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GRADED MORITA THEORY FOR GROUP CORING AND GRADED
MORITA-TAKEUCHI THEORY

Guohua Liu* and Shuanhong Wang

Abstract. A Graded Morita context is constructed for any comodule of a
group coring. For any right G-C-comodule M with dual graded ring R, we de-
fine a graded ring T = HOMG,C(M,M) =

⊕
g∈GHOM

G,C(M,M)g , and
a G-graded R-T bimodule Q =

⊕
g∈G Q

g, where Qg is a family of right
A-linear maps qg

α; Mα → Rgα in MA. We construct a graded Morita con-
text M = (T, R,

⊕
α∈GMα, Q, τ, µ) with connecting homomorphisms τ :

T (
⊕

α∈GMα) ⊗R QT → T, m ⊗ q �→ mq(−), µ : RQ ⊗T (
⊕

α∈GMα)R →
R, q ⊗m �→ q(m), which generalized the Morita context in [3, 5-7, 10, 13].

Meanwhile, we prove the graded Morita-Takeuchi theory as a generalization
of Morita-Takeuchi theory which characterize the equivalence of comodule over
field.

1. INTRODUCTION

Graded Morita theory for group ring has been introduced by Dade [11, 12] since
1980. Boisen[4] introduced the definition of graded Morita context for all group graded
rings. Graded Morita theory can be thought of as a generalization of Morita theory in
the sense that when the grading group is trivial the two theories coincide. It can also be
viewed as a refinement of Morita theory, since two rings with graded structure which
are graded equivalent are necessarily Morita equivalent as rings.

Morita theory associating to comodule algebras for a Hopf algebra H was first
introduced by Cohen, Fishman and Montgomery [6], in that paper a Morita context
was constructed under the assumption that H is a finite dimensional Hopf algebra
over a field (or a Frobenius algebra over a commutative ring). Doi in [13] extended
the Morita theory to arbitrary Hopf algebra H . Caenepeel et al. [5, 8] constructed
a Morita context for coring comodule which is finitely generated and projective as
an A-module. Bohm and Vercruysse [3] generalize their construction, they construct
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a Morita context for an arbitrary comodule M of an A-coring C which connects the
algebra of C-comodule endomorphism of M and the A-dual algebra of C.

Group coring was introduced by Caenepeel et al. [7], which generalized coring,
group coalgebras and Hopf group coalgebras. In section 2, we give a graded Morita
context for any group coring comodule connects the dual graded ring of a group coring
and the graded endomorphism ring of any group coring comodule, which generalized
the Morita context in [3, 5-7, 10, 13]. Let G be a finite group with unit e, A a ring
with unit, a G-A-coring C, and R be the left dual graded ring, for any right G-C-
comodule M , we define T = HOMG,C(M,M) =

⊕
g∈GHOM

G,C(M,M)g, where
(fg

α)α∈G ∈ HOMG,C(M,M)g is a family of right A-linear maps fg
α : Mα → Mgα

which are comodule maps. Then, we give a G-graded R-T bimodule Q =
⊕

g∈GQ
g,

where Qg is a family of right A-linear maps (qgα)α∈G; Mα → Rgα in MA. By these
definition, we construct a graded Morita context

M = (T, R,
⊕

α∈G

Mα, Q, τ, µ)

with connecting homomorphisms

τ : T (
⊕

α∈G

Mα)⊗QT → T, m⊗ q �→ mq(−)

µ : RQ⊗ (
⊕

α∈G

Mα)R → R, q ⊗m �→ q(m).

Takeuchi [18] introduced the Morita-Takeuchi theory that characterizes equiva-
lences of comodule categories over fields, dualizing Morita results on equivalences of
module categories. Associated with Morita-Takeuchi context it is possible, using the
functors cotensor and co-hom to establish the equivalences of comodule categories.
The general concepts of graded Morita-Takeuchi context for graded coalgebras over
arbitrary groups are introduced [2, 10, 19].

In section 3, we recall the definition of graded Morita-Takeuchi context and prove
the theorem titled graded Morita-Takeuchi theorem following the treatment of Takeuchi
given in [18]. In other words, we show that the well know Morita-Takeuchi theorem on
equivalence of category of graded modules holds true for category of graded comodules
over all field k. We go parallel with Boisen’s [4] graded Morita theory.

