TWIWANESE JOURNAL OF MATHEMATICS Vol. 2, No. 1, pp. 57-68, March 1998

ON FUNCTIONS STARLIKE WITH RESPECT TO SYMMETRIC AND CONJUGATE POINTS

T. V. Sudharsan, P. Balasubrahmanyam, and K. G. Subramanian

Abstract. A class $S_s^*(\alpha, \beta)$ of functions f, regular and univalent in $D = \{z : |z| < 1\}$ given by $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ and satisfying the condition

$$\left|\frac{zf'(z)}{f(z)-f(-z)}-1\right|<\beta\left|\frac{\alpha zf'(z)}{f(z)-f(-z)}+1\right|,$$

 $z \in D, 0 \le \alpha \le 1, 0 < \beta \le 1$ is introduced and studied. An analogous class $S_c^*(\alpha, \beta)$ is also examined.

1. INTRODUCTION

Let S be the class of functions f, regular and univalent in $D = \{z : |z| < 1\}$ given by

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

Let S^* be the subclass of S consisting of functions starlike in D. It is well known [4] that $f \in S^*$ if and only if Re $\{zf'(z)/f(z)\} > 0$ for $z \in D$.

Let S_s^* be the subclass of S consisting of functions given by (1.1) satisfying Re $\{(zf'(z)/(f(z) - f(-z))\} > 0$ for $z \in D$. These functions are called starlike with respect to symmetric points and were introduced by Sakaguchi[5]. Recently ELAshwa and Thomas [2] have obtained various results concerning functions in S_s^* and two other classes namely the class S_c^* of functions starlike

Received May 8, 1995.

Communicated by S.-Y. Shaw.

¹⁹⁹¹ Mathematics Subject Classification: 30C45.

Key words and phrases: Starlike with respect to symmetric points, univalent functions.

with respect to conjugate points and the class S_{sc}^* of functions starlike with respect to symmetric conjugate points.

In this paper, we introduce the class $S_s^*(\alpha, \beta)$ of functions f, regular and univalent in D given by (1.1) and satisfying the condition

$$\left|\frac{zf'(z)}{f(z) - f(-z)} - 1\right| < \beta \left|\frac{\alpha zf'(z)}{f(z) - f(-z)} + 1\right|$$

 $z\in D, 0\leq\alpha\leq 1, 0<\beta\leq 1.$

 $S_s^*(1,1)$ is precisely the class S_s^* . In this paper we obtain coefficient estimates for functions in the class $S_s^*(\alpha,\beta)$. We also obtain a sufficient condition for a function to belong to the class $S_s^*(\alpha,\beta)$.

We also consider the class $S_c^*(\alpha, \beta)$ of functions f, regular in D with f(0) = 0 and f'(0) = 1 and satisfying

$$\left|\frac{zf'(z)}{f(z) + \overline{f(\overline{z})}} - 1\right| < \beta \left|\frac{\alpha zf'(z)}{f(z) + \overline{f(\overline{z})}} + 1\right|$$

with $0 \le \alpha \le 1, 0 < \beta \le 1$ and $z \in D$.

The class S_c^* (1,1) is precisely the class S_c^* . We analogously obtain coefficient estimates for functions in the class $S_c^*(\alpha, \beta)$.

2. Coefficient Estimates

We need a lemma of Lakshminarasimhan [3].

Lemma 2.1. Let H(z) be analytic in D and satisfy the condition

(2.1)
$$\left|\frac{1-H(z)}{1+\alpha H(z)}\right| < \beta$$

 $z \in D, 0 \leq \alpha \leq 1, 0 < \beta \leq 1$ with H(0) = 1. Then we have

(2.2)
$$H(z) = \frac{1 - z\phi(z)}{1 + \alpha z\phi(z)}$$

where $\phi(z)$ is analytic in D and $|\phi(z)| \leq \beta$ for $z \in D$. Conversely any function H(z) given by (2.2) above is analytic in D and satisfies (2.1).

We now prove a lemma, which is used to obtain the coefficient estimates for functions in the class $S_s^*(\alpha, \beta)$ and $S_c^*(\alpha, \beta)$.

