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BLOW-UP RATE FOR NON-NEGATIVE SOLUTIONS OF A NON-LINEAR
PARABOLIC EQUATION

Chi-Cheung Poon

Abstract. We study solutions of the equation

ut =
n∑

i,j=1

∂

∂xj

(
aij ∂

∂xi
um

)
+ hup on Ω × (0, T )

u = 0 on ∂Ω × (0, T ),

where Ω is a bounded domain in R
n with smooth boundary, and aij = aij(x) is

uniformly positive definite and h = h(x) > 0 on Ω. When

0 < m < 1 < p < m +
2

n + 1
or 1 < m < p ≤ m +

2
n + 1

,

we will show that if u is a non-negative solution and blows up at T , then

u(x, t) ≤ C|T − t|−1/(p−1).

The proof relies on rescaling arguments and some, old and new, Fujita-type results.

1. INTRODUCTION

In this paper, we study solutions of the equation

(1.1)
ut =

n∑
i,j=1

∂

∂xj

(
aij ∂

∂xi
um

)
+ hup on Ω × (0, T )

u = 0 on ∂Ω× (0, T ).

Here, m > 0 and p > 1, Ω is a bounded domain in R
n with smooth boundary, and

aij = aij(x) and h = h(x) are smooth functions defined on Ω̄. We also assume that aij

is uniformly positive definite and h > 0 on Ω̄. Suppose that u(x, t) is a non-negative
solution of (1.1) and blows up at T . Our goal is to show that there is a constant C > 0
such that for all (x, t) ∈ Ω × (0, T ), we have
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(1.2) u(x, t) ≤ C|T − t|−1/(p−1).

For the semilinear heat equation

(1.3)
ut = ∆u + up on Ω × (0, T )

u = 0 on ∂Ω × (0, T ),

Friedman and McLeod, [4], proved that if Ω is a convex, bounded domain in R
n,

p > 1, and u(x, t) is non-negative solution of (1.3), and is non-decreasing in time, then
(1.2) holds. Giga and Kohn, [10], among other results, proved that if Ω is a convex,
and u is a non-negative solution of (1.3) for

1 < p <
n + 2
n − 2

when n ≥ 3 or p > 1 when n ≤ 2,

then (1.2) holds. Fila and Souplet, [3], proved the same result for solutions defined on
domains which may not be convex, but only for

1 < p < 1 +
2

n + 1
.

Let u(x, t) be a non-negative solution of (1.3). Let

M(t) = max {u(x, t) : (x, t) in Ω × [0, t]} .

For any t0 ∈ (0, T ), we define t+0 by

t+0 = max{t ∈ (t0, T ) : M(t) = 2M(t0)}.

In [3], Fila and Souplet showed that, if u blows up at T , then there is a constant K
such that for all t0 ∈ (T/2, T ), we have

(1.4) Mp−1(t0)(t+0 − t0) ≤ K.

We briefly describe their arguments: if (1.4) is not true, there is a sequence of the
rescaled solutions converges to a non-trivial bounded global non-negative solution of
the equation

(1.5) vt = ∆v + vp

defined on R
n × (−∞,∞), or to a non-trivial bounded global non-negative solution,

v, of (1.5) which is defined on R
n
+ × (−∞,∞) and v = 0 whenever x1 = 0. Here,

we use the notation
R

n
+ = {x : x1 > 0}.
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However, Fujita, [5], proved that there is no non-trivial global non-negative solution
of (1.5) defined on R

n × (0,∞), and Meier, [15], proved that there is no non-trivial
global non-negative solution v of (1.5) which is defined on R

n
+ × (0,∞) and v = 0

whenever x1 = 0. Thus, (1.4) has to be true. Using an argument of Hu, [11], from
(1.4), we obtain (1.2) immediately. The result of Fila and Souplet was improved to the
case

1 < p <
n(n + 1)
(n− 1)2

if n ≥ 2, p > 1 if n = 1.