Throughout this paper, k will be a field. For a general theory of Hopf algebras,
we refer to the standard books [17, 20]. We use Sweedler’s [20] “sigma” notation:
∆ (c) = c(1)⊗ c(2) for an element c in a coalgebra (C,∆, ε) , and ρ (m) = m[0]⊗m[1]

for an element m in a right C-comodule
(
M, ρC

)
. If M and N are C-comodules, a

comodule map from M and N is a k-map f : M → N such that (f ⊗ 1)ρM = ρNf .
The k-space of all comodule maps from a right C-comodule M to a right C-comodule
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N is denoted by Com−C(M, N ). Let MC and CM denote the categories of right
and left C-comodules, respectively.

2. GRADED MORITA THEORY FOR GROUP CORING

2.1. Group coring

Let G be a group, and A an associative unital algebra over a fixed field k. The
unit element of G will be denoted by e. A G-group A-coring (or shortly a G-A-coring)
C is a family (Cα)α∈G of A-bimodule together with a family of bimodule maps

�α,β : Cαβ → Cα ⊗A Cβ; ε : Ce → A,

such that
(�α,β ⊗A Cγ) ◦ �αβ,γ = (Cα ⊗A �β,γ) ◦ �α,βγ

and
(Cα ⊗A ε) ◦ �α,e = Cα = (ε⊗A Cα) ◦ �e,α

for all α, β, γ ∈ G. We use the following Sweedler-type notation for the comultiplica-
tion maps �α,β :

�α,β(c) = c(1,α) ⊗A c(2,β)

for all c ∈ Cαβ. Then the above equations take the form

c(1,α)ε(c(2,e)) = c = ε(c(1,e))c(2,α) for all c ∈ Cα

((�α,β ⊗A Cγ) ◦�αβ,γ)(c) = ((Cα ⊗A �β,γ) ◦�α,βγ)(c) = c(1,α) ⊗A c(2,β) ⊗A c(3,γ)

for all c ∈ Cαβγ.
A morphism between two G-A-corings C and D consists of a family of A-bimodule

maps
(fα)α∈G, fα : Cα → Dα such that

(fα ⊗A fβ) ◦ �α,β = �α,β ◦ fαβ and ε ◦ fe = ε.

A right G-C- comodule M is a family of right A-modules (Mα)α∈G, for every α ∈ G,
Mα is a k-linear space, and a family of right A-linear maps

ρα,β : Mαβ →Mα ⊗A Cβ

such that
(Mα ⊗A �β,γ) ◦ ρα,βγ = (ρα,β ⊗A Cγ) ◦ ραβ,γ

and
(Mα ⊗A ε) ◦ ρα,e = Mα
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for m ∈Mαβ. We also use the Sweedler-type notation:

ρα,β(m) = m[0,α] ⊗a m[1,β],

so that, above equations justify the notation

m[0,α]ε(m[1,e]) = m for all m ∈Mα

((Mα ⊗A �β,γ) ◦ ρα,βγ)(m) = (ρα,β ⊗A Cγ ◦ ραβ,γ)(m) = m[0,α] ⊗Am[1,β] ⊗A m[2,γ]

for all m ∈Mαβγ .
A morphism between two right G-C-comodules M and N is a family of right

A-linear maps fα : Mα → Nα such that

(fα ⊗A Cβ) ◦ ρα,β = ρα,β ◦ fαβ .

The category of right G-C-comodules will be denoted by MG,C.
Let C be a G-A-coring. For every α ∈ G, Rα =∗ Cα−1 =A Hom(Cα−1, A) is an

A-bimodule, with
(a · f · b)(c) = f(ca)b

for all fα ∈ Rα, gβ ∈ Rβ and define fα�gβ ∈ Rαβ as

(fα�gβ)(c) = gβ(c(1,β−1)fα(c(2,α−1)))

for all c ∈ C(αβ)−1. This defines maps mα,β : Rα ⊗A Rβ → Rαβ, which makes
R =

⊕
α∈GRα into a G-graded A-ring, called the left dual graded ring of the group

coring C. We will also write ∗C = R. In [7], the authors gave the following proposition:

Proposition 1. [7, Proposition 4.1]. Let C be a G-A-coring, with left dual graded
ring R. We have a functor F3 : MG,C → MG

R , which is an isomorphism of categories
if C is left homogeneously finite.

2.2. Graded Morita theory

Now, we recall the definition of graded Morita theory for graded ring [4][16]. Let
R =

⊕
α∈GRα and S =

⊕
α∈G Sα be two G-graded rings, where G is a group.

