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ON FUNCTIONS STARLIKE WITH RESPECT TO
SYMMETRIC AND CONJUGATE POINTS

T. V. Sudharsan, P. Balasubrahmanyam, and K. G. Subramanian

Abstract. A class S∗s (α, β) of functions f , regular and univalent in

D = {z : |z| < 1} given by f(z) = z +
∞∑
n=2

anz
n and satisfying the

condition ∣∣∣∣ zf ′(z)
f(z)− f(−z)

− 1
∣∣∣∣ < β

∣∣∣∣ αzf ′(z)
f(z)− f(−z)

+ 1
∣∣∣∣ ,

z ∈ D, 0 ≤ α ≤ 1, 0 < β ≤ 1 is introduced and studied. An analogous
class S∗c (α, β) is also examined.

1. Introduction

Let S be the class of functions f , regular ard univalent in D = {z : |z| < 1}
given by

f(z) = z +
∞∑
n=2

anz
n(1.1)

Let S∗ be the subclass of S consisting of functions starlike in D. It is well
known [4] that f ∈ S∗ if and only if Re {zf ′(z)/f(z)} > 0 for z ∈ D.

Let S∗s be the subclass of S consisting of functions given by (1.1) satisfying
Re {(zf ′(z)/(f(z) − f(−z))} > 0 for z ∈ D. These functions are called
starlike with respect to symmetric points and were introduced by Sakaguchi[5].
Recently ELAshwa and Thomas [2] have obtained various results concerning
functions in S∗s and two other classes namely the class S∗c of functions starlike
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with respect to conjugate points and the class S∗sc of functions starlike with
respect to symmetric conjugate points.

In this paper,we introduce the class S∗s (α, β) of functions f , regular and
univalent in D given by (1.1) and satisfying the condition∣∣∣∣ zf ′(z)

f(z)− f(−z)
− 1

∣∣∣∣ < β

∣∣∣∣ αzf ′(z)
f(z)− f(−z)

+ 1
∣∣∣∣

z ∈ D, 0 ≤ α ≤ 1, 0 < β ≤ 1.
S∗s (1,1) is precisely the class S∗s . In this paper we obtain coefficient esti-

mates for functions in the class S∗s (α, β). We also obtain a sufficient condition
for a function to belong to the class S∗s (α, β).

We also consider the class S∗c (α, β) of functions f ,regular in D with f(0) =
0 and f ′(0) = 1 and satisfying∣∣∣∣∣ zf ′(z)

f(z) + f(z)
− 1

∣∣∣∣∣ < β

∣∣∣∣∣ αzf ′(z)
f(z) + f(z)

+ 1

∣∣∣∣∣
with 0 ≤ α ≤ 1, 0 < β ≤ 1 and z ∈ D.

The class S∗c (1,1) is precisely the class S∗c . We analogously obtain coeffi-
cient estimates for functions in the class S∗c (α, β).

2. Coefficient Estimates

We need a lemma of Lakshminarasimhan [3].

Lemma 2.1. Let H(z) be analytic in D and satisfy the condition∣∣∣∣ 1−H(z)
1 + αH(z)

∣∣∣∣ < β(2.1)

z ∈ D, 0 ≤ α ≤ 1, 0 < β ≤ 1 with H(0) = 1. Then we have

H(z) =
1− zφ(z)

1 + αzφ(z)
(2.2)

where φ(z) is analytic in D and |φ(z)| ≤ β for z ∈ D. Conversely any function
H(z) given by (2.2) above is analytic in D and satisfies (2.1).

We now prove a lemma, which is used to obtain the coefficient estimates
for functions in the class S∗s (α, β) and S∗c (α, β).

Lemma 2.2. Let f and g belong to S and satisfy
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∣∣∣∣zf ′(z)g(z)
− 1

∣∣∣∣ < β

∣∣∣∣αzf ′(z)g(z)
+ 1

∣∣∣∣(2.3)

0 ≤ α ≤ 1, 0 < β ≤ 1 and z ∈ D, with f given by (1.1), and g(z) = z+
∞∑
n=2

bnz
n.