See [18] for more information concerning solutions of the semilinear equation (1.5).
We will use Fila and Souplet’s method to study solutions of equation (1.1). In our

situations, we need some non-existence results for solutions of

(1.6) vt = ∆vm + vp

defined either on R
n × (0,∞) or R

n
+ × (0,∞). Galaktionov, [6] [7], proved that when

1 < m < p < m+2/n, then any global solutions of (1.6) in R
n × (0,∞) is identically

zero. Kawanago, [12], Mochizuki and Suzuki, [17], proved the case when m > 1 and
p = m + 2/n. If v is a solution of (1.6) in R

n
+ × (0,∞), v = 0 when x1 = 0, Lian

and Liu, [14], proved that when

(1.7) 1 < m < p ≤ m +
1

n + 1
,

then v vanishes identically. See also [13]. In [20], Qi proved that when 0 < m < 1 <
p < m + 2/n, there is no non-trivial global non-negative solution of (1.6) defined on
R

n× (0,∞). When 1 < p = m+2/n and max{0, 1−2/n} < m < 1, Mochizuki and
Mukai, [16], proved the same result. Following Qi’s idea, we will prove that when

(1.8) 0 < m < 1 < p < m +
2

n + 1
,

there is no non-trivial global non-negative solution, v, of the equation (1.6) which is
defined on the half-space R

n
+ × (0,∞) and v = 0 whenever x1 = 0. However, when

(1.9) 1 < p = m +
2

n + 1
and max

{
0, 1− 2

n + 1

}
< m < 1,

we are not able to prove the same result as in [16].
Suppose that u is a solution of (1.1) and u blows up at T . In cases (1.7) and (1.8),

we will show that (1.2) holds by proving that (1.4) is true. If (1.4) is not true, we show
that there is a sequence of rescaled solutions which converges to a solution v of the
equation (1.6) on R

n × (−∞,∞) or on R
n
+ × (−∞,∞) and v = 0 whenever x1 = 0.

This contradicts the non-existence results described in the above. We note that, as in
[3], the domain Ω need not be convex.
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Using the same scheme, we also consider solutions of (1.1) which are non-decreasing
in time. Suppose that 0 < m < 1 and

1 < p when n ≤ 2, 1 < p < m

(
n + 2
n − 2

)
when n ≥ 3;

or, m > 1 and

(1.10) m < p when n ≤ 2, m < p < m

(
n + 2
n − 2

)
when n ≥ 3.

Let u be a non-negative solution of (1.1) and is non-decreasing in time. If u blows up at
T , then we show that (1.2) holds. This technique was used to treat time non-decreasing
solutions of the semilinear equation (1.3). See [18], Remarks 4.3(b) and 5.3(b).

In a recent paper, Souplet, [22], proved that, when 1 < m < p and p satisfies
(1.10), then the equation (1.6) has no non-trivial bounded radial non-negative solution
defined on R

n × (−∞,∞). This implies that, if 1 < m < p and (1.10) is satisfied,
then (1.2) holds for radial solutions of (1.1) defined on symmetric domains. See [1].

Suppose that in (1.1), we have aij(x) = δij and h(x) = 1 for all x ∈ Ω. When
m > 0, by taking U = um, M = (m− 1)/m and P = p/m, we see that (1.1) is
equivalent to

(1.11)
Ut = UM (∆U + UP ) on Ω × (0, T )

U = 0 on ∂Ω × (0, T ).

When 0 < M < 2 and P = 1, Winkler, [23], proved that if U is a non-negative
solution of (1.11), then there is a constant C > 0 such that

U(x, t) ≤ C|T − t|−1/(P+M−1).

Also, when M ≥ 2 and P = 1, Winkler, [24], proved that if U is a non-negative
solution of (1.11), then |T − t|1/(P+M−1)u(x, t) becomes unbounded as t → T .
Furthermore, there are solutions of (1.11) with M ≥ 2 and P > 1, for which
|T − t|1/(P+M−1)u(x, t) becomes unbounded as t → T . See [19].

2. REGULARITY THEOREMS

We consider the weak solutions of the equation

(2.1)
ut =

n∑
i,j=1

∂

∂xj

(
aij ∂

∂xi
um

)
+ hup on Ω × (t1, t2)

u = 0 on ∂Ω× (t1, t2).
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Here, m > 0 and p > 1, and Ω is a bounded domain in R
n with smooth boundary.