A graded Morita context is a datum (R, S,RMS,S NR, φ, ψ), where M is a R-S-
bimodule which is graded, i.e. RgMhSf ⊆ Mghf and N is a S-R-bimodule which
is also graded. Moreover, φ : M ⊗S N → R is an R-R-bimodule homomorphism
which is graded in the sense that φ(Mg ⊗s Nh) ⊆ Rgh and ψ : N ⊗R M → S is
an S-S-bimodule homomorphism which is also graded. Lastly, φ and ψ satisfy the
following two relations:

φ(m⊗ n)m
′
= mψ(n⊗m

′
)

ψ(n⊗m)n
′
= nφ(m⊗ n

′
).
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Given a subset X of G, the symbol RX denotes
∑

σ∈X Rσ. Let H be a subgroup
of G, RH =

∑
σ∈H Rσ, MH =

∑
σ∈H Mσ . There is a natural RH-RS bimodule map

from NH ⊗SH
MH to N ⊗S M given by a ⊗SH

b �→ a ⊗S b. Let τH denote the
composition of this map followed by (the restriction of) the map from NH ⊗SH

MH

to RH . Define µH similarly. Then (RH , SH , MH , NH , τ, µ) is a Morita context as
per [14, Definition 3.11]. Thus a G-graded Morita context is in a sense a collection of
Morita context indexed by the subgroups of G.

Theorem 2. [4, Theorem 3.2]. Let (R, S,M,N, τ, µ) be a G-graded Morita con-
text in which τe and µe are surjective. Let H be a subgroup of G and let GR (GS)
denote the largest subgroup of G such that R GR

(resp., SGR
) is fully graded. Then

(1) GR = GS ;

(2) M is projective in GrMod-R in such a way that it is a direct summand of a
direct sum of copies of R. Me is a generator in mod-Re and in Se-mod. For
every subgroup H of G, MH is a progenerator in mod-RH and in SH-mod.
Similar statements hold for N ;

(3) τH and µH are isomorphisms for every subgroup H of G;

(4) given n ∈ NH , define ι(n) : M → RH to be the map m �→ τ(n ⊗m). The
map n �→ ι(n) is a graded bimodule isomorphism of the R H , SH-module NH

onto (MH)∗;

(5) Given s ∈ SH , let λ(s) ∈ EndRH
(MH) be the map m �→ sm. The map

λ : SH → EndRH
(MH) is an isomorphism of H-graded rings. Given r ∈ RH ,

let ρ(s) ∈ EndSH
(MH) be the map m �→ mr. ρ is a graded anti-isomorphism

from RH to the H op graded ring EndSH
(MH);

(6) The pair of functors − ⊗RH
NH and − ⊗SH

MH form an equivalence of the
categories right RH-module and SH-module.

2.3. Graded Morita theory for group coring

Generalizing constructions in [1, 5, 8, 9, 13], the authors in [3] associated Morita
context for comodule of an A-coring C, for any right C-comodule M they constructed
a Morita context connecting the k-modules Q, T = EndC(M), ∗C = Hom(C, A).
In this section, we generalize the Morita context[3] to group coring, and construct the
following graded Morita context associated a G-A-coring C and M ∈ MG,C.

Let G be a finite group with unit e, A a ring with unit and C a G-A-coring,
R be the left dual graded ring. For any right G-C comodule M , we define T =
HOMG,C(M,M) =

⊕
g∈GHOM

G,C(M,M)g, where (fg
α)α∈G is the family of right

A-linear maps f g
α : Mα → Mgα which are comodule maps. We also define a G-

graded R-T bimodule Q =
⊕

g∈GQ
g, where Qg is a family of right A-linear maps
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(qg
α)α∈G : Mα → Rgα in MA. By the above definition, we construct a graded Morita

context
M = (T, R,

⊕

α∈G

Mα, Q, τ µ)

with connecting homomorphisms

τ : T (
⊕

α∈G

Mα)⊗QT → T, m⊗ q �→ mq(−)

and
µ : RQ⊗ (

⊕

α∈G

Mα)R → R, q ⊗m �→ q(m),

which generalized the Morita context in [3, 5, 6, 7, 8, 13].
Now, we give the specific construction processes. First, we define G-graded k-

modules:
Q =

⊕

g∈G

Qg

where Qg is the family of right A-linear maps qg
α : Mα → Rgα in MA, such that for

all
mα ∈Mα, cβg−1 ∈ Cβg−1 , qg satisfies:

(1) qg
β−1(m[0,β−1])(cβg−1)m[1,βα] = c(1,βα)q

g
α(mα)(c(2,α−1g−1)).

Especially, we have
Qe = {qe := (qe

α)α∈G : M → R, qe
α : Mα → Rα} in MA, and

qe
β−1(m[0,β−1])(cβ)m[1,βα] = c[1,βα]q

e
α(mα)(c[2,α−1]).

