ON FUNCTIONS STARLIKE WITH RESPECT TO SYMMETRIC AND CONJUGATE POINTS

T. V. Sudharsan, P. Balasubrahmanyam, and K. G. Subramanian

Abstract. A class $S_{s}^{*}(\alpha, \beta)$ of functions f, regular and univalent in $D=\{z:|z|<1\}$ given by $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ and satisfying the condition

$$
\left|\frac{z f^{\prime}(z)}{f(z)-f(-z)}-1\right|<\beta\left|\frac{\alpha z f^{\prime}(z)}{f(z)-f(-z)}+1\right|
$$

$z \in D, 0 \leq \alpha \leq 1,0<\beta \leq 1$ is introduced and studied. An analogous class $S_{c}^{*}(\alpha, \beta)$ is also examined.

1. Introduction

Let S be the class of functions f, regular ard univalent in $D=\{z:|z|<1\}$ given by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

Let S^{*} be the subclass of S consisting of functions starlike in D. It is well known [4] that $f \in S^{*}$ if and only if $\operatorname{Re}\left\{z f^{\prime}(z) / f(z)\right\}>0$ for $z \in D$.

Let S_{s}^{*} be the subclass of S consisting of functions given by (1.1) satisfying $\operatorname{Re}\left\{\left(z f^{\prime}(z) /(f(z)-f(-z))\right\}>0\right.$ for $z \in D$. These functions are called starlike with respect to symmetric points and were introduced by Sakaguchi[5]. Recently ELAshwa and Thomas [2] have obtained various results concerning functions in S_{s}^{*} and two other classes namely the class S_{c}^{*} of functions starlike

Receeived May 8, 1995.

Communicated by S.-Y. Shaw.
1991 Mathematics Subject Classification: 30C45.
Key words and phrases: Starlike with respect to symmetric points, univalent functions.
with respect to conjugate points and the class $S_{s c}^{*}$ of functions starlike with respect to symmetric conjugate points.

In this paper, we introduce the class $S_{s}^{*}(\alpha, \beta)$ of functions f, regular and univalent in D given by (1.1) and satisfying the condition

$$
\left|\frac{z f^{\prime}(z)}{f(z)-f(-z)}-1\right|<\beta\left|\frac{\alpha z f^{\prime}(z)}{f(z)-f(-z)}+1\right|
$$

$z \in D, 0 \leq \alpha \leq 1,0<\beta \leq 1$.
$S_{s}^{*}(1,1)$ is precisely the class S_{s}^{*}. In this paper we obtain coefficient estimates for functions in the class $S_{s}^{*}(\alpha, \beta)$. We also obtain a sufficient condition for a function to belong to the class $S_{s}^{*}(\alpha, \beta)$.

We also consider the class $S_{c}^{*}(\alpha, \beta)$ of functions f, regular in D with $f(0)=$ 0 and $f^{\prime}(0)=1$ and satisfying

$$
\left|\frac{z f^{\prime}(z)}{f(z)+\overline{f(\bar{z})}}-1\right|<\beta\left|\frac{\alpha z f^{\prime}(z)}{f(z)+\overline{f(\bar{z})}}+1\right|
$$

with $0 \leq \alpha \leq 1,0<\beta \leq 1$ and $z \in D$.
The class $S_{c}^{*}(1,1)$ is precisely the class S_{c}^{*}. We analogously obtain coefficient estimates for functions in the class $S_{c}^{*}(\alpha, \beta)$.

2. Coefficient Estimates

We need a lemma of Lakshminarasimhan [3].
Lemma 2.1. Let $H(z)$ be analytic in D and satisfy the condition

$$
\begin{equation*}
\left|\frac{1-H(z)}{1+\alpha H(z)}\right|<\beta \tag{2.1}
\end{equation*}
$$

$z \in D, 0 \leq \alpha \leq 1,0<\beta \leq 1$ with $H(0)=1$. Then we have

$$
\begin{equation*}
H(z)=\frac{1-z \phi(z)}{1+\alpha z \phi(z)} \tag{2.2}
\end{equation*}
$$

where $\phi(z)$ is analytic in D and $|\phi(z)| \leq \beta$ for $z \in D$. Conversely any function $H(z)$ given by (2.2) above is analytic in D and satisfies (2.1).

