⊕R).

The excitation profile, generated by the density f of proton-weighted spin
isochromats, takes the form of the symplectic spinor extension

Uν(f)

corresponding to Uν(LG). If the tempered distribution

Kν = Kν
f

represents the kernel associated to Uν(f), the symbol σ(Kν
f ) of Kν

f results
from the standard spin echo pulse sequence.

• The continuous affine wavelet transform performing the spectral local-
ization of the proton-weighted spin isochromat density f in the leaf
P(R × Oν) (ν 6= 0) by linear gradient stratification lifts to the central
spectral transform for the sub-Laplacian LG.

• The central spectral transform for LG diagonalizes the weak action of LG
on the symplectically reformatted two-dimensional Fourier transform. It
gives rise to the distributional reproducing kernel 1 ⊗ 1 for the tracial
read-out process of quantum holograms in the laboratory frame of ref-
erence.
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• The reconstructive amplification process is performed by coherent quan-
tum stochastic resonance as a form of multichannel parallelism.

• The multichannel reconstruction of the phase histories in local frequency
encoding subbands from the symbol σ(Kν

f ) is performed by the symplec-
tic Fourier transform ?(1ν ⊗ 1ν).

Thus the spin echo method and the Lauterbur spectral localization method
are closely related. Why Lie group theory in the field of spin isochromat
computing? Because the Heisenberg group G allows to describe the synergy
between radiofrequency pulse trains and linear gradient stratification. This
synergy actually is the core of the tracial encoding procedure performed by
MRI protocols. The Heisenberg group approach leads to the explicit tracial
reconstruction formula

f(x, y) =
1
2
eπiνxyσ(Kν

f ) ? (1ν ⊗ 1ν)(
1
2
x,

1
2
y) .

The two-dimensional Fourier transform method, contributed by the physi-
cal chemist Ernst, forms the completion of the Lauterbur spectral localization
method. It is remarkable that the elliptic non-Euclidean geometry of the pro-
jective space P(R×Lie(G)?) provides the unifying fundament for both of the
achievements.

The Heisenberg group approach leads to the non-local entangling phe-
nomenon of quantum physics ([41], [45]), and to major application areas of
pulse train recovery methods, the corner turn algorithm in the digital process-
ing of high resolution SAR data ([51]), the spin-warp procedure in clinical MRI
via an application of the FFT algorithm, the gradient echo imaging methods,
and finally to the variants of the ultra-high-speed echo-planar imaging tech-
nique of functional MRI ([45]). Combined with multi-slice imaging via inter-
leaving of data acquisition, the spin-warp version of Fourier transform MRI
is used almost exclusively in current routine clinical examinations ([12], [37],
[46]).

Moving from the technology to the pathophysiology, the basis for clinical
MRI is the intensive enhancement of neoplasms after application of a strongly
paramagnetic contrast agent such as a gadolinium chelate. Frequently, MRI
is the definitive examination procedure, providing invaluable information to
help the surgeon not only to understand the underlying pathology, but also to
make the critical decision regarding surgical intervention. For updated surveys
of practical magnetic resonance tomography, see the monographs [4], [5], [7],
[27].

The speed with which clinical MRI spread throughout the world as a diag-
nostic imaging tool was phenomenal. In the early 1980s, it burst onto the scene
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with even more intensity than XCT imaging in the 1970s. The superiority in
sensitivity of MRI over XCT imaging was first approved by the non-invasive
detection of demyelinating plaques in multiple sclerosis (MS) patients (Figure
3). For the MRI-based diagnosis of demyelinating disorders such as MS, sev-
eral chelates of gadolinium are available for use as intravenous paramagnetic
contrast agents ([29], [36]).

Whereas at the end of 1981 there were only three working MRI scanner
systems available in the United States, presently there are more than 4.000 im-
agers performing in a non-invasive manner more than 8.5 million examinations
per year. Due to its sensitivity and specificity, MRI provides the techniques
of choice to assess MS plaques of demyelination in the periventricular white
matter, cerebral cortex, cerebellum, brainstem, and spinal cord, and to mon-
itor the short-term as well as the long-term evolution of MS ([4], [29]). XCT
imaging, however, is not reliable for the diagnosis of MS.

FIG. 3. Multiple sclerosis (MS): XCT imaging versus morphological MRI. (A)
Nonenhanced XCT scan is normal. Following contrast administration, a
single small focus of enhancement was observed. (B) Morphological MRI
study obtained one day later reveals numerous areas of increased signal in-
tensity in MS plaques. Several demyelinating plaques enhanced following
gadolinium chelate administration. MRI is the imaging test of choice for
MS.
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The speed of growth is a testimony of the clinical significance of this so-
phisticated technique. Today the modality is firmly established as a core
diagnostic tool in the fields of neuroradiology ([1], [2], [3], [14], [28], [30], [35],
[49]) and musculoskeletal imaging ([8], [18], [21], [48], [50]), routinely used in
all medical centers in Western Europe and the United States. The ability to
display the morphological anatomy of living individuals in remarkable detail
has been a tremendous boon to clinical practice. It establishes that non-trivial
mathematics can be applied to the benefit of humankind. Due to the inclusions

R ↪→ C ↪→ H,

the claim that four-dimensional spaces are quite exceptional, is no idle talk,
at least from the point of view of clinical MRI which offers a fascinating
intellectual study in its own right.