Lemma 2.2. Let f and g belong to S and satisfy

(2.3)
$$\left|\frac{zf'(z)}{g(z)} - 1\right| < \beta \left|\frac{\alpha zf'(z)}{g(z)} + 1\right|$$

 $0 \le \alpha \le 1, 0 < \beta \le 1$ and $z \in D$, with f given by (1.1), and $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$. Then for $n \ge 2$

(2.4)
$$|na_n - b_n|^2 \le 2(\alpha\beta^2 + 1) \sum_{k=1}^{n-1} k|a_k| |b_k| (|a_1| = |b_1| = 1).$$

Proof. We use the method of Clunie and-keogh [1] and Thomas [6]. By Lemma 2.1 we have $\frac{zf'(z)}{zf'(z)} = \frac{1 - z\phi(z)}{z\phi(z)}$

$$\frac{zf'(z)}{g(z)} = \frac{1 - z\phi(z)}{1 + \alpha z\phi(z)},$$

 $\phi(z)$ is analytic in D and $|\phi(z)|\leq\beta$ for $z\in D.$ Then

$$zf'(z) = g(z) \left[\frac{1 - z\phi(z)}{1 + \alpha z\phi(z)} \right]$$

(or)

$$[\alpha z f'(z) + g(z)]z\phi(z) = g(z) - zf'(z).$$

Now if

$$\psi(z) = z\phi(z) = \sum_{n=1}^{\infty} t_n z^n,$$

then

$$|\psi(z)| \le \beta |z|$$
 for $z \in D$.

Therefore

(2.5)
$$\begin{bmatrix} \alpha z + z + \infty \sum_{n=2}^{\infty} n a_n z^n + \sum_{n=2}^{\infty} b_n z^n \end{bmatrix} \left[\sum_{n=1}^{\infty} t_n z^n \right]$$
$$= \sum_{n=2}^{\infty} b_n z^n - \sum_{n=2}^{\infty} n a_n z^n.$$

Equating the coefficient of z^n in (2.5), we have

$$b_n - na_n = (\alpha + 1)t_{n-1} + (\alpha 2a_2 + b_2)t_{n-2} + \ldots + (\alpha (n-1)a_{n-1} + b_{n-1})t_1.$$

Thus the coefficient combination on the right side of (2.5) depends only upon the coefficients combination $(\alpha 2a_2 + b_2), \ldots (\alpha (n-1)a_{n-1} + b_{n-1})$ on the left side.

Hence for $n \ge 2$ we can write

(2.6)
$$\begin{bmatrix} (\alpha+1)z + \sum_{k=2}^{n-1} (\alpha k a_k + b_k) z^k \end{bmatrix} \psi(z) \\ = \sum_{k=2}^n (b_k - k a_k) z^k + \sum_{k=n+1}^\infty c_k z^k \text{ (say)}.$$

Squaring the moduli of both sides of (2.6) and integrating along |z| = r < 1and on using the fact that $|\psi(z)| \leq \beta |z|$, we obtain

$$\sum_{k=2}^{n} |ka_{k} - b_{k}|^{2} r^{2k} + \sum_{k=n+1}^{\infty} |c_{k}|^{2} r^{2k}$$

< $\beta^{2} \left[(\alpha + 1)^{2} r^{2} + \sum_{k=2}^{n-1} |\alpha ka_{k} + b_{k}|^{2} r^{2k} \right].$

Letting $r \to 1$ on the left side of this inequality, we obtain

$$\sum_{k=2}^{n} |ka_k - b_k|^2 < \beta^2 (1+\alpha)^2 + \beta^2 \sum_{k=2}^{n-1} |\alpha ka_k + b_k|^2.$$