We assume that aij = aij(x) and h = h(x) are continuous functions defined in Ω̄ and
there are positive constant c0 and c1 such that for any vector ξ ∈ R

n and x ∈ Ω, we
have

(2.2) c0|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ c1|ξ|2 and c0 ≤ h(x) ≤ c1.

Let u be a function so that um ∈ L∞
loc(t1, t2; H

1
0(Ω)) and u(x, t) ≥ 0 for all (x, t) ∈

Ω× (t1, t2). We say u is a weak solution of (2.1) if for any η ∈ C∞
0 (Ω× (t1, t2)), we

have ∫ ∫ 
uηt + um

n∑
i,j=1

∂

∂xj

(
aij ∂η

∂xi

)
+ hupη


dx dt = 0.

We have the following regularity theorems by DiBenedetto and Sacks. See [2] and
[21]. We use the notaions

B(x0, r) = {x : |x − x0| < r} and B(r) = B(0, r) = {x : |x| < r}.

Theorem 2.1. Let u(x, t) be a bounded weak solution of the equation

(2.3) ut =
n∑

i,j=1

∂

∂xj

(
aij(x)

∂(um)
∂xi

)
+ h(x)up

with m > 0 and p > 1, in B(2r)× (−2r, 0). Then u is continuous on B(r)× (−r, 0)
and the modulus of continuity of u depends only on sup u, c 0, c1, m and p only. Here,
c0 and c1 are the constants in (2.2).

Let Ω be a bounded domain in R
n with piecewise smooth boundary. Let x0 ∈ ∂Ω.

Suppose that there is a constant θ ∈ (0, 1) and r0 > 0 such that

(2.4) meas(Ω ∩ B(x0, r)) ≤ (1 − θ)meas(B(x0, r)).

Theorem 2.2. Let u(x, t) be a bounded weak solution of the equation (2.3) with
m > 0 and p > 1 in (B(x0, 2r)∩Ω)×(−2r, 0), and u = 0 on ∂Ω. Then u is continuous
in (B(x0, r)∩Ω)×(−r, 0) and the modulus of continuity of u in (B(x 0, r)∩Ω)×(−r, 0)
depends only on sup u, c0, c1, m, p, r0 and θ only.

If we assume that the domain Ω is smooth, then there are constant θ and r0 such
that for all x0 ∈ ∂Ω and 0 < r < r0, so that condition (2.4) holds.

3. NON-EXISTENCE OF GLOBAL SOLUTIONS

Let Ω be a domain in R
n. Let v(x, t) be a non-negative function defined on
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Ω × (0,∞). Suppose that v(x, t) is bounded. We say v is a weak solution of the
equation

vt = ∆vm + vp on Ω × (0,∞)

v = 0 on ∂Ω × (0,∞)

with m > 0, p > 1, if for any function η(x, t) ∈ C∞
0 (Ω× (0,∞)), we have

(3.1)
∫ ∫

Ω
(vηt + vm∆η + vpη) dx dt = 0.

We state some known results concerning the non-existence of weak solutions. When
m > 1, and the domain is the whole space, we have

Theorem 3.1. ([6, 7, 12, 17]). Let v be a bounded non-negative continuous weak
solution of the equation

vt = ∆(vm) + vp in R
n × (0,∞).

If
1 < m < p ≤ m +

2
n

,

then v is identically zero on R
n × (0,∞).

When m > 1, and the domain is the half space, we have

Theorem 3.2. ([13, 14]) Let v be a bounded non-negative continuous weak solu-
tion of the equation

vt = ∆(vm) + vp in R
n
+ × (0,∞),

v = 0 in {x1 = 0} × (0,∞)
If

1 < m < p ≤ m +
2

n + 1
,

then v is identically zero on R
n
+ × (0,∞).

When, 0 < m < 1, the non-existence result is of the form:

Theorem 3.3. ([20, 16]) Let v be a bounded non-negative continuous weak solution
of the equation

vt = ∆(vm) + vp in R
n × (0,∞).