Then for n ≥ 2

|nan − bn|2 ≤ 2(αβ2 + 1)
n−1∑
k=1

k|ak| |bk| (|a1| = |b1| = 1).(2.4)

Proof. We use the method of Clunie and-keogh [1] and Thomas [6]. By
Lemma 2.1 we have

zf ′(z)
g(z)

=
1− zφ(z)

1 + αzφ(z)
,

φ(z) is analytic in D and |φ(z)| ≤ β for z ∈ D. Then

zf ′(z) = g(z)
[

1− zφ(z)
1 + αzφ(z)

]
(or)

[αzf ′(z) + g(z)]zφ(z) = g(z)− zf ′(z).

Now if

ψ(z) = zφ(z) =
∞∑
n=1

tnz
n,

then
|ψ(z)| ≤ β|z| for z ∈ D.

Therefore [
αz + z+ ∝

∞∑
n=2

nanz
n +

∞∑
n=2

bnz
n

] [ ∞∑
n=1

tnz
n

]

=
∞∑
n=2

bnz
n −

∞∑
n=2

nanz
n.

(2.5)

Equating the coefficient of zn in (2.5), we have

bn − nan = (α+ 1)tn−1 + (α2a2 + b2)tn−2 + . . . + (α(n− 1)an−1 + bn−1)t1.

Thus the coefficient combination on the right side of (2.5) depends only
upon the coefficients combination (α2a2 + b2), . . . (α(n−1)an−1 + bn−1) on the
left side.

59



60 T. V. Sudharsan, P. Balasubrahmanyam, and K. G. Subramanian

Hence for n ≥ 2 we can write[
(α+ 1)z +

n−1∑
k=2

(αkak + bk)zk
]
ψ(z)

=
n∑
k=2

(bk − kak)zk +
∞∑

k=n+1

ckz
k (say).

(2.6)

Squaring the moduli of both sides of (2.6) and integrating along |z| = r < 1
and on using the fact that |ψ(z)| ≤ β|z|, we obtain

n∑
k=2

|kak − bk|2r2k +
∞∑

k=n+1

|ck|2r2k

< β2

[
(α+ 1)2r2 +

n−1∑
k=2

|αkak + bk|2r2k

]
.

Letting r → 1 on the left side of this inequality, we obtain

n∑
k=2

|kak − bk|2 < β2(1 + α)2 + β2
n−1∑
k=2

|αkak + bk|2.

This implies that

|nan − bn|2≤β2(1 + α)2 + β2
n−1∑
k=2

|akak + bk|2 −
n−1∑
k=2

|kak − bk|2

≤β2(1 + α)2 + (α2β2 − 1)
n−1∑
k=2

k2|ak|2 + (β2 − 1)
n−1∑
k=2

|bk|2

+2αβ2
n−1∑
k=2

k|akbk|+ 2
n−1∑
k=2

k|ak| |bk|

(2.7)

(or)

|nan − bn|2 ≤ 2αβ2
n−1∑
k=1

k|ak| |bk|+ 2
n−1∑
k=1

k|ak| |bk|

(|a1| = |b1| = 1), since 0 ≤ α ≤ 1, 0 < β ≤ 1.

Theorem 2.1. Let f and g belong to S and be given as in Lemma 2.2.
Then for n ≥ 2

|nan − bn|2 ≤ 2(αβ2 + 1)CA(1− 1/n, f)1/2A(1− 1/n, g)1/2
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where A(r, f) denotes the area enclosed by f(|z| = r) and where C is a con-
stant.

Proof. We have by (2.4) of lemma (2.2)

|nan − bn|2 ≤ 2(αβ2 + 1)
n−1∑
k=1

k|ak| |bk| (|a1| = |b1| = 1).

The Cauchy-Schwarz inequality gives for 0 < r < 1

|nan − bn|2≤2αβ2

(
n−1∑
k=1

k|ak|2
)1/2(n−1∑

k=1

k|bk|2
)1/2

+2

(
n−1∑
k=1

k|ak|2
)1/2(n−1∑

k=1

k|bk|2
)1/2

≤ 2αβ2

r2n

(
n−1∑
k=1

k|ak|2r2k

)1/2(n−1∑
k=1

k|bk|2r2k

)1/2

+
2
r2n

(
n−1∑
k=1

k|ak|2r2k

)1/2(n−1∑
k=1

k|bk|2r2k

)1/2

≤ 2αβ2

πr2n A(r, f)1/2A(r, g)1/2 +
2

πr2nA(r, f)1/2A(r, g)1/2,

since A(r, f) = π
∞∑
n−1

n|an|2r2n.

