BLOW-UP RATE FOR NON-NEGATIVE SOLUTIONS OF A NON-LINEAR PARABOLIC EQUATION

Chi-Cheung Poon

$$
\begin{aligned}
& \text { Abstract. We study solutions of the equation } \\
& \qquad \begin{array}{l}
u_{t}=\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{j}}\left(a^{i j} \frac{\partial}{\partial x_{i}} u^{m}\right)+h u^{p} \quad \text { on } \Omega \times(0, T) \\
u=0 \quad \text { on } \quad \partial \Omega \times(0, T),
\end{array}
\end{aligned}
$$

where Ω is a bounded domain in \mathbb{R}^{n} with smooth boundary, and $a^{i j}=a^{i j}(x)$ is uniformly positive definite and $h=h(x)>0$ on Ω. When

$$
0<m<1<p<m+\frac{2}{n+1} \quad \text { or } \quad 1<m<p \leq m+\frac{2}{n+1},
$$

we will show that if u is a non-negative solution and blows up at T, then

$$
u(x, t) \leq C|T-t|^{-1 /(p-1)} .
$$

The proof relies on rescaling arguments and some, old and new, Fujita-type results.

1. Introduction

In this paper, we study solutions of the equation

$$
\begin{align*}
& u_{t}=\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{j}}\left(a^{i j} \frac{\partial}{\partial x_{i}} u^{m}\right)+h u^{p} \quad \text { on } \quad \Omega \times(0, T) \tag{1.1}\\
& u=0 \quad \text { on } \quad \partial \Omega \times(0, T) .
\end{align*}
$$

Here, $m>0$ and $p>1, \Omega$ is a bounded domain in \mathbb{R}^{n} with smooth boundary, and $a^{i j}=a^{i j}(x)$ and $h=h(x)$ are smooth functions defined on $\bar{\Omega}$. We also assume that $a^{i j}$ is uniformly positive definite and $h>0$ on $\bar{\Omega}$. Suppose that $u(x, t)$ is a non-negative solution of (1.1) and blows up at T. Our goal is to show that there is a constant $C>0$ such that for all $(x, t) \in \Omega \times(0, T)$, we have

[^0]\[

$$
\begin{equation*}
u(x, t) \leq C|T-t|^{-1 /(p-1)} \tag{1.2}
\end{equation*}
$$

\]

For the semilinear heat equation

$$
\begin{align*}
& u_{t}=\Delta u+u^{p} \quad \text { on } \quad \Omega \times(0, T) \\
& u=0 \quad \text { on } \quad \partial \Omega \times(0, T) \tag{1.3}
\end{align*}
$$

Friedman and McLeod, [4], proved that if Ω is a convex, bounded domain in \mathbb{R}^{n}, $p>1$, and $u(x, t)$ is non-negative solution of (1.3), and is non-decreasing in time, then (1.2) holds. Giga and Kohn, [10], among other results, proved that if Ω is a convex, and u is a non-negative solution of (1.3) for

$$
1<p<\frac{n+2}{n-2} \quad \text { when } \quad n \geq 3 \quad \text { or } \quad p>1 \quad \text { when } \quad n \leq 2
$$

then (1.2) holds. Fila and Souplet, [3], proved the same result for solutions defined on domains which may not be convex, but only for

$$
1<p<1+\frac{2}{n+1}
$$

Let $u(x, t)$ be a non-negative solution of (1.3). Let

$$
M(t)=\max \{u(x, t):(x, t) \quad \text { in } \quad \Omega \times[0, t]\}
$$

For any $t_{0} \in(0, T)$, we define t_{0}^{+}by

$$
t_{0}^{+}=\max \left\{t \in\left(t_{0}, T\right): M(t)=2 M\left(t_{0}\right)\right\}
$$

In [3], Fila and Souplet showed that, if u blows up at T, then there is a constant K such that for all $t_{0} \in(T / 2, T)$, we have

$$
\begin{equation*}
M^{p-1}\left(t_{0}\right)\left(t_{0}^{+}-t_{0}\right) \leq K \tag{1.4}
\end{equation*}
$$