We now prove a lemma, which is used to obtain the coefficient estimates for functions in the class $S_{s}^{*}(\alpha, \beta)$ and $S_{c}^{*}(\alpha, \beta)$.

Lemma 2.2. Let f and g belong to S and satisfy

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{g(z)}-1\right|<\beta\left|\frac{\alpha z f^{\prime}(z)}{g(z)}+1\right| \tag{2.3}
\end{equation*}
$$

$0 \leq \alpha \leq 1,0<\beta \leq 1$ and $z \in D$, with f given by (1.1), and $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$. Then for $n \geq 2$

$$
\begin{equation*}
\left|n a_{n}-b_{n}\right|^{2} \leq 2\left(\alpha \beta^{2}+1\right) \sum_{k=1}^{n-1} k\left|a_{k}\right|\left|b_{k}\right|\left(\left|a_{1}\right|=\left|b_{1}\right|=1\right) . \tag{2.4}
\end{equation*}
$$

Proof. We use the method of Clunie and-keogh [1] and Thomas [6]. By Lemma 2.1 we have

$$
\frac{z f^{\prime}(z)}{g(z)}=\frac{1-z \phi(z)}{1+\alpha z \phi(z)}
$$

$\phi(z)$ is analytic in D and $|\phi(z)| \leq \beta$ for $z \in D$. Then

$$
z f^{\prime}(z)=g(z)\left[\frac{1-z \phi(z)}{1+\alpha z \phi(z)}\right]
$$

(or)

$$
\left[\alpha z f^{\prime}(z)+g(z)\right] z \phi(z)=g(z)-z f^{\prime}(z)
$$

Now if

$$
\psi(z)=z \phi(z)=\sum_{n=1}^{\infty} t_{n} z^{n}
$$

then

$$
|\psi(z)| \leq \beta|z| \text { for } z \in D
$$

Therefore

$$
\begin{align*}
& {\left[\alpha z+z+\propto \sum_{n=2}^{\infty} n a_{n} z^{n}+\sum_{n=2}^{\infty} b_{n} z^{n}\right]\left[\sum_{n=1}^{\infty} t_{n} z^{n}\right]} \\
& =\sum_{n=2}^{\infty} b_{n} z^{n}-\sum_{n=2}^{\infty} n a_{n} z^{n} . \tag{2.5}
\end{align*}
$$

Equating the coefficient of z^{n} in (2.5), we have

$$
b_{n}-n a_{n}=(\alpha+1) t_{n-1}+\left(\alpha 2 a_{2}+b_{2}\right) t_{n-2}+\ldots+\left(\alpha(n-1) a_{n-1}+b_{n-1}\right) t_{1} .
$$

Thus the coefficient combination on the right side of (2.5) depends only upon the coefficients combination $\left(\alpha 2 a_{2}+b_{2}\right), \ldots\left(\alpha(n-1) a_{n-1}+b_{n-1}\right)$ on the left side.

Hence for $n \geq 2$ we can write

$$
\begin{align*}
& {\left[(\alpha+1) z+\sum_{k=2}^{n-1}\left(\alpha k a_{k}+b_{k}\right) z^{k}\right] \psi(z)} \\
& =\sum_{k=2}^{n}\left(b_{k}-k a_{k}\right) z^{k}+\sum_{k=n+1}^{\infty} c_{k} z^{k} \text { (say). } \tag{2.6}
\end{align*}
$$

Squaring the moduli of both sides of (2.6) and integrating along $|z|=r<1$ and on using the fact that $|\psi(z)| \leq \beta|z|$, we obtain

$$
\begin{aligned}
& \sum_{k=2}^{n}\left|k a_{k}-b_{k}\right|^{2} r^{2 k}+\sum_{k=n+1}^{\infty}\left|c_{k}\right|^{2} r^{2 k} \\
& <\beta^{2}\left[(\alpha+1)^{2} r^{2}+\sum_{k=2}^{n-1}\left|\alpha k a_{k}+b_{k}\right|^{2} r^{2 k}\right] .
\end{aligned}
$$