Choosing r = 1− 1/n for n ≥ 2, the result follows.

Remark 2.1. When α = β = 1, we obtain Theorem 1 (i) of EL-Ashwah
and Thomas [2].

Theorem 2.2. Let f ∈ S∗s (α, β) and be given by (1.1). Then

( i ) m2|a2m|2 ≤ 1/2(αβ2 + 1)

 m∑
j=1

(2j − 1)|a2j−1|2
 , m ≥ 1, |a1| = 1

( ii ) (m− 1)2|a2m−1|2 ≤ 1/2(αβ2 + 1)

m−1∑
j=1

(2j − 1)|a2j−1|2
 , m ≥ 2.

Further, if αβ < 1,
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(iii) m2|a2m|2 ≤
β2 − 1

4

 m∑
j=1

|a2j−1|2
+

β + 1
2

 m∑
j=1

(2j − 1)|a2j−1|2


for m ≥ 1, |a1| = 1 and

(iv) (m− 1)2|a2m−1|2 ≤
β2 − 1

4

m−1∑
j=1

|a2j−1|2


+
β + 1

2

m−1∑
j=1

(2j − 1)|a2j−1|2
 , m ≥ 2.

The inequalities (i) and (ii) are sharp.

Proof. Since f ∈ S∗s (α, β), by Lemma 2.1 we have zf ′(z)
g(z) = h(z), where g

is an odd star like function with g(z) = f(z)−f(−z)
2 and h(z) = 1−zφ(z)

1+αzφ(z) , φ(z)

analytic in D and |φ(z)| ≤ β for z ∈ D. Thus, with g(z) = z+
∞∑
n=2

a2n−1z
2n−1

for z ∈ D, using (2.4) of Lemma 2.2 with bn suitably chosen, the inequalities
(i) and (ii) in the theorem follow. Indeed, when αβ < 1 using (2.7) of Lemma
2.2

|nan − bn|2 ≤ (β2 − 1)
n−1∑
k=1

|bk|2 + 2(β + 1)
n−1∑
k=1

k|ak| |bk|

and the inequalities (iii) and (iv) follow.
The inequalities (i) and (ii) are sharp as can be seen from the function

f(z) = 1/2(αβ2 + 1) z
1−z ; we note that when α = β = 1, inequalities (i) and

(ii) give Theorem 2(i) and (ii) of EL-Ashwah and Thomas [2].

Theorem 2.3. If f ∈ S∗s (α, β) with αβ < 1, then an = 0(1/n) as n→∞.

Proof. We observe that when αβ < 1, for f ∈ S∗s (α, β), zf ′(z)
f(z)−f(−z) is

bounded. We first prove that(
n− (1− (−1)n)

)2
|an|2 ≤ 4(β + 1)

n−1∑
k=1

k|ak|2 (|a1| = |b1| = 1).

If f ∈ S∗s (α, β) is given by (1.1), we have using Lemms 2.1

zf ′(z)
f(z)− f(−z)

=
1− zφ(z)

1 + αzφ(z)
,

φ(z) is analytic in D and |φ(z)| ≤ β for z ∈ D. Then

[αzf ′(z) + f(z)− f(−z)]zφ(z) = [f(z)− f(−z)]− zf ′(z).
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Now if

ψ(z) = zφ(z) =
∞∑
n=0

tnz
n,

then
|f(z)| ≤ β|z| for z ∈ D.

Therefore

[
αz + α

∞∑
n=2

nanz
n + 2z +

∞∑
n=2

anz
n(1− (−1)n)

]( ∞∑
n=0

tnz
n

)

=

[
z +

∞∑
n=2

((1− (−1)n)− n)anzn
]
.

(2.8)

Equating coefficients of zn in (2.8), we have(
(1− (−1)n)− n

)
=(2 + α)tn−1 +

(
α2a2 + (1− (−1)2)

)
tn2 + . . .

+
(
α(n− 1)an−1 + (1− (−1)n−1)

)
t1.