We briefly describe their arguments: if (1.4) is not true, there is a sequence of the rescaled solutions converges to a non-trivial bounded global non-negative solution of the equation

$$
\begin{equation*}
v_{t}=\Delta v+v^{p} \tag{1.5}
\end{equation*}
$$

defined on $\mathbb{R}^{n} \times(-\infty, \infty)$, or to a non-trivial bounded global non-negative solution, v, of (1.5) which is defined on $\mathbb{R}_{+}^{n} \times(-\infty, \infty)$ and $v=0$ whenever $x_{1}=0$. Here, we use the notation

$$
\mathbb{R}_{+}^{n}=\left\{x: x_{1}>0\right\}
$$

However, Fujita, [5], proved that there is no non-trivial global non-negative solution of (1.5) defined on $\mathbb{R}^{n} \times(0, \infty)$, and Meier, [15], proved that there is no non-trivial global non-negative solution v of (1.5) which is defined on $\mathbb{R}_{+}^{n} \times(0, \infty)$ and $v=0$ whenever $x_{1}=0$. Thus, (1.4) has to be true. Using an argument of Hu , [11], from (1.4), we obtain (1.2) immediately. The result of Fila and Souplet was improved to the case

$$
1<p<\frac{n(n+1)}{(n-1)^{2}} \quad \text { if } \quad n \geq 2, \quad p>1 \quad \text { if } \quad n=1
$$

See [18] for more information concerning solutions of the semilinear equation (1.5).
We will use Fila and Souplet's method to study solutions of equation (1.1). In our situations, we need some non-existence results for solutions of

$$
\begin{equation*}
v_{t}=\Delta v^{m}+v^{p} \tag{1.6}
\end{equation*}
$$

defined either on $\mathbb{R}^{n} \times(0, \infty)$ or $\mathbb{R}_{+}^{n} \times(0, \infty)$. Galaktionov, [6] [7], proved that when $1<m<p<m+2 / n$, then any global solutions of (1.6) in $\mathbb{R}^{n} \times(0, \infty)$ is identically zero. Kawanago, [12], Mochizuki and Suzuki, [17], proved the case when $m>1$ and $p=m+2 / n$. If v is a solution of (1.6) in $\mathbb{R}_{+}^{n} \times(0, \infty), v=0$ when $x_{1}=0$, Lian and Liu, [14], proved that when

$$
\begin{equation*}
1<m<p \leq m+\frac{1}{n+1} \tag{1.7}
\end{equation*}
$$

then v vanishes identically. See also [13]. In [20], Qi proved that when $0<m<1<$ $p<m+2 / n$, there is no non-trivial global non-negative solution of (1.6) defined on $\mathbb{R}^{n} \times(0, \infty)$. When $1<p=m+2 / n$ and $\max \{0,1-2 / n\}<m<1$, Mochizuki and Mukai, [16], proved the same result. Following Qi's idea, we will prove that when

$$
\begin{equation*}
0<m<1<p<m+\frac{2}{n+1} \tag{1.8}
\end{equation*}
$$

there is no non-trivial global non-negative solution, v, of the equation (1.6) which is defined on the half-space $\mathbb{R}_{+}^{n} \times(0, \infty)$ and $v=0$ whenever $x_{1}=0$. However, when

$$
\begin{equation*}
1<p=m+\frac{2}{n+1} \quad \text { and } \quad \max \left\{0,1-\frac{2}{n+1}\right\}<m<1 \tag{1.9}
\end{equation*}
$$

we are not able to prove the same result as in [16].
Suppose that u is a solution of (1.1) and u blows up at T. In cases (1.7) and (1.8), we will show that (1.2) holds by proving that (1.4) is true. If (1.4) is not true, we show that there is a sequence of rescaled solutions which converges to a solution v of the equation (1.6) on $\mathbb{R}^{n} \times(-\infty, \infty)$ or on $\mathbb{R}_{+}^{n} \times(-\infty, \infty)$ and $v=0$ whenever $x_{1}=0$. This contradicts the non-existence results described in the above. We note that, as in [3], the domain Ω need not be convex.

Using the same scheme, we also consider solutions of (1.1) which are non-decreasing in time. Suppose that $0<m<1$ and

$$
1<p \quad \text { when } \quad n \leq 2, \quad 1<p<m\left(\frac{n+2}{n-2}\right) \quad \text { when } \quad n \geq 3
$$

or, $m>1$ and
(1.10) $m<p \quad$ when $n \leq 2, \quad m<p<m\left(\frac{n+2}{n-2}\right) \quad$ when $\quad n \geq 3$.

Let u be a non-negative solution of (1.1) and is non-decreasing in time. If u blows up at T, then we show that (1.2) holds. This technique was used to treat time non-decreasing solutions of the semilinear equation (1.3). See [18], Remarks 4.3(b) and 5.3(b).