Letting $r \rightarrow 1$ on the left side of this inequality, we obtain

$$
\sum_{k=2}^{n}\left|k a_{k}-b_{k}\right|^{2}<\beta^{2}(1+\alpha)^{2}+\beta^{2} \sum_{k=2}^{n-1}\left|\alpha k a_{k}+b_{k}\right|^{2}
$$

This implies that

$$
\begin{align*}
\left|n a_{n}-b_{n}\right|^{2} \leq & \beta^{2}(1+\alpha)^{2}+\beta^{2} \sum_{k=2}^{n-1}\left|a k a_{k}+b_{k}\right|^{2}-\sum_{k=2}^{n-1}\left|k a_{k}-b_{k}\right|^{2} \\
\leq & \beta^{2}(1+\alpha)^{2}+\left(\alpha^{2} \beta^{2}-1\right) \sum_{k=2}^{n-1} k^{2}\left|a_{k}\right|^{2}+\left(\beta^{2}-1\right) \sum_{k=2}^{n-1}\left|b_{k}\right|^{2} \tag{2.7}\\
& +2 \alpha \beta^{2} \sum_{k=2}^{n-1} k\left|a_{k} b_{k}\right|+2 \sum_{k=2}^{n-1} k\left|a_{k}\right|\left|b_{k}\right|
\end{align*}
$$

(or)

$$
\begin{aligned}
& \left|n a_{n}-b_{n}\right|^{2} \leq 2 \alpha \beta^{2} \sum_{k=1}^{n-1} k\left|a_{k}\right|\left|b_{k}\right|+2 \sum_{k=1}^{n-1} k\left|a_{k}\right|\left|b_{k}\right| \\
& \left(\left|a_{1}\right|=\left|b_{1}\right|=1\right) \text {, since } 0 \leq \alpha \leq 1,0<\beta \leq 1 .
\end{aligned}
$$

Theorem 2.1. Let f and g belong to S and be given as in Lemma 2.2. Then for $n \geq 2$

$$
\left|n a_{n}-b_{n}\right|^{2} \leq 2\left(\alpha \beta^{2}+1\right) C A(1-1 / n, f)^{1 / 2} A(1-1 / n, g)^{1 / 2}
$$

where $A(r, f)$ denotes the area enclosed by $f(|z|=r)$ and where C is a constant.

Proof. We have by (2.4) of lemma (2.2)

$$
\left|n a_{n}-b_{n}\right|^{2} \leq 2\left(\alpha \beta^{2}+1\right) \sum_{k=1}^{n-1} k\left|a_{k}\right|\left|b_{k}\right|\left(\left|a_{1}\right|=\left|b_{1}\right|=1\right) .
$$

The Cauchy-Schwarz inequality gives for $0<r<1$

$$
\begin{aligned}
\left|n a_{n}-b_{n}\right|^{2} \leq & 2 \alpha \beta^{2}\left(\sum_{k=1}^{n-1} k\left|a_{k}\right|^{2}\right)^{1 / 2}\left(\sum_{k=1}^{n-1} k\left|b_{k}\right|^{2}\right)^{1 / 2} \\
& +2\left(\sum_{k=1}^{n-1} k\left|a_{k}\right|^{2}\right)^{1 / 2}\left(\sum_{k=1}^{n-1} k\left|b_{k}\right|^{2}\right)^{1 / 2} \\
\leq & \frac{2 \alpha \beta^{2}}{r^{2 n}}\left(\sum_{k=1}^{n-1} k\left|a_{k}\right|^{2} r^{2 k}\right)^{1 / 2}\left(\sum_{k=1}^{n-1} k\left|b_{k}\right|^{2} r^{2 k}\right)^{1 / 2} \\
& +\frac{2}{r^{2 n}}\left(\sum_{k=1}^{n-1} k\left|a_{k}\right|^{2} r^{2 k}\right)^{1 / 2}\left(\sum_{k=1}^{n-1} k\left|b_{k}\right|^{2} r^{2 k}\right)^{1 / 2} \\
\leq & \frac{2 \alpha \beta^{2}}{\pi r^{2 n}} A(r, f)^{1 / 2} A(r, g)^{1 / 2}+\frac{2}{\pi r^{2 n}} A(r, f)^{1 / 2} A(r, g)^{1 / 2}
\end{aligned}
$$

since $A(r, f)=\pi \sum_{n-1}^{\infty} n\left|a_{n}\right|^{2} r^{2 n}$.
Choosing $r=1-1 / n$ for $n \geq 2$, the result follows.
Remark 2.1. When $\alpha=\beta=1$, we obtain Theorem 1 (i) of EL-Ashwah and Thomas [2].