Now, for M ∈ MG,C , define

Te = HOMG,C(M,M)e = HomG,C(M,M), Tg = HOMG,C(M,M)g

T =
⊕

g∈G

Tg =
⊕

g∈G

HOMG,C(M,M)g = HOMG,C(M,M) = ENDG,C(M,M)

where fg ∈ HOMG,C(M,M)g is a family of right A-linear maps fg
α : Mα → Mgα

such that

(2) (fg
α ⊗A Cβ) ◦ ρα,β(mαβ) = ρgα,βf

g
αβ(mαβ).

A straightforward calculation shows that TgTh ∈ Tgh, and T = ENDG,C(M,M)
is a G-graded ring.
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Lemma 3. Let T, Q defined as above, then, Q is a G-graded R-T bimodule, with
actions

(fg ⇀ qh)(m) = fg�q
h(m), for all fg ∈ Rg, q

h ∈ Qh, m ∈M,

(qh ↼ tg)(mα) = qh(tg(mα)), for all tg ∈ T g, qh ∈ Qh, mα ∈Mα.

Proof.
(1) First, we check f ⇀ q satisfies (1), for all fγ ∈ Rγ , q

g ∈ Gg:

(fγ ⇀ qg
β−1)(m[0,β−1])(cβg−1γ−1)m[1,βα]

=(fγ�q
g
β−1(m[0,β−1]))(cβg−1γ−1)m[1,βα]

=qg
β−1(m[0,β−1])(c(1,βg−1)fγ(c(2,γ−1))m[1,βα]

=(c(1,βα))q
g
α(mα)(c(2,α−1g−1)fγ(c(3,γ−1))) by (1)

=(c(1,βα))(fγ ⇀ qg
α)(mα)(c(2,α−1g−1γ−1)).

Meanwhile, it’s obvious that f ⇀ q is an element of HomA(M,R), and

(fg ⇀ qh
β)(mβ) = fg�(qh

β(mβ)) ∈ Rghβ .

Thus, Rg ⇀ Qh ⊆ Qgh. We have proved Q is a left R-graded module.

(2) Define the right T -graded module action on Q by (q ↼ t)(m) = q(t(m)). For
all mα ∈Mα, q

g ∈ Qg, th ∈ T h, we have

(qg ↼ th)(m[0,β−1])(cβh−1g−1)m[1,βα]

=qg
hβ−1(th(m[0,β−1]))(cβh−1g−1)m[1,βα]

=qg
hβ−1(th(mα)[0,hβ−1])(cβh−1g−1)(th(mα)[1,βα] by (2)

=c(1,βα)q
g
hα(th(mα))(c(2,α−1h−1g−1)) by (1)

=c(1,βα)(q
g ↼ th)(mα)(c(2,α−1h−1g−1)).

Hence, q ↼ t satisfies (1). At the same time, the action is a right A-linear map as q
and t are right A-linear, and

(qh ↼ tg)(mα) = qh(tg(mα)) ∈ Rhgα.

(3) Finally,

((fg ⇀ qh) ↼ tl)(m) =(fg ⇀ qh)(tl(m))

=fg�(qh(tl(m)))

=fg�(qh ↼ tl(m)))

=(fg ⇀ (qh ↼ tl))(m).
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Thus, we have proved Q is a G-graded R-T bimodule.

Lemma 4. (1) Q is a k-graded submodule of HOMR(M,R);
(2) M,N be two right G-C-comodules, then for every nα ∈ Nα, there is a k-linear

map Q→ HOMG,C(M,N) given by qg �→ (nα ↼ qg(−)).

Proof. (1) For all qg ∈ Qg, mα ∈ Mα, fβ ∈ Rβ, cβ−1α−1g−1 ∈ Cβ−1α−1g−1 ,
we have

qg(mα ↼ fβ)(cβ−1α−1g−1)

=qg(m[0,αβ]f(m[1,β−1]))(cβ−1α−1g−1)

=qg(m[0,αβ])(f(m[1,β−1]))(cβ−1α−1g−1) right A-linearity of Q

=qg(m[0,αβ])(cβ−1α−1g−1)(f(m[1,β−1])) R is A-bimodule

=f(qg(m[0,αβ])(cβ−1α−1g−1)(m[1,β−1])) R is left A-linear

=f(c(1,β−1)q
g(mα)(c(2,α−1g−1))) by (1)

=(qg(mα)�fβ)(cβ−1α−1g−1).