This implies that

$$|na_{n} - b_{n}|^{2} \leq \beta^{2}(1+\alpha)^{2} + \beta^{2} \sum_{k=2}^{n-1} |aka_{k} + b_{k}|^{2} - \sum_{k=2}^{n-1} |ka_{k} - b_{k}|^{2}$$

$$(2.7) \leq \beta^{2}(1+\alpha)^{2} + (\alpha^{2}\beta^{2} - 1) \sum_{k=2}^{n-1} k^{2}|a_{k}|^{2} + (\beta^{2} - 1) \sum_{k=2}^{n-1} |b_{k}|^{2} + 2\alpha\beta^{2} \sum_{k=2}^{n-1} k|a_{k}b_{k}| + 2\sum_{k=2}^{n-1} k|a_{k}| |b_{k}|$$

(or)

$$|na_n - b_n|^2 \le 2\alpha\beta^2 \sum_{k=1}^{n-1} k|a_k| |b_k| + 2\sum_{k=1}^{n-1} k|a_k| |b_k|$$

 $(|a_1| = |b_1| = 1)$, since $0 \le \alpha \le 1, 0 < \beta \le 1$.

Theorem 2.1. Let f and g belong to S and be given as in Lemma 2.2. Then for $n \ge 2$

$$|na_n - b_n|^2 \le 2(\alpha\beta^2 + 1)CA(1 - 1/n, f)^{1/2}A(1 - 1/n, g)^{1/2}$$

where A(r, f) denotes the area enclosed by f(|z| = r) and where C is a constant.

Proof. We have by (2.4) of lemma (2.2)

$$|na_n - b_n|^2 \le 2(\alpha\beta^2 + 1)\sum_{k=1}^{n-1} k|a_k| |b_k| (|a_1| = |b_1| = 1).$$

The Cauchy-Schwarz inequality gives for 0 < r < 1

$$\begin{aligned} |na_n - b_n|^2 &\leq 2\alpha\beta^2 \left(\sum_{k=1}^{n-1} k|a_k|^2\right)^{1/2} \left(\sum_{k=1}^{n-1} k|b_k|^2\right)^{1/2} \\ &+ 2\left(\sum_{k=1}^{n-1} k|a_k|^2\right)^{1/2} \left(\sum_{k=1}^{n-1} k|b_k|^2\right)^{1/2} \\ &\leq \frac{2\alpha\beta^2}{r^{2n}} \left(\sum_{k=1}^{n-1} k|a_k|^2 r^{2k}\right)^{1/2} \left(\sum_{k=1}^{n-1} k|b_k|^2 r^{2k}\right)^{1/2} \\ &+ \frac{2}{r^{2n}} \left(\sum_{k=1}^{n-1} k|a_k|^2 r^{2k}\right)^{1/2} \left(\sum_{k=1}^{n-1} k|b_k|^2 r^{2k}\right)^{1/2} \\ &\leq \frac{2\alpha\beta^2}{\pi r^{2n}} A(r,f)^{1/2} A(r,g)^{1/2} + \frac{2}{\pi r^{2n}} A(r,f)^{1/2} A(r,g)^{1/2}, \end{aligned}$$

since $A(r, f) = \pi \sum_{n=1}^{\infty} n |a_n|^2 r^{2n}$. Choosing r = 1 - 1/n for $n \ge 2$, the result follows.

Remark 2.1. When $\alpha = \beta = 1$, we obtain Theorem 1 (i) of EL-Ashwah and Thomas [2].

Theorem 2.2. Let $f \in S^*_s(\alpha, \beta)$ and be given by (1.1). Then

(i)
$$m^2 |a_{2m}|^2 \le 1/2(\alpha\beta^2 + 1) \left(\sum_{j=1}^m (2j-1)|a_{2j-1}|^2\right), \ m \ge 1, |a_1| = 1$$

(ii) $(m-1)^2 |a_{2m-1}|^2 \le 1/2(\alpha\beta^2 + 1) \left(\sum_{j=1}^{m-1} (2j-1)|a_{2j-1}|^2\right), \ m \ge 2.$

Further, if $\alpha\beta < 1$,

T. V. Sudharsan, P. Balasubrahmanyam, and K. G. Subramanian

(iii)
$$m^2 |a_{2m}|^2 \le \frac{\beta^2 - 1}{4} \left(\sum_{j=1}^m |a_{2j-1}|^2 \right) + \frac{\beta + 1}{2} \left(\sum_{j=1}^m (2j-1) |a_{2j-1}|^2 \right)$$

for $m \ge 1, |a_1| = 1$ and

(iv)
$$(m-1)^2 |a_{2m-1}|^2 \le \frac{\beta^2 - 1}{4} \left(\sum_{j=1}^{m-1} |a_{2j-1}|^2 \right) + \frac{\beta + 1}{2} \left(\sum_{j=1}^{m-1} (2j-1) |a_{2j-1}|^2 \right), \ m \ge 2.$$

The inequalities (i) and (ii) are sharp.