Theorem 2.2. Let $f \in S_{s}^{*}(\alpha, \beta)$ and be given by (1.1). Then
(i) $m^{2}\left|a_{2 m}\right|^{2} \leq 1 / 2\left(\alpha \beta^{2}+1\right)\left(\sum_{j=1}^{m}(2 j-1)\left|a_{2 j-1}\right|^{2}\right), m \geq 1,\left|a_{1}\right|=1$
(ii) $(m-1)^{2}\left|a_{2 m-1}\right|^{2} \leq 1 / 2\left(\alpha \beta^{2}+1\right)\left(\sum_{j=1}^{m-1}(2 j-1)\left|a_{2 j-1}\right|^{2}\right), m \geq 2$.

Further, if $\alpha \beta<1$,
(iii) $m^{2}\left|a_{2 m}\right|^{2} \leq \frac{\beta^{2}-1}{4}\left(\sum_{j=1}^{m}\left|a_{2 j-1}\right|^{2}\right)+\frac{\beta+1}{2}\left(\sum_{j=1}^{m}(2 j-1)\left|a_{2 j-1}\right|^{2}\right)$
for $m \geq 1,\left|a_{1}\right|=1$ and
(iv) $(m-1)^{2}\left|a_{2 m-1}\right|^{2} \leq \frac{\beta^{2}-1}{4}\left(\sum_{j=1}^{m-1}\left|a_{2 j-1}\right|^{2}\right)$

$$
+\frac{\beta+1}{2}\left(\sum_{j=1}^{m-1}(2 j-1)\left|a_{2 j-1}\right|^{2}\right), m \geq 2 .
$$

The inequalities (i) and (ii) are sharp.
Proof. Since $f \in S_{s}^{*}(\alpha, \beta)$, by Lemma 2.1 we have $\frac{z f^{\prime}(z)}{g(z)}=h(z)$, where g is an odd star like function with $g(z)=\frac{f(z)-f(-z)}{2}$ and $h(z)=\frac{1-z \phi(z)}{1+\alpha z \phi(z)}, \quad \phi(z)$ analytic in D and $|\phi(z)| \leq \beta$ for $z \in D$. Thus, with $g(z)=z+\sum_{n=2}^{\infty} a_{2 n-1} z^{2 n-1}$ for $z \in D$, using (2.4) of Lemma 2.2 with b_{n} suitably chosen, the inequalities (i) and (ii) in the theorem follow. Indeed, when $\alpha \beta<1$ using (2.7) of Lemma 2.2

$$
\left|n a_{n}-b_{n}\right|^{2} \leq\left(\beta^{2}-1\right) \sum_{k=1}^{n-1}\left|b_{k}\right|^{2}+2(\beta+1) \sum_{k=1}^{n-1} k\left|a_{k}\right|\left|b_{k}\right|
$$

and the inequalities (iii) and (iv) follow.
The inequalities (i) and (ii) are sharp as can be seen from the function $f(z)=1 / 2\left(\alpha \beta^{2}+1\right) \frac{z}{1-z}$; we note that when $\alpha=\beta=1$, inequalities (i) and (ii) give Theorem 2(i) and (ii) of EL-Ashwah and Thomas [2].

Theorem 2.3. If $f \in S_{s}^{*}(\alpha, \beta)$ with $\alpha \beta<1$, then $a_{n}=0(1 / n)$ as $n \rightarrow \infty$.
Proof. We observe that when $\alpha \beta<1$, for $f \in S_{s}^{*}(\alpha, \beta), \frac{z f^{\prime}(z)}{f(z)-f(-z)}$ is bounded. We first prove that

$$
\left(n-\left(1-(-1)^{n}\right)\right)^{2}\left|a_{n}\right|^{2} \leq 4(\beta+1) \sum_{k=1}^{n-1} k\left|a_{k}\right|^{2} \quad\left(\left|a_{1}\right|=\left|b_{1}\right|=1\right)
$$