If
0 < m < 1 and 1 < p < m +

2
n

,

or
1 < p = m +

2
n

and max
{

0, 1− 2
n

}
< m < 1,

then v is identically zero on R
n × (0,∞).
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If the solution is defined on R
n
+ × (0,∞), where R

n
+ = {x = (x1, ..., xn) ∈ R

n :
x1 > 0}, we prove

Theorem 3.4. Let u be a bounded non-negative continuous weak solution of the
equation

vt = ∆(vm) + vp in R
n
+ × (0,∞),

v = 0 in {x1 = 0} × (0,∞)

If
0 < m < 1 and 1 < p < m +

2
n + 1

,

then v is identically zero on R
n
+ × (0,∞).

We will need the following technical lemma.

Lemma 3.5. Let w(s) be an absolutely continuous positive function which satisfies
the inequality

(3.2) w′ ≥ −λwm + wp for s > 0,

where m > 0, and p > max{m, 1}. If wp−m(0) > λ, then w blows up in finite time.

Proof. Suppose that z is a solution of the equation

z′ = −λzm + zp, 0 < z(0) < w(0) and zp(0) > λzm(0).

We first claim that z ′(s) > 0 whenever z(s) is defined. Assume that there is s1 > 0
such that z ′(s) > 0 in (0, s1) and z′(s1) = 0. Then, z(s) > 0 and zp(s)−λzm(s) > 0
in (0, s1) and zp(s1) − λm(s1) = 0. It is easy to see that

(3.3)

d

ds
(zp(s) − λzm(s)) =z′(s)

(
p

z(s)
zp(s) − λ

m

z(s)
zm(s)

)

≥mz′(s)
z(s)

(zp(s) − λzm(s)) .

Thus, the function zp(s)−λzm(s) is increasing on (0, s1). If zp(s)− λzm(s) > 0 for
s ∈ (0, s1), then z′(s1) = zp(s1) − λzm(s1) > 0. Thus, z(s) is increasing whenever
z(s) is defined. Furthermore, by (3.3), the function zp(s) − λzm(s) is also increasing
whenever z(s) is defined. This implies that z ′(s) is increasing, and z′(s) ≥ z′(0) > 0,
and

(3.4) z(s) ≥ z(0) + sz′(0)

whenever z(s) is defined. When s is large enough, by (3.4), we have zm(s) > 2λ and

zp(s) − 2λzm(s) = zp−m(zm(s) − 2λ) > 0.
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Therefore, when s is large enough,

z′(s) = zp(s) − λzm(s) ≥ 1
2

zp(s).

By solving the ODE, we see that, if p > 1, the solution z has to blow up in finite
time. If w satisfies the inequality (3.2), then w(s) ≥ z(s) whenever z(s) and w(s) are
defined. Thus, the function w also blows up in finite time.

Proof. [Proof of Theorem 3.4] For x ∈ R
n
+, let

φ(x) = xγ
1 exp(−k2|x|2),

where k > 0 and γ > 1 are constants to be determined. By straightforward computa-
tions, we have

∆φ + λφ

=
(
λ − 4k2γ + γ(γ − 1)x−2

1 + 4k4|x|2 − 2nk2
)
φ.

Thus, we see that if λ ≥ 2k2(2γ + n) then ∆φ + λφ ≥ 0 in R
n
+. We let 1 < γ ≤ 2

and choose

(3.5) λ = λ(k) = 2(n + 4)k2.

Then ∆φ + 2λφ ≥ 0 in R
n
+.

One can compute that

(3.6)
∫

Rn
+

φ(x) dx =
C(n)Γ(γ)

kn+γ

where
Γ(γ) =

∫ ∞

0
xγ exp(−x2) dx =

1
2

∫ ∞

0
u(γ−1)/2e−u du,

and C(n) is a positive constant depending on n only. It is not difficult to see that

(3.7) sup
1<γ≤2

F (γ) = sup
1<γ≤2

1
2

∫ ∞

0
u(γ−1)/2e−u du < ∞.