Hence, we have
qg(mα ↼ fβ) = qg(mα)�fβ (∗).

(2) Since R is a G-graded A-ring, and the elements of Q are right A-linear, the map
mβ ⇀ nα ↼ qg(mβ) is right A-linear.

(nα ↼ qg(mβ))0 ⊗ (nα ↼ qg(mβ))1

=(n[0,αβg]q
g(mβ)(n[1,β−1g−1]))[0,αβgγ] ⊗ (n[0,αβg]q

g(mβ)(n[1,β−1g−1]))γ−1

=n[0,αβgγ] ⊗ n[1,γ−1]q
g(mβ)(n[2,β−1g−1])

=n[0,αβgγ] ⊗ qg
βγ(m[0,βγ])(n[1,γ−1β−1g−1])m[1,γ−1] by (1)

=n[0,αβgγ]q
g
βγ(m[0,βγ])(n[1,γ−1β−1g−1]) ⊗m[1,γ−1]

=nα ↼ qg(m[0,βγ]) ⊗m[1,γ−1].

Especially, for every ne ∈ Ne, there is a k-linear map Qe → HomG,C(M,N), mα �→
neq

e
β(mα).

Lemma 5. Define left T action on
⊕

α∈GMα by tl ⇀mα = tl(mα) ∈Mlα, right
R action on

⊕
α∈GMα by mα ↼ fβ = m[0,αβ]f(m[1,β−1]) ∈Mαβ. Then,

⊕
α∈GMα

is a G-graded T -R bimodule.
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Proof. Obviously,
⊕

α∈GMα is a left graded T -module. By [7, Proposition 4.1]⊕
α∈GMα is a right G-graded R-module and

tl ⇀ (mα ↼ fβ)

=tl(m[0,αβ]f(m[1,β−1]))

=tl(m[0,αβ])f(m[1,β−1]) right A-linearity of T

=(tl(mα)[0,αβ]f(tl(mα)[1,β−1] by (2)

=tl(mα) ↼ fβ

=(tl ⇀mα) ↼ fβ .

Hence,
⊕

α∈GMα is a G-graded T -R bimodule.

Theorem 6. Let C be a G-A-coring, R be the left dual graded ring. T =
HOMG,C(M,M) =

⊕
g∈GHOM

G,C(M,M)g, M ∈ MG,C , Q =
⊕

g∈GQ
g. We

have the following graded Morita context

M = (T, R,
⊕

α∈G

Mα, Q, τ, µ)

with connecting homomorphisms

τ : T (
⊕

α∈G

Mα)⊗QT → T, m⊗ q �→ (m↼ q(−))

µ : RQ⊗ (
⊕

α∈G

Mα)R → R, q ⊗m �→ q(m).

Proof. First, we check τ is a T -T bimodule map, for all tα ∈ Tα, mg ∈Mg, q
h ∈

Qh, mβ ∈Mβ:

(tα ⇀ τ(mg ⊗ qh))(mβ) = tα(τ(mg ⊗ qh(mβ))

= tα(mgq
h(mβ))

= tα(m[0,ghβ])q
h(mβ)(m[1,β−1h−1]) T is right A-linear

= tα(mg)[0,αghβ]q
h(mβ)(tα(mg)[1,β−1h−1]) by (2)

= tα(mg) ↼ qh(mβ)

= τ(tα(mg)⊗ qh)(mβ)

= τ(tα ⇀mg ⊗ qh)(mβ),
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and

τ(mg ⊗ qh) ↼ tα = mgq
h(−) ↼ tα = mgq

h(tα(−))

= τ(mg ⊗ qh(tα(−))) = τ(mg ⊗ qh ↼ tα).

Next, we have:

(µ(qh ⊗mα) ↼ fg) = qh(mα) ↼ fg

= qh(mα)�fg

= qh(mα ↼ fg) by (*)

= µ(qh ⊗mα ↼ fg),

and

fg ⇀ µ(qh ⊗mα) = fg ⇀ (qh(mα)) = fg�(qh(mα))

= (fg ⇀ qh)(mα) = µ(fg ⇀ qh ⊗mα).

Finally, we check µ(q ⊗m)p = qτ(m⊗ p), mµ(q ⊗m′) = τ(m ⊗ q)m′, for all
qg ∈ Qg,
mα ∈Mα, p

h ∈ Qh, we have:

(µ(qg ⊗mα) ↼ ph(mβ)

=µ(qg ⊗mα)�ph(mβ)

=qg(mα)�ph(mβ) by (*)

=qg(mα ↼ ph(mβ))

=qg(τ(mα ⊗ ph(mβ))

=(qg ↼ τ(mα ⊗ ph))(mβ).

and for all m,m′ ∈M , q ∈ Q

mµ(q⊗m′) = mq(m′) = (mq(−))m′ = τ(m⊗ q)m′.