If $f \in S_{s}^{*}(\alpha, \beta)$ is given by (1.1), we have using Lemms 2.1

$$
\frac{z f^{\prime}(z)}{f(z)-f(-z)}=\frac{1-z \phi(z)}{1+\alpha z \phi(z)},
$$

$\phi(z)$ is analytic in D and $|\phi(z)| \leq \beta$ for $z \in D$. Then

$$
\left[\alpha z f^{\prime}(z)+f(z)-f(-z)\right] z \phi(z)=[f(z)-f(-z)]-z f^{\prime}(z) .
$$

Now if

$$
\psi(z)=z \phi(z)=\sum_{n=0}^{\infty} t_{n} z^{n}
$$

then

$$
|f(z)| \leq \beta|z| \text { for } z \in D
$$

Therefore

$$
\begin{align*}
& {\left[\alpha z+\alpha \sum_{n=2}^{\infty} n a_{n} z^{n}+2 z+\sum_{n=2}^{\infty} a_{n} z^{n}\left(1-(-1)^{n}\right)\right]\left(\sum_{n=0}^{\infty} t_{n} z^{n}\right)} \\
& \quad=\left[z+\sum_{n=2}^{\infty}\left(\left(1-(-1)^{n}\right)-n\right) a_{n} z^{n}\right] \tag{2.8}
\end{align*}
$$

Equating coefficients of z^{n} in (2.8), we have

$$
\begin{aligned}
\left(\left(1-(-1)^{n}\right)-n\right)= & (2+\alpha) t_{n-1}+\left(\alpha 2 a_{2}+\left(1-(-1)^{2}\right)\right) t_{n_{2}}+\ldots \\
& +\left(\alpha(n-1) a_{n-1}+\left(1-(-1)^{n-1}\right)\right) t_{1}
\end{aligned}
$$

Thus the coefficient combination on the right side of (2.8) depends only upon the coefficient combination

$$
\left(\alpha 2 a_{2}+\left(1-(-1)^{2}\right), \ldots\left(\alpha(n-1) a_{n-1}+\left(1-(-1)^{n-1}\right)\right)\right.
$$

on the left side. Hence for $n \geq 2$ we can write

$$
\begin{align*}
& {\left[(\alpha+2) z+\sum_{k=2}^{n-1}\left(\alpha k+\left(1-(-1)^{k}\right)\right) a_{k} z^{k}\right] \psi(z)} \\
& =\sum_{k=2}^{n}\left(\left(1-(-1)^{k}\right)-k\right) a_{k} z^{k}+\sum_{k=n+1}^{\infty} c_{k} z^{k}(\text { say }) \tag{2.9}
\end{align*}
$$

Squaring the moduli of both sides of (2.9) and integrating along $|z|=r<1$, we obtain on using the fact that $|\psi(z)| \leq \beta|z|$

$$
\begin{aligned}
& \sum_{k=2}^{n}\left(k-\left(1-(-1)^{k}\right)\right)^{2}\left|a_{k}\right|^{2} r^{2 k}+\sum_{k=n+1}^{\infty}\left|c_{k}\right|^{2} r^{2 k} \\
& <\beta^{2}\left[(\alpha+2)^{2} r^{2}+\sum_{k=2}^{n-1}\left(\alpha k+\left(1-(-1)^{k}\right)\right)^{2}\left|a_{k}\right|^{2} r^{2 k}\right]
\end{aligned}
$$

Letting $r \rightarrow 1$ on the left side of the inequality we obtain

$$
\sum_{k=2}^{n}\left(k-\left(1-(-1)^{k}\right)\right)^{2}\left|a_{k}\right|^{2}<\beta^{2}\left[(\alpha+2)^{2}+\sum_{k=2}^{n-1}\left(\alpha k+\left(1-(-1)^{k}\right)\right)^{2}\right]
$$