Summarizing the significant breakthrough which MRI represents in con-
junction with the recent hardware and software developments, the future of
clinical MRI as a non-invasive diagnostic imaging modality seems to be bright.
With its many advantages, including unrestricted multiplanar imaging capabil-
ity, high spatial resolution imaging, exquisite contrast imaging of soft tissues,
in addition to great versatility offering the ability to image blood flow, motion
during the cardiac cycle, temperature effects, and chemical shifts, morphologi-
cal MRI studies are a well-recognized tool in the evaluation of anatomic, patho-
logic, and functional processes. Specifically, clinical MRI allows for greater
depiction of tumor extension and staging ([21], [37], [46]).

In light of the several dozens of scans that need to be analyzed and se-
mantically interpreted in order to acquire comprehensive information from
morphological MRI studies which give consistent help in terms of earlier di-
agnosis, lesion characterization, and definition of the extent of disease, it is
worth looking for some laborious routine tasks which could be automated and
done by computers. As the applications of functional MRI in clinical radiology
become more evident, automation is an even more important requirement for
neurofunctional MRI studies which are based on the evaluation of hundreds of
scans to detect signal changes well below the visual detection threshold under
exclusion of changes that originate in head motion which correlate with the
motor or visual stimuli, and simulate activiation of the human brain (Figure
4).

Radiologists are skilled at interpreting original cross-sectional scans.
Nevertheless, more advanced techniques such as magnetic resonance
angiography need computer-based medical three-dimensional imaging.
Despite formidable challenges, technical advances have already made it pos-
sible to develop multiple surface and volume algorithms to generate clinically
useful three-dimensional renderings from MRI data sets.
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FIG. 4. Human brain mapping: Coadjoint orbit foliation of the transverse morpho-
logical cranial anatomy, and motor task activation mapping of the cerebral
cortex by a neurofunctional MRI study.

Although MRI has not reached the end of its development, this diagnostic
imaging modality has already undoubtedly saved many lives, and patients
the world over enjoy a higher quality of life, thanks to MRI. The previously
impenetrable black holes of lung air spaces are finally yielding their secrets
to MRI. Utilizing inhaled 3He or 129Xe gases that are hyperpolarized by laser
light, MRI scans can be acquired in a breath-hold that promise to reveal new
insights into pulmonary anatomy and function. Because the exhaled gases can
be recycled, MRI will play a role also in the earlier detection of chest diseases
and bronchiectasis, and surgical planning of lung transplantation.

Laser technology has been developed sufficiently that is now reliable,
portable, and deliverable in an MRI environment. The high sensitivity of
contrast-enhanced MRI to detect and show the local extent of mamma carci-
noma is now well established. Further, it offers a method of monitoring the
thermal effects of laser ablation during treatment. Neither ultrasound nor
XCT imaging can accurately map the tumor or the therapeutic effect. For
these reasons, MRI has been used for the development of interstitial laser
photocoagulation therapy for local tumor destruction within the breast. To
date, it had been shown that large areas of laser necrosis can be generated un-
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der MRI-guidance, and that these can be documented during treatment using
fast imaging techniques, and after treatment by follow-up contrast-enhanced
MRI studies of the breast. Thus MRI is not only useful for diagnostic imaging
and loco-regional staging, but also forms a valuable tool for minimally invasive
interventional procedures.

The dramatic advances made in clinical MRI within the last few years, the
resulting enhancement of the ability to evaluate morphological and pathologic
changes ([12], [46], and the non-invasive window on human brain activation
offered by neurofunctional MRI studies to the preoperative assessment ([10],
[30], [39]), demonstrate the unity of mathematics, science, and engineering in
an impressive manner. This unity of sciences proves that the frontiers between
different disciplines are only conventional. The frontiers change according to
the state of human knowledge, the understanding of nature, and the computer
performance in silicio available. They can be penetrated by mathematical
methodology which allows to support the semantic filter needed as an essential
component of all observations and interpretations in biology and medicine.

In conclusion, it can only be assumed that the inexorable progress of quan-
tum holography and MRI will continue, and that there are many more im-
provements and discoveries of new clinical applications around the corner.
The reader should try to accept these extensions of human knowledge and
understanding of nature as part of interesting mathematics for the benefit of
humankind.
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