We say that a G-A-coring C is left homogeneously finite if every Cα is finitely
generated and projective as a left A-module.

Remark 7. In the case when C is left homogeneously finite, Q has a particu-
larly simple characterization as Q = HOMR(M,R). By the above Lemma, Q ⊆
HOMR(M,R). The converse inclusion is proven as follows. For every cα ∈ Cα,
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by the left homogeneously finite of C, we have the finite dual basis f(α)
i ⊗ e

(α)
i ∈

Rα−1 ⊗A Cα of Cα as a left A-module, such that cα =
∑
f

(α)
i (cα)e(α)

i . Then, for all
qσ ∈ HOMR(M,R)σ, we have

qσ(m[0,β])(cβ−1σ−1)m[1,α] = qσ(m[0,β])(cβ−1σ−1)f (α)
i (m[1,α])e

(α)
i

= qσ(m[0,β]f
(α)
i (m[1,α]))(cβ−1σ−1)e(α)

i

= qσ(mβα ↼ f
(α)
i )(cβ−1σ−1)e(α)

i

= (qσ(mβα) ↼ f
(α)
i )(cβ−1σ−1)e(α)

i Q is right R-linear

= (qσ(mβα)�f (α)
i )(cβ−1σ−1)e(α)

i

= f
(α)
i (c(1,α)q

σ(mβα)(c(2,α−1β−1σ−1)))e
(α)
i

= c(1,α)q
σ(mβα)(c(2,α−1β−1σ−1)).

This shows that qσ belongs to the k-module Q.

Proposition 8. Assume C is left homogeneously finiteG-A-coring, we haveHOMR

(M,R) = HOMG,C(M,R).

Proof. For every Tσ ∈ HOMG,C(M,R), we have

T σ(mα ↼ fβ) = T σ(m[0,αβ]f(m[1,β−1])) = T σ(m[0,αβ])f(m[1,β−1])

= (T σ(mα))[0,σαβ]fβ(T σ(mα))[1,β−1]

= T σ(mα) ↼ fβ .

Thus T σ ∈ HOMR(M,R), and the proposition is completed.

Since any right G-C-comodule M has also a right R-module structure, we can
associate a further Morita context with it, namely,

N = (ENDR(M),
⊕

α∈G

Mα, HOMR(M,R), τ, µ)

with connecting maps

τ : HOMR(M,R)⊗ (
⊕

α∈G

Mα) → R, q ⊗m �→ q(m)

µ : (
⊕

α∈G

Mα) ⊗HOMR(M,R) → (ENDR(M), m⊗ q �→ m↼ q(−).
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Remark 9. Let C be a G-A-coring, and M a right G-C-comodule. There exists
a morphism of Morita context M → N which becomes an isomorphism if C is left
homogeneously finite.

Lemma 10. Let C be a G-A-coring, and M a right G-C-comodule. Consider the
Morita context M = (T, R,

⊕
α∈GMα, Q, τ, µ),

(1) If µ is surjective, then Ce is finitely generated projective left A-module.
(2) If τ is surjective, then Me is a finitely generated projective right A-module.

Proof. The proof is similar to [3, Lemma 2.5]

At last, we apply [4, Theorem 1] to the graded Morita context.

Theorem 11. Let C be a G-A-coring, R be the left dual graded ring. T =
HOMG,C(M,M) =

⊕
g∈GHOM

G,C(M,M)g, Q =
⊕

g∈GQ
g, consider the graded

Morita context
M = (T, R,

⊕

α∈G

Mα Q, τ, µ),

and suppose τe, µe are surjective. Then
(1) τ and µ are isomorphism.
(2)

⊕
α∈GMα is projective in GrMod-R in such a way that ∀α ∈ G, Mα is a direct

sum of R, Qe is a generator in ModRe, and in TeMod.
(3) The pair of functors − ⊗R Q and − ⊗Te (

⊕
α∈GMα) form an equivalence of

the categories RMod and TMod. The equivalence preserves the structure of
graded modules.

3. GRADED MORITA-TAKEUCHI THEORY FOR GRADED COMODULE

Associated with Morita context it is possible to establish several equivalences be-
tween some subcategories of modules. Equally the (graded) Morita-Takeuchi context
plays an important role in the study of (graded) equivalences between (graded) coal-
gebras. In this section, we recall the definition of (graded) Morita-Takeuchi context,
prove the graded Morita-Takeuchi theory for comodule category on coalgebras over
field.