This implies

$$
\begin{aligned}
& \left(n-\left(1-(-1)^{n}\right)\right)^{2}\left|a_{n}\right|^{2}<\beta^{2}(2+\alpha)^{2}+\beta^{2} \sum_{k=2}^{n-1}\left(\alpha k+\left(1-(-1)^{k}\right)\right)^{2}\left|a_{k}\right|^{2} \\
& -\sum_{k=2}^{n-1}\left(k-\left(1-(-1)^{k}\right)\right)^{2}\left|a_{k}\right|^{2} \\
& \leq \beta^{2}(2+\alpha)^{2}+\left(\alpha^{2} \beta^{2}-1\right) \sum_{k=2}^{n-1} k^{2}\left|a_{k}\right|^{2} \\
& +\left(\beta^{2}-1\right) \sum_{k=2}^{n-1}\left(1-(-1)^{k}\right)^{2}\left|a_{k}\right|^{2} \\
& +2 \alpha \beta^{2} \sum_{k=2}^{n-1} k\left(1-(-1)^{k}\right)\left|a_{k}\right|^{2} \\
& +2 \sum_{k=2}^{n-1} k\left(1-(-1)^{k}\right)\left|a_{k}\right|^{2}
\end{aligned}
$$

(or)

$$
\begin{align*}
\left(n-\left(1-(-1)^{n}\right)\right)^{2}\left|a_{n}\right|^{2} & \leq 4 \beta \sum_{k=1}^{n-1} k\left|a_{k}\right|^{2}+4 \sum_{k=1}^{n-1} k\left|a_{k}\right|^{2} \\
& \leq 4(\beta+1) \sum_{k=1}^{n-1} k\left|a_{k}\right|^{2} \quad\left(\left|a_{1}\right|=\left|b_{1}\right|=1\right) \tag{2.11}
\end{align*}
$$

since $\alpha \beta<1$.
It remains to show that $a_{n}=0(1 / n)$ as $n \rightarrow \infty$. From (2.11) we have

$$
\begin{equation*}
\left(n-\left(1-(-1)^{n}\right)\right)^{2}\left|a_{n}\right|^{2} \leq 4(\beta+1)\left(1+\sum_{k=2}^{n-1} k\left|a_{k}\right|^{2}\right) \tag{2.12}
\end{equation*}
$$

Since $\frac{z f^{\prime}(z)}{f(z)-f(-z)}$ is bounded, it follows that $f(z)$ is bounded. Now following Clunie and Keogh [1] we conclude that Δ, the area of the image of $f(z)$ is given by

$$
\begin{equation*}
\Delta=\pi\left(1+\sum_{k=2}^{\infty} k\left|a_{k}\right|^{2}\right) \tag{2.13}
\end{equation*}
$$

and consequently, $\sum_{k=2}^{\infty} k\left|a_{k}\right|^{2}<\infty$ and hence $r_{n}=\sum_{k=2}^{\infty} k\left|a_{k}\right|^{2} \rightarrow 0$ as $n \rightarrow \infty$. Thus we have

$$
\begin{equation*}
\sum_{k=2}^{n-1} k\left|a_{k}\right|^{2}=\sum_{k=2}^{n-1}\left(r_{k}-r_{k+1}\right)=r_{2}-r_{n}=0(1) \text { as } n \rightarrow \infty \tag{2.14}
\end{equation*}
$$

Using (2.12) and (2.14), we have $a_{n}=0(1 / n)$ as $n \rightarrow \infty$.

3. Sufficient Condition

We obtain a sufficient condition for functions to belong to the class $S_{s}^{*}(\alpha, \beta)$.
Theorem 3.1. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be analytic in the unit disc D. If for $0 \leq \alpha \leq 1,1 / 2<\beta \leq 1$

$$
\sum_{n=2}^{\infty}\left[\frac{(1+\beta \alpha) n}{\beta(2+\alpha)-1}+\frac{\beta\left(1-(-1)^{n}\right)-\left(1-(-1)^{n}\right)}{\beta(2+\alpha)-1}\right]\left|a_{n}\right| \leq 1
$$

or equivalently,

$$
\begin{align*}
& \sum_{m=1}^{\infty}\left[\frac{(1+\beta \alpha) 2 m\left|a_{2 m}\right|}{\beta(2+\alpha)-1}\right. \tag{3.1}\\
& \left.\quad-\frac{(1+\beta \alpha)(2 m+1)\left|a_{2 m+1}\right|+2(\beta-1)\left|a_{2 m+1}\right|}{\beta(2+\alpha)-1}\right] \leq 1,
\end{align*}
$$