Proof. Since $f \in S_s^*(\alpha, \beta)$, by Lemma 2.1 we have $\frac{zf'(z)}{g(z)} = h(z)$, where g is an odd star like function with $g(z) = \frac{f(z) - f(-z)}{2}$ and $h(z) = \frac{1 - z\phi(z)}{1 + \alpha z\phi(z)}$, $\phi(z)$ analytic in D and $|\phi(z)| \leq \beta$ for $z \in D$. Thus, with $g(z) = z + \sum_{n=2}^{\infty} a_{2n-1}z^{2n-1}$ for $z \in D$, using (2.4) of Lemma 2.2 with b_n suitably chosen, the inequalities (i) and (ii) in the theorem follow. Indeed, when $\alpha\beta < 1$ using (2.7) of Lemma 2.2

$$|na_n - b_n|^2 \le (\beta^2 - 1) \sum_{k=1}^{n-1} |b_k|^2 + 2(\beta + 1) \sum_{k=1}^{n-1} k|a_k| |b_k|$$

and the inequalities (iii) and (iv) follow.

The inequalities (i) and (ii) are sharp as can be seen from the function $f(z) = 1/2(\alpha\beta^2 + 1)\frac{z}{1-z}$; we note that when $\alpha = \beta = 1$, inequalities (i) and (ii) give Theorem 2(i) and (ii) of EL-Ashwah and Thomas [2].

Theorem 2.3. If $f \in S_s^*(\alpha, \beta)$ with $\alpha\beta < 1$, then $a_n = 0(1/n)$ as $n \to \infty$.

Proof. We observe that when $\alpha\beta < 1$, for $f \in S_s^*(\alpha,\beta), \frac{zf'(z)}{f(z)-f(-z)}$ is bounded. We first prove that

$$(n - (1 - (-1)^n))^2 |a_n|^2 \le 4(\beta + 1) \sum_{k=1}^{n-1} k |a_k|^2 \quad (|a_1| = |b_1| = 1).$$

If $f \in S_s^*(\alpha, \beta)$ is given by (1.1), we have using Lemms 2.1

$$\frac{zf'(z)}{f(z) - f(-z)} = \frac{1 - z\phi(z)}{1 + \alpha z\phi(z)}$$

 $\phi(z)$ is analytic in D and $|\phi(z)| \leq \beta$ for $z \in D$. Then

$$[\alpha z f'(z) + f(z) - f(-z)] z \phi(z) = [f(z) - f(-z)] - z f'(z).$$

Now if

$$\psi(z) = z\phi(z) = \sum_{n=0}^{\infty} t_n z^n,$$

then

$$|f(z)| \le \beta |z|$$
 for $z \in D$.

Therefore

(2.8)
$$\begin{bmatrix} \alpha z + \alpha \sum_{n=2}^{\infty} n a_n z^n + 2z + \sum_{n=2}^{\infty} a_n z^n (1 - (-1)^n) \end{bmatrix} \left(\sum_{n=0}^{\infty} t_n z^n \right) \\ = \left[z + \sum_{n=2}^{\infty} ((1 - (-1)^n) - n) a_n z^n \right].$$

Equating coefficients of z^n in (2.8), we have

$$\left((1 - (-1)^n) - n \right) = (2 + \alpha)t_{n-1} + \left(\alpha 2a_2 + (1 - (-1)^2) \right) t_{n_2} + \dots + \left(\alpha (n-1)a_{n-1} + (1 - (-1)^{n-1}) \right) t_1.$$