In a recent paper, Souplet, [22], proved that, when $1<m<p$ and p satisfies (1.10), then the equation (1.6) has no non-trivial bounded radial non-negative solution defined on $\mathbb{R}^{n} \times(-\infty, \infty)$. This implies that, if $1<m<p$ and (1.10) is satisfied, then (1.2) holds for radial solutions of (1.1) defined on symmetric domains. See [1].

Suppose that in (1.1), we have $a^{i j}(x)=\delta^{i j}$ and $h(x)=1$ for all $x \in \Omega$. When $m>0$, by taking $U=u^{m}, M=(m-1) / m$ and $P=p / m$, we see that (1.1) is equivalent to

$$
\begin{align*}
& U_{t}=U^{M}\left(\Delta U+U^{P}\right) \quad \text { on } \quad \Omega \times(0, T) \tag{1.11}\\
& U=0 \quad \text { on } \quad \partial \Omega \times(0, T)
\end{align*}
$$

When $0<M<2$ and $P=1$, Winkler, [23], proved that if U is a non-negative solution of (1.11), then there is a constant $C>0$ such that

$$
U(x, t) \leq C|T-t|^{-1 /(P+M-1)}
$$

Also, when $M \geq 2$ and $P=1$, Winkler, [24], proved that if U is a non-negative solution of (1.11), then $|T-t|^{1 /(P+M-1)} u(x, t)$ becomes unbounded as $t \rightarrow T$. Furthermore, there are solutions of (1.11) with $M \geq 2$ and $P>1$, for which $|T-t|^{1 /(P+M-1)} u(x, t)$ becomes unbounded as $t \rightarrow T$. See [19].

2. Regularity Theorems

We consider the weak solutions of the equation

$$
\begin{align*}
u_{t} & =\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{j}}\left(a^{i j} \frac{\partial}{\partial x_{i}} u^{m}\right)+h u^{p} \quad \text { on } \quad \Omega \times\left(t_{1}, t_{2}\right) \tag{2.1}\\
u & =0 \quad \text { on } \quad \partial \Omega \times\left(t_{1}, t_{2}\right) .
\end{align*}
$$

Here, $m>0$ and $p>1$, and Ω is a bounded domain in \mathbb{R}^{n} with smooth boundary. We assume that $a^{i j}=a^{i j}(x)$ and $h=h(x)$ are continuous functions defined in $\bar{\Omega}$ and there are positive constant c_{0} and c_{1} such that for any vector $\xi \in \mathbb{R}^{n}$ and $x \in \Omega$, we have

$$
\begin{equation*}
c_{0}|\xi|^{2} \leq \sum_{i, j=1}^{n} a^{i j}(x) \xi_{i} \xi_{j} \leq c_{1}|\xi|^{2} \quad \text { and } \quad c_{0} \leq h(x) \leq c_{1} \tag{2.2}
\end{equation*}
$$

Let u be a function so that $u^{m} \in L_{l o c}^{\infty}\left(t_{1}, t_{2} ; H_{0}^{1}(\Omega)\right)$ and $u(x, t) \geq 0$ for all $(x, t) \in$ $\Omega \times\left(t_{1}, t_{2}\right)$. We say u is a weak solution of (2.1) if for any $\eta \in C_{0}^{\infty}\left(\Omega \times\left(t_{1}, t_{2}\right)\right)$, we have

$$
\iint\left(u \eta_{t}+u^{m} \sum_{i, j=1}^{n} \frac{\partial}{\partial x_{j}}\left(a^{i j} \frac{\partial \eta}{\partial x_{i}}\right)+h u^{p} \eta\right) d x d t=0
$$

We have the following regularity theorems by DiBenedetto and Sacks. See [2] and [21]. We use the notaions

$$
B\left(x_{0}, r\right)=\left\{x:\left|x-x_{0}\right|<r\right\} \quad \text { and } \quad B(r)=B(0, r)=\{x:|x|<r\} .
$$

Theorem 2.1. Let $u(x, t)$ be a bounded weak solution of the equation

$$
\begin{equation*}
u_{t}=\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{j}}\left(a^{i j}(x) \frac{\partial\left(u^{m}\right)}{\partial x_{i}}\right)+h(x) u^{p} \tag{2.3}
\end{equation*}
$$

with $m>0$ and $p>1$, in $B(2 r) \times(-2 r, 0)$. Then u is continuous on $B(r) \times(-r, 0)$ and the modulus of continuity of u depends only on $\sup u, c_{0}, c_{1}, m$ and p only. Here, c_{0} and c_{1} are the constants in (2.2).