then $f(z)$ belongs to the class $S_{s}^{*}(\alpha, \beta)$.
Proof. We use the method of Clvnic and Keogh [1]. Suppose that $f(z)=$ $z+\sum_{n=2}^{\infty} a_{n} z^{n}$, then for $|z|<1$

$$
\begin{aligned}
& \left|z f^{\prime}(z)-f(z)-f(-z)\right|-\beta\left|\alpha z f^{\prime}(z)+f(z)-f(-z)\right| \\
& =\left|z+\sum_{n=2}^{\infty} n a_{n} z^{n}-2 z-\sum_{n=2}^{\infty}\left(1-(-1)^{n}\right) a_{n} z^{z^{\prime}}\right| \\
& \quad-\beta\left|\alpha z+\alpha \sum_{n=2}^{\infty} n a_{n} z^{n}+2 z+\sum_{n=2}^{\infty}\left(1-(-1)^{n}\right) a_{n} z^{n}\right| \\
& =\left|-z+\sum_{n=2}^{\infty} n a_{n} z^{n}-\sum_{n=2}^{\infty}\left(1-(-1)^{n}\right) a_{n} z^{n}\right| \\
& \quad-\beta\left|z(2+\alpha)+\alpha \sum_{n=2}^{\infty} n a_{n} z^{n}+\sum_{n=2}^{\infty}\left(1-(-1)^{n}\right) a_{n} z^{n}\right|
\end{aligned}
$$

$$
\begin{aligned}
= & \left|-z+\sum_{n=2}^{\infty}\left(n-\left(1-(-1)^{n}\right)\right) a_{n} z^{n}\right| \\
& -\beta\left|z(2+\alpha)+\alpha \sum_{n=2}^{\infty}\left(n \alpha+\left(1-(-1)^{n}\right)\right) a_{n} z^{n}\right| \\
\leq & \sum_{n=2}^{\infty}\left(n-\left(1-(-1)^{n}\right)\right)\left|a_{n}\right| r^{n}+r \\
& -\beta\left[(2+\alpha) r-\sum_{n=2}^{\infty}\left(a n+\left(1-(-1)^{n}\right)\right)\left|a_{n}\right| r^{n}\right] \\
< & {\left[\sum_{n=2}^{\infty}\left(n-\left(1-(-1)^{n}\right)\left|a_{n}\right|+1-\beta(2+\alpha)+\sum_{n=2}^{\infty} \beta\left(\alpha n+\left(1-(-1)^{n}\right)\right)\left|a_{n}\right|\right] r\right.} \\
< & \left.\sum_{n=2}^{\infty}\left[(1+\alpha \beta) n+\left(\beta\left(1-(-1)^{n}\right)\right)-\left(1-(-1)^{n}\right)\right]\left|a_{n}\right|-(\beta(2+\alpha)-1)\right] r \\
< & {\left[\sum_{m=1}^{\infty}(1+\beta \alpha) 2 m\left|a_{2 m}\right|+\sum_{m=1}^{\infty}\left\{(1+\beta \alpha)(2 m+1)\left|a_{2 m+1}\right|\right.\right.} \\
& \left.\left.+2(\beta-1)\left|a_{2 m+1}\right|\right\}-(\beta(2+\alpha)-1)\right] r \\
\leq & 0 \text { by }(3.1) .
\end{aligned}
$$

Hence it follows that in $|z|<1$

$$
\left|\left(\frac{z f^{\prime}(z)}{f(z)-f(-z)}-1\right) /\left(\frac{\alpha z f^{\prime}(z)}{f(z)-f(-z)}+1\right)\right|<\beta
$$

so that $f(z) \in S_{s}^{*}(\alpha, \beta)$. We note that

$$
f(z)=z-\frac{(\beta(2+\alpha)-1)}{(1+\beta \alpha) n+\left(\beta\left(1-(-1)^{n}\right)-\left(1-(-1)^{n}\right)\right)} z^{n}
$$