Thus the coefficient combination on the right side of (2.8) depends only upon the coefficient combination

$$(\alpha 2a_2 + (1 - (-1)^2), \dots (\alpha (n-1)a_{n-1} + (1 - (-1)^{n-1})))$$

on the left side. Hence for $n\geq 2$ we can write

(2.9)
$$\begin{bmatrix} (\alpha+2)z + \sum_{k=2}^{n-1} (\alpha k + (1-(-1)^k))a_k z^k \end{bmatrix} \psi(z) \\ = \sum_{k=2}^n ((1-(-1)^k) - k)a_k z^k + \sum_{k=n+1}^\infty c_k z^k \text{ (say)}.$$

Squaring the moduli of both sides of (2.9) and integrating along |z| = r < 1, we obtain on using the fact that $|\psi(z)| \leq \beta |z|$

$$\sum_{k=2}^{n} (k - (1 - (-1)^{k}))^{2} |a_{k}|^{2} r^{2k} + \sum_{k=n+1}^{\infty} |c_{k}|^{2} r^{2k}$$

< $\beta^{2} \left[(\alpha + 2)^{2} r^{2} + \sum_{k=2}^{n-1} (\alpha k + (1 - (-1)^{k}))^{2} |a_{k}|^{2} r^{2k} \right].$

Letting $r \to 1$ on the left side of the inequality we obtain

$$\sum_{k=2}^{n} (k - (1 - (-1)^{k}))^{2} |a_{k}|^{2} < \beta^{2} \left[(\alpha + 2)^{2} + \sum_{k=2}^{n-1} (\alpha k + (1 - (-1)^{k}))^{2} \right].$$

This implies

$$(n - (1 - (-1)^{n}))^{2} |a_{n}|^{2} < \beta^{2} (2 + \alpha)^{2} + \beta^{2} \sum_{k=2}^{n-1} (\alpha k + (1 - (-1)^{k}))^{2} |a_{k}|^{2} - \sum_{k=2}^{n-1} (k - (1 - (-1)^{k}))^{2} |a_{k}|^{2} \leq \beta^{2} (2 + \alpha)^{2} + (\alpha^{2} \beta^{2} - 1) \sum_{k=2}^{n-1} k^{2} |a_{k}|^{2} + (\beta^{2} - 1) \sum_{k=2}^{n-1} (1 - (-1)^{k})^{2} |a_{k}|^{2} + 2\alpha \beta^{2} \sum_{k=2}^{n-1} k (1 - (-1)^{k}) |a_{k}|^{2} + 2 \sum_{k=2}^{n-1} k (1 - (-1)^{k}) |a_{k}|^{2}$$

(or)

(2.11)
$$(n - (1 - (-1)^{n}))^{2} |a_{n}|^{2} \leq 4\beta \sum_{k=1}^{n-1} k |a_{k}|^{2} + 4 \sum_{k=1}^{n-1} k |a_{k}|^{2}$$
$$\leq 4(\beta + 1) \sum_{k=1}^{n-1} k |a_{k}|^{2} \quad (|a_{1}| = |b_{1}| = 1)$$

since $\alpha\beta < 1$.

It remains to show that $a_n = 0(1/n)$ as $n \to \infty$. From (2.11) we have

(2.12)
$$(n - (1 - (-1)^n))^2 |a_n|^2 \le 4(\beta + 1) \left(1 + \sum_{k=2}^{n-1} k |a_k|^2\right).$$

Since $\frac{zf'(z)}{f(z)-f(-z)}$ is bounded, it follows that f(z) is bounded. Now following Clunie and Keogh [1] we conclude that Δ , the area of the image of f(z) is given by

(2.13)
$$\Delta = \pi \left(1 + \sum_{k=2}^{\infty} k |a_k|^2 \right),$$

and consequently, $\sum_{k=2}^{\infty} k|a_k|^2 < \infty$ and hence $r_n = \sum_{k=2}^{\infty} k|a_k|^2 \to 0$ as $n \to \infty$. Thus we have

Starlike Functions

(2.14)
$$\sum_{k=2}^{n-1} k|a_k|^2 = \sum_{k=2}^{n-1} (r_k - r_{k+1}) = r_2 - r_n = 0(1) \text{ as } n \to \infty.$$

Using (2.12) and (2.14), we have $a_n = 0(1/n)$ as $n \to \infty$.