Let Ω be a bounded domain in \mathbb{R}^{n} with piecewise smooth boundary. Let $x_{0} \in \partial \Omega$. Suppose that there is a constant $\theta \in(0,1)$ and $r_{0}>0$ such that

$$
\begin{equation*}
\operatorname{meas}\left(\Omega \cap B\left(x_{0}, r\right)\right) \leq(1-\theta) \operatorname{meas}\left(B\left(x_{0}, r\right)\right) \tag{2.4}
\end{equation*}
$$

Theorem 2.2. Let $u(x, t)$ be a bounded weak solution of the equation (2.3) with $m>0$ and $p>1$ in $\left(B\left(x_{0}, 2 r\right) \cap \Omega\right) \times(-2 r, 0)$, and $u=0$ on $\partial \Omega$. Then u is continuous in $\left(B\left(x_{0}, r\right) \cap \Omega\right) \times(-r, 0)$ and the modulus of continuity of u in $\left(B\left(x_{0}, r\right) \cap \Omega\right) \times(-r, 0)$ depends only on $\sup u, c_{0}, c_{1}, m, p, r_{0}$ and θ only.

If we assume that the domain Ω is smooth, then there are constant θ and r_{0} such that for all $x_{0} \in \partial \Omega$ and $0<r<r_{0}$, so that condition (2.4) holds.

3. Non-existence of Global Solutions

Let Ω be a domain in \mathbb{R}^{n}. Let $v(x, t)$ be a non-negative function defined on
$\Omega \times(0, \infty)$. Suppose that $v(x, t)$ is bounded. We say v is a weak solution of the equation

$$
\begin{aligned}
v_{t} & =\Delta v^{m}+v^{p} & & \text { on } \quad \Omega \times(0, \infty) \\
v & =0 & & \text { on } \quad \partial \Omega \times(0, \infty)
\end{aligned}
$$

with $m>0, p>1$, if for any function $\eta(x, t) \in C_{0}^{\infty}(\Omega \times(0, \infty))$, we have

$$
\begin{equation*}
\iint_{\Omega}\left(v \eta_{t}+v^{m} \Delta \eta+v^{p} \eta\right) d x d t=0 \tag{3.1}
\end{equation*}
$$

We state some known results concerning the non-existence of weak solutions. When $m>1$, and the domain is the whole space, we have

Theorem 3.1. ([6, 7, 12, 17]). Let v be a bounded non-negative continuous weak solution of the equation

$$
v_{t}=\Delta\left(v^{m}\right)+v^{p} \quad \text { in } \quad \mathbb{R}^{n} \times(0, \infty)
$$

If

$$
1<m<p \leq m+\frac{2}{n}
$$

then v is identically zero on $\mathbb{R}^{n} \times(0, \infty)$.
When $m>1$, and the domain is the half space, we have
Theorem 3.2. $([13,14])$ Let v be a bounded non-negative continuous weak solution of the equation

$$
\begin{gathered}
v_{t}=\Delta\left(v^{m}\right)+v^{p} \quad \text { in } \quad \mathbb{R}_{+}^{n} \times(0, \infty) \\
v=0 \quad \text { in } \quad\left\{x_{1}=0\right\} \times(0, \infty) \\
1<m<p \leq m+\frac{2}{n+1}
\end{gathered}
$$

If
then v is identically zero on $\mathbb{R}_{+}^{n} \times(0, \infty)$.
When, $0<m<1$, the non-existence result is of the form:
Theorem 3.3. ([20, 16]) Let v be a bounded non-negative continuous weak solution of the equation

$$
v_{t}=\Delta\left(v^{m}\right)+v^{p} \quad \text { in } \quad \mathbb{R}^{n} \times(0, \infty)
$$

If

$$
0<m<1 \quad \text { and } \quad 1<p<m+\frac{2}{n}
$$

or

$$
1<p=m+\frac{2}{n} \quad \text { and } \quad \max \left\{0,1-\frac{2}{n}\right\}<m<1
$$

then v is identically zero on $\mathbb{R}^{n} \times(0, \infty)$.