We also note that φ is in C1,σ(Rn
+), with σ = γ − 1, φ(x) = 0, Dφ(x) = 0

whenever x1 = 0. Furthermore, Dφ and D2φ are in L1(Rn
+). Therefore, we may

find a sequence of functions ϕj which are smooth with compact support in R
n
+ and

ϕj → φ, Dϕj → Dφ and D2ϕj → D2φ in L1(Rn
+). Thus, by (3.1), we have

(3.8)

∫
Rn

+

v(x, t2)φ(x) dx −
∫

Rn
+

v(x, t1)φ(x) dx

=
∫ t2

t1

∫
Rn

+

(vm(x, s)∆φ(x) + vp(x, s)φ(x)) dx dt

≥
∫ t2

t1

∫
R

n
+

(−λvm(x, s)φ(x) + vp(x, s)φ(x)) dx dt.
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Let
F (s) =

kn+γ

C(n)Γ(γ)

∫
R

n
+

v(x, s)φ(x) dx.

By (3.6), if 0 < m < 1 and p > 1, we have

(3.9)
kn+γ

C(n)Γ(γ)

∫
R

n
+

vm(x, s)φ(x) dx ≤ Fm(s)

and
kn+γ

C(n)Γ(γ)

∫
Rn

+

vp(x, s)φ(x) dx ≥ F p(s).

Thus, from (3.8), we obtain,

F ′(s) ≥ −λFm(s) + F p(s).

By Lemma 3.5, if v is a global solution, then for any s > 0, we have

(3.10) F (s) =
kn+γ

C(n)Γ(γ)

∫
Rn

+

v(x, s)φ(x) dx ≤ λ1/(p−m).

It implies that, using (3.5), for any 0 < k < 1,

kn+γ−2/(p−m)

∫
R

n
+

v(x, s)xγ
1 exp(−|x|2) dx

≤kn+γ−2/(p−m)

∫
Rn

+

v(x, s)φ(x) dx

≤C(n)Γ(γ) (2(n + 4))1/(p−m) .

We fix γ so that
γ > 1 and n + γ <

2
p − m

.

Using (3.7), we see that if k is chosen small enough, then it is impossible, unless v is
identically zero.

4. BLOWUP RATE

We consider the non-negative solutions of the equation

(4.1)
ut =

n∑
i,j=1

∂

∂xj

(
aij ∂

∂xi
um

)
+ hup on Ω × (0, T )

u = 0 on ∂Ω× (0, T ).
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Here, m > 0 and p > 1, and Ω is a bounded domain in R
n with smooth boundary.

We assume that aij = aij(x) is symmetric and aij ∈ C1(Ω̄), h = h(x) > 0 and
h ∈ C(Ω̄). Also, we assume that aij and h satisfy (2.2). Let u be a function so that
um ∈ L∞

loc(0, T ; H1
0(Ω)) and u(x, t) ≥ 0 for all (x, t) ∈ Ω × (0, T ). We say u is a

weak solution of (4.1) in Ω× (0, T ) if for any η ∈ C∞
0 (Ω × (0, T )), we have

∫ T

0

∫
Ω


uηt + um

n∑
i,j=1

∂

∂xj

(
aij ∂η

∂xi

)
+ hupη


dx dt = 0.

Let

(4.2) M(t) = max{u(x, t) : (x, t) in Ω × [0, t]}.

We assume that M(t) < ∞, for each t ∈ (0, T ). We say u blows up at T if M(t) → ∞
as t → T. Given any t0 ∈ (0, T ), we define t+0 by

(4.3) t+0 = max{t ∈ (t0, T ) : M(t) = 2M(t0)}.

We need the following lemma which is due to Hu, [11] p895.

Lemma 4.1. Suppose that there is a constant K > 0 such that is true for all
t0 ∈ (T/2, T ), we have

(4.4) Mp−1(t0)(t+0 − t0) ≤ K.

Then there is a constant C > 0 such that

M(t) ≤ C|T − t|−1/(p−1).

Proof. We pick any t0 ∈ (T/2, T ). Using (4.3), for each k ≥ 0, we let tk+1 = t+k .

By our assumption (4.4), we obtain

tk+1 − tk ≤ K

(M(tk))p−1
=

K

(2kM(t0))p−1
.

Then, it follows that

T − t0 =
∞∑

k=0

(tk+1 − tk) ≤
∞∑

k=0

K

(2kM(t0))
p−1

=
C

(M(t0))p−1
.