Let C, D be coalgebras, M ∈ CMD be a C-D bicomodule. The cotensor product
�C determines a k-linear functor N �→ N�CM from MC to MD. We call M is
quasi-finite if Com−C (M, M ′) is finite dimensional for all finite dimensional right
C-comodule M ′.

A right C-comodule M is finitely cogenerated, if it is isomorphic to a subcomodule
of W⊗M for some finite dimensional vector space W . Finitely cogenerated comodules
are quasi-finite. The left adjoint of W → W ⊗M is written as M ′ �→ h−C(M, M ′)
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from right C-comodule category to the category of finite dimensional vector spaces.
Takeuchi has proved [18] the co-hom h−C(M, M ′) is a cotra-variant functor of M
and a covariant functor of N , and the co-end e−C (M) = h−C(M, M) has a coalgebra
structure.

For a bicomodule CND, N is quasi-finite if and only if the functor MC →
MD, M �→M�CN has the left adjoint. In this case the left adjoint of M →M�CN
is given by M ′ �→ h−C(M, M ′). We refer the reader to [18] for a general theory of
Morita-Takeuchi theory.

Definition 12. [18] A Morita-Takeuchi context = (C, D, CMD, DNC , τ, µ)
consists of coalgebras C and D, bicomodules CMD and DNC , and bicolinear maps
τ : C → M�DN and µ : D → N�CM making the following diagrams commute:

M
∼= � M�DD

C�CM M�DN�CM
τ�id

∼=

��
�

id�µ

N
∼= � N�CC

D�DN N�CM�DN
µ�id

∼=

��
�

id�τ

The context is said to be strict if both τ and µ are injections (equivalently, isomor-
phisms). In this case, the categories MC and MD are equivalent and we say that C
is Morita-Takeuchi equivalent to D.

Now, we begin to develop a graded version of Morita-Takeuchi theory. The pre-
sentation here is modeled on that given in [18]. We first recall some definition on
graded coalgebras and graded comodules, give the graded Morita-Takeuchi context and
prove a theorem which we titled graded Morita-Takeuchi theory, which characterizes
equivalences of comodule categories over fields.

A coalgebra C is called G-graded coalgebra if C is a direct sum C = ⊕σ∈GCσ of
k-space and verifies:

(1) �(Cσ) ⊆ ∑
λµ=σ Cλ ⊗ Cµ for any σ ∈ G;

(2) ε(Cσ) = 0 for any σ �= e.
A coalgebra C = ⊕σ∈GCσ is said to be of finite type if, for all σ ∈ G, Cσ is finite

dimensional over k. Note that it does not mean that C = ⊕σ∈GCσ is finite dimensional
(unless Cα = 0 for all but a finite number of α ∈ G).

Let M be a right C-comodule, M is called a G-graded comodule over C if M
admits a decomposition as a direct sum M = ⊕σ∈GMσ of k-space, and ρM(Mσ) ⊆∑

λµ=σ Mλ ⊗Cµ for any σ ∈ G .
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If M = ⊕σ∈GMσ is a graded right C-comodule and σ, τ ∈ G, we denote by
πσ : M → Mσ the canonical projection and by ρσ,τ : Mστ → Mσ ⊗ Cτ the unique
k-morphism. Then we may define a coalgebra structure (C1, �1 = ρe,e, ε) on Ce and
π1 : C → C1 is a morphism of coalgebras. Moreover, for any σ ∈ G, Mσ is a right C1-
comodule via the canonical map ρ : Mσ →Mσ⊗Ce, i.e ρσ,e(m) =

∑
m[0]⊗π1(m[1])

for any m ∈Mσ .

Definition 13. AG-graded Morita-Takeuchi context is a set (C, D, CMD, DNC ,
τ, µ) of objects which we now define. C and D are G-graded coalgebras. CMD is a
C-D-bicomodule which is G-graded i.e., ( Cρ⊗1)ρD(Mσ) ⊆ ∑

αβγ=σ Cα⊗Mβ⊗Dγ .
N is a D-C-bicomodule which is also graded. τ : C → M�DN is a C-bicolinear
homomorphism which is graded in the sense that τ(Cσ) ⊆ ∑

αβ=σ Mα⊗Nβ, µ : D →
N�CM is a D-bicolinear homomorphism which is also graded. Lastly, τ and µ make
the following diagrams commute:

M
∼= � M�DD

C�CM M�DN�CM
τ�id

∼=

��
�

id�µ

N
∼= � N�CC

D�DN N�CM�DN
µ�id

∼=

��
�

id�τ

The context is said to be strict if τ and µ are graded bicolinear isomorphisms.