Thus the coefficient combination on the right side of (2.8) depends only
upon the coefficient combination

(α2a2 + (1− (−1)2), . . . (α(n− 1)an−1 + (1− (−1)n−1))

on the left side. Hence for n ≥ 2 we can write[
(α+ 2)z +

n−1∑
k=2

(αk + (1− (−1)k))akzk
]
ψ(z)

=
n∑
k=2

((1− (−1)k)− k)akzk +
∞∑

k=n+1

ckz
k (say).

(2.9)

Squaring the moduli of both sides of (2.9) and integrating along |z| = r < 1,
we obtain on using the fact that |ψ(z)| ≤ β|z|

n∑
k=2

(k − (1− (−1)k))2|ak|2r2k +
∞∑

k=n+1

|ck|2r2k

< β2

[
(α+ 2)2r2 +

n−1∑
k=2

(αk + (1− (−1)k))2|ak|2r2k

]
.

Letting r → 1 on the left side of the inequality we obtain
n∑
k=2

(k − (1− (−1)k))2|ak|2 < β2

[
(α+ 2)2 +

n−1∑
k=2

(αk + (1− (−1)k))2

]
.
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This implies

(n− (1− (−1)n))2|an|2< β2(2 + α)2 + β2
n−1∑
k=2

(αk + (1− (−1)k))2|ak|2

−
n−1∑
k=2

(k − (1− (−1)k))2|ak|2

≤ β2(2 + α)2 + (α2β2 − 1)
n−1∑
k=2

k2|ak|2

+(β2 − 1)
n−1∑
k=2

(1− (−1)k)2|ak|2

+2αβ2
n−1∑
k=2

k(1− (−1)k)|ak|2

+2
n−1∑
k=2

k(1− (−1)k)|ak|2

(2.10)

(or)

(n− (1− (−1)n))2|an|2≤ 4β
n−1∑
k=1

k|ak|2 + 4
n−1∑
k=1

k|ak|2

≤ 4(β + 1)
n−1∑
k=1

k|ak|2 (|a1| = |b1| = 1)

(2.11)

since αβ < 1.
It remains to show that an = 0(1/n) as n→∞. From (2.11) we have

(n− (1− (−1)n))2|an|2 ≤ 4(β + 1)

(
1 +

n−1∑
k=2

k|ak|2
)
.(2.12)

Since zf ′(z)
f(z)−f(−z) is bounded, it follows that f(z) is bounded. Now following

Clunie and Keogh [1] we conclude that ∆, the area of the image of f(z) is
given by

∆ = π

(
1 +

∞∑
k=2

k|ak|2
)
,(2.13)

and consequently,
∞∑
k=2

k|ak|2 < ∞ and hence rn =
∞∑
k=2

k|ak|2 → 0 as n → ∞.

Thus we have
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n−1∑
k=2

k|ak|2 =
n−1∑
k=2

(rk − rk+1) = r2 − rn = 0(1) as n→∞.(2.14)

Using (2.12) and (2.14), we have an = 0(1/n) as n→∞.

3. Sufficient Condition

We obtain a sufficient condition for functions to belong to the class S∗s (α, β).

Theorem 3.1. Let f(z) = z +
∞∑
n=2

anz
n be analytic in the unit disc D. If

for 0 ≤ α ≤ 1, 1/2 < β ≤ 1

∞∑
n=2

[
(1 + βα)n
β(2 + α)− 1

+
β(1− (−1)n)− (1− (−1)n)

β(2 + α)− 1

]
|an| ≤ 1,

or equivalently,

∞∑
m=1

[
(1 + βα)2m|a2m|
β(2 + α)− 1

−(1 + βα) (2m+ 1)|a2m+1|+ 2(β − 1)|a2m+1|
β(2 + α)− 1

]
≤ 1,

(3.1)

then f(z) belongs to the class S∗s (α, β).