Hence, the Lemma is true.
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Theorem 4.2. Let u be a non-negative weak solution of (4.1) in Ω × (0, T ) with

0 < m < 1, and 1 < p < m +
2

n + 1
.

If u blows up at T , then there is a constant C > 0 such that

max
x

u(x, t) ≤ C|T − t|−1/(p−1).

Proof. We follow the arguments in [3]. By Lemma 4.1, we only need to prove
(4.4). Suppose that (4.4) is not true. There exists a sequence tk , such that tk → T and

(4.5) Mp−1(tk)(t+k − tk) → ∞ as k → ∞.

For each k = 1, 2, 3..., there is x̂k ∈ Ω and t̂k ∈ (0, tk] such that

(4.6) M(t̂k) = u(x̂k, t̂k) ≥ M(tk)
2

.

Let
dk = dist(x̂k, ∂Ω).

Suppose that

(4.7) lim sup
k→∞

(
dkM

(p−m)/2(tk)
)

= ∞.

There are subsequences, also denoted by x̂k, tk and t̂k , and a point x̂0 ∈ Ω̄ such that

(4.8) x̂k → x̂0 and dkM
(p−m)/2(tk) → ∞ as k → ∞.

We rescale the solution u about the point (x̂k, t̂k) as follows:

(4.9) vk(y, s) =
1

M(tk)
u

(
y

M (p−m)/2(tk)
+ x̂k,

s

Mp−1(tk)
+ t̂k

)
.

The function vk is defined for

(4.10) y ∈ B
(
dkM

(p−m)/2(tk)
)

and s ∈ (−Mp−1(tk)t̂k, Mp−1(tk)(t̂+k − t̂k)
)
,

where we denote B(r) to be the open ball centered at 0 with radius r. Clearly, by
(4.6), for each k = 1, 2, 3...,

(4.11) vk(0, 0) ≥ 1/2 and 0 ≤ vk(y, s) ≤ 2.
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Moreover, vk is a weak solution of the equation

(4.12) vks =
n∑

i,j=1

∂

∂yj

(
aij

k

∂

∂yi
vm
k

)
+ hkvp

k,

where

aij
k (y) = aij

(
y

M (p−m)/2(tk)
+ x̂k

)
and hk(y) = h

(
y

M (p−m)/2(tk)
+ x̂k

)
.

Let η(y, s) be a smooth function with compact support in R
n × (−∞,∞). When k is

large enough, we have

(4.13)
∫ ∫ 

vkηs + vm
k

n∑
i,j=1

∂

∂yj

(
aij

k

∂η

∂yi

)
+ hkvp

kη


 dy ds = 0.

From (4.5), (4.10) and Theorem 2.1, the functions {vk} are equicontinuous on
compact subsets in R

n × (−∞,∞). Also, by (4.8), aij
k (y) converges to aij(x̂0),

Daij
k (y) converges to 0, and hk(y) converges to h(x̂0) uniformly on compact subsets

in R
n. Hence, there is a subsequence, which we also denote by {vk}, and a continuous

function v such that vk converges to v uniformly on compact subsets in R
n×(−∞,∞).

When letting k → ∞ in (4.13), we have

∫ ∫ 
vηs + vm

n∑
i,j=1

∂

∂yj

(
aij(x̂0)

∂η

∂yi

)
+ h(x̂0)vpη


 dy ds = 0,

i.e., v is a weak solution of the equation

(4.14) vs =
n∑

i,j=1

∂

∂yj

(
aij(x̂0)

∂

∂yi
vm

)
+ h(x̂0)vp

in R
n × (−∞,∞). After a change of variables, we may assume that v is a solution of

the equation
vs = ∆(vm) + vp in R

n × (−∞,∞).

Also, by (4.11) and the fact that vk converges to v uniformly on compact sets, we have
v(0, 0) ≥ 1/2 and 0 ≤ v(y, s) ≤ 2. However, by Theorem 3.3, it is impossible.