3. Sufficient Condition

We obtain a sufficient condition for functions to belong to the class $S_s^*(\alpha, \beta)$.

Theorem 3.1. Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ be analytic in the unit disc D. If for $0 \le \alpha \le 1, 1/2 < \beta \le 1$

$$\sum_{n=2}^{\infty} \left[\frac{(1+\beta\alpha)n}{\beta(2+\alpha)-1} + \frac{\beta(1-(-1)^n) - (1-(-1)^n)}{\beta(2+\alpha)-1} \right] |a_n| \le 1,$$

or equivalently,

(3.1)
$$\sum_{m=1}^{\infty} \left[\frac{(1+\beta\alpha)2m|a_{2m}|}{\beta(2+\alpha)-1} - \frac{(1+\beta\alpha)(2m+1)|a_{2m+1}|+2(\beta-1)|a_{2m+1}|}{\beta(2+\alpha)-1} \right] \le 1,$$

then f(z) belongs to the class $S_s^*(\alpha, \beta)$.

Proof. We use the method of Clvnic and Keogh [1]. Suppose that $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, then for |z| < 1

$$\begin{aligned} |zf'(z) - f(z) - f(-z)| &- \beta |\alpha z f'(z) + f(z) - f(-z)| \\ &= \left| z + \sum_{n=2}^{\infty} n a_n z^n - 2z - \sum_{n=2}^{\infty} (1 - (-1)^n) a_n z^n \right| \\ &- \beta \left| \alpha z + \alpha \sum_{n=2}^{\infty} n a_n z^n + 2z + \sum_{n=2}^{\infty} (1 - (-1)^n) a_n z^n \right| \\ &= \left| -z + \sum_{n=2}^{\infty} n a_n z^n - \sum_{n=2}^{\infty} (1 - (-1)^n) a_n z^n \right| \\ &- \beta \left| z(2 + \alpha) + \alpha \sum_{n=2}^{\infty} n a_n z^n + \sum_{n=2}^{\infty} (1 - (-1)^n) a_n z^n \right| \end{aligned}$$

$$\begin{split} &= \left| -z + \sum_{n=2}^{\infty} (n - (1 - (-1)^n)) a_n z^n \right| \\ &-\beta \left| z(2+\alpha) + \alpha \sum_{n=2}^{\infty} (n\alpha + (1 - (-1)^n)) a_n z^n \right| \\ &\leq \sum_{n=2}^{\infty} (n - (1 - (-1)^n)) |a_n| r^n + r \\ &-\beta \left[(2+\alpha)r - \sum_{n=2}^{\infty} (an + (1 - (-1)^n)) |a_n| r^n \right] \\ &< \left[\sum_{n=2}^{\infty} (n - (1 - (-1)^n)) |a_n| + 1 - \beta (2+\alpha) + \sum_{n=2}^{\infty} \beta (\alpha n + (1 - (-1)^n)) |a_n| \right] r \\ &< \sum_{n=2}^{\infty} [(1+\alpha\beta)n + (\beta(1 - (-1)^n)) - (1 - (-1)^n)] |a_n| - (\beta(2+\alpha) - 1)] r \\ &< \left[\sum_{m=1}^{\infty} (1 + \beta\alpha) 2m |a_{2m}| + \sum_{m=1}^{\infty} \{ (1 + \beta\alpha) (2m+1) |a_{2m+1}| \\ &+ 2(\beta - 1) |a_{2m+1}| \} - (\beta(2+\alpha) - 1) \right] r \\ &\leq 0 \text{ by}(3.1). \end{split}$$