We now explain the use of the word “graded” in the phrase “graded Morita con-
text”. Let σ ∈ G, there is a natural Ce-De-bicomodule action on Mσ and De-Ce-
bicomodule action on Nσ−1 . Let τσ,σ−1 denote the map obtained as by the restriction
of the map τ from Ce to Mσ�DeNσ−1 and µσ−1,σ : De → Nσ−1�CeMσ. Then
(Ce, De,

CeMDe
σ , DeNCe

σ−1, τσ,σ−1 , µσ−1,σ) is a Morita-Takeuchi context.
Consider the definition of a graded Morita-Takeuchi context in the special case

G = e. This is exactly the definition of a Morita-Takeuchi context.

Theorem 14. (graded Morita-Takeuchi theory). Let (C, D, CMD, DNC , τ, µ)
be a graded Morita-Takeuchi context in which τ e,e, µe,e are injective. Then

(1) τ and µ are isomorphisms;
(2) MD is quasi-finite in right D-comodule category, M is a cogenerator in left

G-graded C-comodule category. Me is a cogenerator in right D e-comodule and
left Ce-comodule category. Similar statements hold for N ;

(3) µ induces a graded bicomodules isomorphism ι : h−D(M,D) �→ DNC and
hD−(N,D) �→ CMD We also have similar graded bicomodule isomorphisms
of h−C(N,C) with M and hC−(M,C) with N ;
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(4) The bicomodule structures of M and N induce graded coalgebra isomorphisms
λ : e−D(M) 
 C and eD−(N ) 
 C. Similarly, we have eC−(M) 
 D and
e−C(N ) 
 D.

(5) The pair of functors F = −�DN and G = −�CM form a graded equivalence
of the graded right D-comodule and graded right C-comodule categories. The
functors S = N�C− and T = M�D− form a graded equivalence of the graded
left C-comodule and graded left D-comodule categories.

Proof.
(1) First, we have τσ,σ−1 are injective since τe,e is injective. Part (1) follows from the

application of Morita-Takeuchi Theory to the graded context (Ce, De,
CeMDe

σ ,
DeNCe

σ−1, τσ,σ−1, µσ−1,σ).
(2) Since τ and µ are isomorphisms, then, τ−1 : FG → Id, µ : Id → TS give

an adjoint relation. Hence, M is quasi-finite as right D-comodule. Since F is
exact, G preserves injective, MD = G(C) is injective, thus, M is a cogenerator
follows from C 
 M�DN ↪→ M ⊗ N . Me is a cogenerator in right De-
comodule category follows from the Morita-Takeuchi Theory.

(3) The map ι is a bicomodule isomorphism by Morita-Takeuchi Theory. We show
that ι respects the graded structure of comodules. Let σ ∈ G, and fσ ∈
h−D(M,D), then µ(fσ(Mα))⊆µ(Dσα)⊆Nσ ⊗Mα, hence, ι(fσ)⊆Nσ.

(4) Applying Morita-Takeuchi theory once again, we see that the map λ in (4) is a
coalgebra isomorphism. We show that λ respects the graded structure of coalge-
bras. Let fσ ∈ e−D(M), then, fσ(Mα) ⊆ Mσα

ρ−→ Cσ ⊗Mα, thus, we have
λ(fσ) ⊆ Cσ .

(5) Let U be a graded right C-comodule. The corresponding comodule in right
D-comodule category we get is U′ = U�CM . If we pass back to the right
C-comodule category we get U′′ = U�CM�DN . U ′′ is isomorphic to U via
the map θ : u⊗m⊗n �→ uτ(m⊗n), for all u ∈ U, m ∈M, n ∈ N . Our vague
statement that the equivalence preserves graded comodules means that there is a
natural graded structure on U ′ and U ′′, and θ is a graded isomorphism. Now, we
give the grading of U′ and U ′′. The σ-component of U ′

σ is generated as additive
group by the set of all u�Cm, for any u ∈ Uσ and m ∈Me, it is straightforward
to check that the induced comodule action preserves the grading. Imitate this
construction for U ′′, U ′′

σ = {u⊗m⊗ n, u ∈ Uσ , m ∈Me, n ∈ Ne}. The image
of U ′′

σ is the set {uτ(m⊗ n)} ⊆ Uσ, thus θ is a graded map.
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