If (4.7) is not true, we may choose subsequences, also denoted by tk, x̂k , t̂k, so
that

(4.15) lim
k→∞

(
dkM

(p−m)/2(tk)
)

= c ≥ 0.
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It follows that dk → 0 as k → ∞. We may assume that there is x̂0 ∈ ∂Ω so that

x̂k → x̂0 as k → ∞.

Also, we may choose x̃k ∈ ∂Ω so that

|x̂k − x̃k| = dk.

Let Rk be an orthonormal transformation in R
n that maps (−1, 0, ..., 0) onto the outer

normal vector to x̃k. Again, we rescale the solution u about the point (x̂k, t̂k). Let

(4.16) vk(y, s) =
1

M(tk)
u

(
Rk(y)

M (p−m)/2(tk)
+ x̂k,

s

Mp−1(tk)
+ t̂k

)
,

for
y ∈ Ωk =

{
y :

Rk(y)
M (p−m)/2(tk)

+ x̂k ∈ Ω
}

,

and
s ∈ (−Mp−1(tk)t̂k, Mp−1(tk)(t̂+k − t̂k)

)
.

Then, vk is a weak solution of (4.12) with

aij
k (y) = aij

k

(
Rk(y)

M (p−m)/2(tk)
+ x̂k

)
, hk(y) = h

(
Rk(y)

M (p−m)/2(tk)
+ x̂k

)
.

Also, (4.11) holds. For each r > 0, if k is large enough,

Ωk ∩ B(0, r)

=
{

y : |y| < r, y1 > −dkM
(p−m)/2(tk) + M (p−m)/2(tk)fk

(
y′

M (p−m)/2(tk)

)}
,

where y′ = (y2, ..., yn) and fk = fk(x′) is a smooth function defined on the set
{x′ : |x′| < r}. Also, since we assume that (-1,0,...,0) is the outward normal to x̃k, we
have Dlfk(0) = 0 for each l = 2, ..., n. By (4.15), we may assume that when k → ∞,
the set Ωk approaches the halfspace

Hc = {y : y1 > −c}.
By Theorem 2.2, the functions {vk} are equicontinuous on compact subsets in H c ×
(−∞,∞). Hence, there is a subsequence, which we also denote by {vk}, and a
continuous function v such that vk converges to v uniformly on compact subsets in
Hc × (−∞,∞). It follows that v is a weak solution of the equation (4.14). By (4.11),
we have v(0, 0) ≥ 1/2 and 0 ≤ v(y, s) ≤ 2. However, by Theorem 3.4, it is impossible.
This completes the proof of Theorem 4.2.

For m > 1, using Theorem 3.1 and 3.2, we have



852 Chi-Cheung Poon

Theorem 4.3. Let u be a non-negative weak solution of (4.1) in Ω × (0, T ) with

1 < m < p ≤ m +
2

n + 1
.

If u blows up at T , then there is a constant C > 0 such that

max
x

u(x, t) ≤ C|T − t|−1/(p−1).

The proof is similar and is left to the reader.

5. SOLUTIONS WHICH ARE NON-DECREASING IN TIME

In this section, we consider solutions which are non-decreasing in time. In the
semilinear case, a similar result was obtained in [18] Remarks 4.3b and 5.3b.

Theorem 5.1. Let v be a bounded continuous weak solution of the equation

(5.1) vt = ∆(vm) + vp

in R
n × (0,∞), with m > 0,

1 <
p

m
when n ≤ 2, 1 <

p

m
<

n + 2
n − 2

when n ≥ 3.

Suppose that for each x ∈ R
n, the function t → v(x, t) is a non-decreasing function,

then v is identically zero on R
n × (0,∞).

Proof. Let
w(x) = lim

t→∞ v(x, t).

Let η(x, t) = ϕ(x)ξ(t) in (3.1), where ϕ ∈ C∞
0 (Rn) and ξ ∈ C∞

0 (0, 1). Then, for
each k = 1, 2, 3...,

−
∫ 1

0

∫
Rn

v(x, t + k)ϕ(x)ξ′(t) dx dt

=
∫ 1

0

∫
Rn

(vm(x, t + k)∆ϕ(x)ξ(t) + vp(x, t + k)ϕ(x)ξ(t)) dx dt.