Hence it follows that in |z| < 1

$$\left| \left(\frac{zf'(z)}{f(z) - f(-z)} - 1 \right) / \left(\frac{\alpha zf'(z)}{f(z) - f(-z)} + 1 \right) \right| < \beta$$

so that $f(z) \in S_s^*(\alpha, \beta)$. We note that

$$f(z) = z - \frac{(\beta(2+\alpha) - 1)}{(1+\beta\alpha)n + (\beta(1-(-1)^n) - (1-(-1)^n))} z^n$$

is an extremal function with respect to the theorem since

$$\left| \left(\frac{zf'(z)}{f(z) - f(-z)} - 1 \right) / \left(\frac{\alpha zf'(z)}{f(z) - f(-z)} + 1 \right) \right| = \beta$$

for $z = 1, 0 \le \alpha \le 1, 1/2 < \beta \le 1, n = 2, 3...$

Remark 3.1. Theorem 3.1 can be used to show that $na_n \to 0$ as slowly as we desire, that is, given any sequence $\epsilon_n \to 0$ there exists a f such that $|na_n| > \epsilon_n$ for infinitely many n. In fact, it is clear that $\sum_{n=1}^{\infty} n|a_n| \le k$. Given

Starlike Functions

 $\epsilon_n \to 0$ such that $|na_n| > \epsilon_n$ we choose $k \ge \sum_{n=1}^{\infty} n|a_n| > \sum_{n=1}^{\infty} \epsilon_n$. If $\epsilon_n \to 0$ is so chosen that $\sum_{n=1}^{\infty} \epsilon_n = k/2$ and $|a_n| > \frac{2\epsilon_n}{n}$, then $\sum_{n=1}^{\infty} n|a_n| > k$. Hence there exists $a \ f$ such that $|na_n| > \epsilon_n$ for infinitely many n. In fact,

the function

$$f(z) = 1/2(\alpha\beta^2 + 1)\frac{z}{1-z} \in S_s^*(\alpha,\beta), 0 \le \alpha \le 1, 1/2 < \beta \le 1, \text{ but}$$
$$\sum_{n=2}^{\infty} \left[\frac{(1+\beta\alpha)n}{\beta(2+\alpha)-1} + \frac{\beta(1-(-1)^n)-(1-(-1)^n)}{\beta(2+\alpha)-1}\right]|a_n| > 1.$$

4. Coefficient Estimates For The Class $S_c^*(\alpha, \beta)$

Theorem 4.1. Let $f \in S_c^*(\alpha, \beta)$ and be given by (1.1). Then for $n \ge 2$

$$(n+1)^2 |a_n|^2 \le 2(\alpha \beta^2 + 1) \left(\sum_{k=1}^n k |a_k|^2\right).$$

Proof. The theorem follows immediately from Lemma 2.2. The inequality in the above Theorem (3.2) is sharp as can be seen from

$$f(z) = 1/2(\alpha\beta^2 + 1)\frac{z}{(1-z)^2}.$$

Corollary 4.1. Let $f \in S_c^*(\alpha, \beta)$ and suppose $A(r, f) \leq A$, a constant. Then for $n \geq 2$

$$(n+1)|a_n| \le \left(2(\alpha\beta^2+1)\frac{A}{\pi}\right)^{1/2}$$

Remark 4.1. When $\alpha = \beta = 1$, we get the corresponding results of EL -Ashwah and Thomas [2].

References

- 1. J. Clunie and F. R. Keogh, On starlike and schlit functions, J. London. Math. Soc. 35 (1960), 229-233.
- 2. R. M. El-Ashwa and D. K. Thomas, Some subclasses of close-to-convex functions, J. Ramanujan Math. Soc. 2 (1987), 86-100.
- 3. T. V. Lakshminarasimhan, On subclasses of functions starlike in the unit disc, J. Indian. Math. Soc. 41 (1977), 233-243.

- 4. Z. Nehari, Conformal Mapping, McGraw-Hill, 1952.
- 5. K. Sakaguchi, On certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72-75.
- D. K. Thomas, On starlike and close-to-convex univalent functions, J. London Math. Soc. 42 (1967), 472-435.

T. V. Sudharsan Department of Mathematics, S.I.V.E.T. College Gowriwakkam, Madras - 601 302, India

68

P. Balasubrahmanyam and K. G. Subramanian Department of Mathematics, Madras Christian College Madras - 600 059, India