is an extremal function with respect to the theorem since

$$
\left|\left(\frac{z f^{\prime}(z)}{f(z)-f(-z)}-1\right) /\left(\frac{\alpha z f^{\prime}(z)}{f(z)-f(-z)}+1\right)\right|=\beta
$$

for $z=1,0 \leq \alpha \leq 1,1 / 2<\beta \leq 1, n=2,3 \ldots$

Remark 3.1. Theorem 3.1 can be used to show that $n a_{n} \rightarrow 0$ as slowly as we desire, that is, given any sequence $\epsilon_{n} \rightarrow 0$ there exists a f such that $\left|n a_{n}\right|>\epsilon_{n}$ for infinitely many n. In fact, it is clear that $\sum_{n=1}^{\infty} n\left|a_{n}\right| \leq k$. Given
$\epsilon_{n} \rightarrow 0$ such that $\left|n a_{n}\right|>\epsilon_{n}$ we choose $k \geq \sum_{n=1}^{\infty} n\left|a_{n}\right|>\sum_{n=1}^{\infty} \epsilon_{n}$. If $\epsilon_{n} \rightarrow 0$ is so chosen that $\sum_{n=1}^{\infty} \epsilon_{n}=k / 2$ and $\left|a_{n}\right|>\frac{2 \epsilon_{n}}{n}$, then $\sum_{n=1}^{\infty} n\left|a_{n}\right|>k$.

Hence there exists af such that $\left|n a_{n}\right|>\epsilon_{n}$ for infinitely many n. In fact, the function

$$
\begin{gathered}
f(z)=1 / 2\left(\alpha \beta^{2}+1\right) \frac{z}{1-z} \in S_{s}^{*}(\alpha, \beta), 0 \leq \alpha \leq 1,1 / 2<\beta \leq 1, \text { but } \\
\sum_{n=2}^{\infty}\left[\frac{(1+\beta \alpha) n}{\beta(2+\alpha)-1}+\frac{\beta\left(1-(-1)^{n}\right)-\left(1-(-1)^{n}\right)}{\beta(2+\alpha)-1}\right]\left|a_{n}\right|>1 .
\end{gathered}
$$

4. Coefficient Estimates For The Class $S_{c}^{*}(\alpha, \beta)$

Theorem 4.1. Let $f \in S_{c}^{*}(\alpha, \beta)$ and be given by (1.1). Then for $n \geq 2$

$$
(n+1)^{2}\left|a_{n}\right|^{2} \leq 2\left(\alpha \beta^{2}+1\right)\left(\sum_{k=1}^{n} k\left|a_{k}\right|^{2}\right)
$$

Proof. The theorem follows immediately from Lemma 2.2. The inequality in the above Theorem (3.2) is sharp as can be seen from

$$
f(z)=1 / 2\left(\alpha \beta^{2}+1\right) \frac{z}{(1-z)^{2}} .
$$

Corollary 4.1. Let $f \in S_{c}^{*}(\alpha, \beta)$ and suppose $A(r, f) \leq A$, a constant. Then for $n \geq 2$

$$
(n+1)\left|a_{n}\right| \leq\left(2\left(\alpha \beta^{2}+1\right) \frac{A}{\pi}\right)^{1 / 2}
$$

Remark 4.1. When $\alpha=\beta=1$, we get the corresponding results of EL Ashwah and Thomas [2].

References

1. J. Clunie and F. R. Keogh, On starlike and schlit functions, J. London. Math. Soc. 35 (1960), 229-233.
2. R. M. El-Ashwa and D. K. Thomas, Some subclasses of close-to-convex functions, J. Ramanujan Math. Soc. 2 (1987), 86-100.
3. T. V. Lakshminarasimhan, On subclasses of functions starlike in the unit disc, J. Indian. Math. Soc. 41 (1977), 233-243.
4. Z. Nehari, Conformal Mapping, McGraw-Hill, 1952.
5. K. Sakaguchi, On certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72-75.
6. D. K. Thomas, On starlike and close-to-convex univalent functions, J. London Math. Soc. 42 (1967), 472-435.

T. V. Sudharsan
Department of Mathematics, S.I.V.E.T. College
Gowriwakkam, Madras - 601 302, India
P. Balasubrahmanyam and K. G. Subramanian
Department of Mathematics, Madras Christian College
Madras - 600 059, India