By letting k → ∞, using the bounded convergence theorem, we obtain

−
∫ 1

0

∫
Rn

w(x)ϕ(x)ξ′(t) dx dt

=
∫ 1

0

∫
Rn

(wm(x)∆ϕ(x)ξ(t) + wp(x)ϕ(x)ξ(t)) dx dt.
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Since ξ has compact support in (0,1), we have
∫ 1

0

∫
Rn

w(x)ϕ(x)ξ′(t) dx dt =
(∫

Rn

w(x)ϕ(x) dx

)(∫ 1

0
ξ′(t) dt

)
= 0.

Thus, for any ξ ∈ C∞
0 (0, 1) and ϕ ∈ C∞

0 (Rn, we obtain
∫ 1

0

∫
Rn

(wm(x)∆ϕ(x) + wp(x)ϕ(x)) ξ(t) dx dt = 0.

This implies that, for any ϕ ∈ C∞
0 (Rn),

∫
Rn

(wm(x)∆ϕ(x) + wp(x)ϕ(x)) dx = 0,

and w is a non-negative weak solution of the equation ∆wm +wp = 0. Let W = wm.
Then the function W is a non-negative bounded weak solution of the equation

(5.2) ∆W + WP = 0 with P = p/m,

in R
n. By the elliptic regularity theory, W is smooth in R

n. Gidas and Spruck’s result,
[8], tells us that if 1 ≤ P < (n + 2)/(n− 2), then W (x) = 0 in R

n. This implies that
w(x) = 0 in R

n. Since v(x, t) is non-negative, t → v(x, t) is non-decreasing and

lim
t→∞ v(x, t) = 0,

we must have v(x, t) = 0 in R
n × (0,∞).

The same method also works for solution u of (5.1) in R
n
+×(0,∞), which vanishes

on the plane {x1 = 0}.

Theorem 5.2. Let v be a bounded continuous weak solution of the equation (5.1)
in R

n
+ × (0,∞), with m > 0,

1 <
p

m
when n ≤ 2, 1 <

p

m
<

n + 2
n − 2

when n ≥ 3.

Suppose that v(x, t) = 0 when x1 = 0, and, for each x ∈ R
n
+, the function t → v(x, t)

is a non-decreasing function, then v is identically zero on R
n
+ × (0,∞).

Proof. By Theorem 2.2, for all t > 1, the functions x → v(x, t) are equicontin-
uous on compact subset of the set {x : x1 ≥ 0}. If

w(x) = lim
t→∞ v(x, t),

then w(x) = 0 when x1 = 0. It follows that the function W = wm also vanishes on
the plane {x : x1 = 0} and is a solution of (5.2) in in R

n
+. Gidas and Spruck, [9],
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also proved that if W is a non-negative solution of (5.2) in R
n
+ and W (x) = 0 on

{x1 = 0}, then W (x) = 0 in R
n
+. We have the same conclusion as in Theorem 5.1.

Using Theorem 5.1 and 5.2, we obtain results for solutions which are non-decreasing
in time. The conditions for the domain Ω, the coefficients aij and h, and the solution
u are the same as in previous section.

Theorem 5.3. Let u be a positive solution of (4.1). When 0 < m < 1, we assume
that

p > 1 when n ≤ 2, 1 < p < m

(
n + 2
n − 2

)
when n ≥ 3.

When m > 1, we assume that

p > m when n ≤ 2, m < p < m

(
n + 2
n − 2

)
when n ≥ 3.

If u is non-decreasing in time and u blows up at T , then there is a constant C > 0
such that

max
x

u(x, t) ≤ C|T − t|−1/(p−1).

Proof. Suppose that for each x∈Ω, the function t→u(x, t) is non-decreasing.
For for each k = 1, 2, 3..., let vk be the function in (4.9) or (4.16). Then, for each
fixed y in the domain of vk , the function s → vk(y, s) is non-decreasing. By Theorem
2.1 or Theorem 2.2, vk converges uniformly to a function v in compact subsets in
R

n × (−∞,∞) or R
n
+ × (−∞,∞). Thus, s → v(y, s) is also non-decreasing. The

rest of the proof is almost the same as in Theorem 4.2.
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