Proof. We use the method of Clvnic and Keogh [1]. Suppose that f(z) =

z +
∞∑
n=2

anz
n, then for |z| < 1

|zf ′(z)− f(z)− f(−z)| − β|αzf ′(z) + f(z)− f(−z)|

=

∣∣∣∣∣z +
∞∑
n=2

nanz
n − 2z −

∞∑
n=2

(1− (−1)n)anzn
∣∣∣∣∣

−β

∣∣∣∣∣αz + α

∞∑
n=2

nanz
n + 2z +

∞∑
n=2

(1− (−1)n)anzn
∣∣∣∣∣

=

∣∣∣∣∣−z +
∞∑
n=2

nanz
n −

∞∑
n=2

(1− (−1)n)anzn
∣∣∣∣∣

−β

∣∣∣∣∣z(2 + α) + α

∞∑
n=2

nanz
n +

∞∑
n=2

(1− (−1)n)anzn
∣∣∣∣∣
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=

∣∣∣∣∣−z +
∞∑
n=2

(n− (1− (−1)n))anzn
∣∣∣∣∣

−β

∣∣∣∣∣z(2 + α) + α

∞∑
n=2

(nα+ (1− (−1)n))anzn
∣∣∣∣∣

≤
∞∑
n=2

(n− (1− (−1)n))|an|rn + r

−β

[
(2 + α)r −

∞∑
n=2

(an+ (1− (−1)n))|an|rn
]

<

[ ∞∑
n=2

(n− (1− (−1)n)|an|+ 1− β(2 + α) +
∞∑
n=2

β(αn+ (1− (−1)n))|an|

]
r

<

∞∑
n=2

[(1 + αβ)n+ (β(1− (−1)n))− (1− (−1)n)] |an| − (β(2 + α)− 1)]r

<

[ ∞∑
m=1

(1 + βα)2m|a2m|+
∞∑
m=1

{(1 + βα) (2m+ 1)|a2m+1|

+2(β − 1)|a2m+1|} − (β(2 + α)− 1)
]
r

≤ 0 by(3.1).

Hence it follows that in |z| < 1∣∣∣∣( zf ′(z)
f(z)− f(−z)

− 1
)
/

(
αzf ′(z)

f(z)− f(−z)
+ 1

)∣∣∣∣ < β

so that f(z) ∈ S∗s (α, β). We note that

f(z) = z − (β(2 + α)− 1)
(1 + βα)n+ (β(1− (−1)n)− (1− (−1)n))

zn

is an extremal function with respect to the theorem
since ∣∣∣∣( zf ′(z)

f(z)− f(−z)
− 1

)
/

(
αzf ′(z)

f(z)− f(−z)
+ 1

)∣∣∣∣ = β

for z = 1, 0 ≤ α ≤ 1, 1/2 < β ≤ 1, n = 2, 3 . . .

Remark 3.1. Theorem 3.1 can be used to show that nan → 0 as slowly
as we desire, that is, given any sequence εn → 0 there exists a f such that

|nan| > εn for infinitely many n. In fact, it is clear that
∞∑
n=1

n|an| ≤ k. Given
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εn → 0 such that |nan| > εn we choose k ≥
∞∑
n=1

n|an| >
∞∑
n=1

εn. If εn → 0 is so

chosen that
∞∑
n=1

εn = k/2 and |an| > 2εn
n , then

∞∑
n=1

n|an| > k.

Hence there exists a f such that |nan| > εn for infinitely many n. In fact,
the function

f(z) = 1/2(αβ2 + 1)
z

1− z
∈ S∗s (α, β), 0 ≤ α ≤ 1, 1/2 < β ≤ 1, but

∞∑
n=2

[
(1 + βα)n
β(2 + α)− 1

+
β(1− (−1)n)− (1− (−1)n)

β(2 + α)− 1

]
|an| > 1.

4. Coefficient Estimates For The Class S∗c (α, β)

Theorem 4.1. Let f ∈ S∗c (α, β) and be given by (1.1). Then for n ≥ 2

(n+ 1)2|an|2 ≤ 2(αβ2 + 1)

(
n∑
k=1

k|ak|2
)
.

Proof. The theorem follows immediately from Lemma 2.2. The inequality
in the above Theorem (3.2) is sharp as can be seen from

f(z) = 1/2(αβ2 + 1)
z

(1− z)2 .

Corollary 4.1. Let f ∈ S∗c (α, β) and suppose A(r, f) ≤ A, a constant.
Then for n ≥ 2

(n+ 1)|an| ≤
(

2(αβ2 + 1)
A

π

)1/2
.

Remark 4.1. When α = β = 1, we get the corresponding results of EL -
Ashwah and Thomas [2].
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