If the solution is defined on $\mathbb{R}_{+}^{n} \times(0, \infty)$, where $\mathbb{R}_{+}^{n}=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}\right.$: $\left.x_{1}>0\right\}$, we prove

Theorem 3.4. Let u be a bounded non-negative continuous weak solution of the equation

$$
\begin{aligned}
& v_{t}=\Delta\left(v^{m}\right)+v^{p} \quad \text { in } \quad \mathbb{R}_{+}^{n} \times(0, \infty), \\
& v=0 \quad \text { in } \quad\left\{x_{1}=0\right\} \times(0, \infty)
\end{aligned}
$$

If

$$
0<m<1 \quad \text { and } \quad 1<p<m+\frac{2}{n+1}
$$

then v is identically zero on $\mathbb{R}_{+}^{n} \times(0, \infty)$.
We will need the following technical lemma.
Lemma 3.5. Let $w(s)$ be an absolutely continuous positive function which satisfies the inequality

$$
\begin{equation*}
w^{\prime} \geq-\lambda w^{m}+w^{p} \quad \text { for } \quad s>0 \tag{3.2}
\end{equation*}
$$

where $m>0$, and $p>\max \{m, 1\}$. If $w^{p-m}(0)>\lambda$, then w blows up in finite time.
Proof. Suppose that z is a solution of the equation

$$
z^{\prime}=-\lambda z^{m}+z^{p}, \quad 0<z(0)<w(0) \quad \text { and } \quad z^{p}(0)>\lambda z^{m}(0)
$$

We first claim that $z^{\prime}(s)>0$ whenever $z(s)$ is defined. Assume that there is $s_{1}>0$ such that $z^{\prime}(s)>0$ in $\left(0, s_{1}\right)$ and $z^{\prime}\left(s_{1}\right)=0$. Then, $z(s)>0$ and $z^{p}(s)-\lambda z^{m}(s)>0$ in $\left(0, s_{1}\right)$ and $z^{p}\left(s_{1}\right)-\lambda^{m}\left(s_{1}\right)=0$. It is easy to see that

$$
\begin{align*}
\frac{d}{d s}\left(z^{p}(s)-\lambda z^{m}(s)\right) & =z^{\prime}(s)\left(\frac{p}{z(s)} z^{p}(s)-\lambda \frac{m}{z(s)} z^{m}(s)\right) \tag{3.3}\\
& \geq \frac{m z^{\prime}(s)}{z(s)}\left(z^{p}(s)-\lambda z^{m}(s)\right)
\end{align*}
$$

Thus, the function $z^{p}(s)-\lambda z^{m}(s)$ is increasing on $\left(0, s_{1}\right)$. If $z^{p}(s)-\lambda z^{m}(s)>0$ for $s \in\left(0, s_{1}\right)$, then $z^{\prime}\left(s_{1}\right)=z^{p}\left(s_{1}\right)-\lambda z^{m}\left(s_{1}\right)>0$. Thus, $z(s)$ is increasing whenever $z(s)$ is defined. Furthermore, by (3.3), the function $z^{p}(s)-\lambda z^{m}(s)$ is also increasing whenever $z(s)$ is defined. This implies that $z^{\prime}(s)$ is increasing, and $z^{\prime}(s) \geq z^{\prime}(0)>0$, and

$$
\begin{equation*}
z(s) \geq z(0)+s z^{\prime}(0) \tag{3.4}
\end{equation*}
$$

whenever $z(s)$ is defined. When s is large enough, by (3.4), we have $z^{m}(s)>2 \lambda$ and

$$
z^{p}(s)-2 \lambda z^{m}(s)=z^{p-m}\left(z^{m}(s)-2 \lambda\right)>0
$$

Therefore, when s is large enough,

$$
z^{\prime}(s)=z^{p}(s)-\lambda z^{m}(s) \geq \frac{1}{2} z^{p}(s) .
$$

By solving the ODE, we see that, if $p>1$, the solution z has to blow up in finite time. If w satisfies the inequality (3.2), then $w(s) \geq z(s)$ whenever $z(s)$ and $w(s)$ are defined. Thus, the function w also blows up in finite time.

Proof. [Proof of Theorem 3.4] For $x \in \mathbb{R}_{+}^{n}$, let

$$
\phi(x)=x_{1}^{\gamma} \exp \left(-k^{2}|x|^{2}\right),
$$

where $k>0$ and $\gamma>1$ are constants to be determined. By straightforward computations, we have

$$
\begin{aligned}
& \Delta \phi+\lambda \phi \\
= & \left(\lambda-4 k^{2} \gamma+\gamma(\gamma-1) x_{1}^{-2}+4 k^{4}|x|^{2}-2 n k^{2}\right) \phi .
\end{aligned}
$$

Thus, we see that if $\lambda \geq 2 k^{2}(2 \gamma+n)$ then $\Delta \phi+\lambda \phi \geq 0$ in \mathbb{R}_{+}^{n}. We let $1<\gamma \leq 2$ and choose

$$
\begin{equation*}
\lambda=\lambda(k)=2(n+4) k^{2} . \tag{3.5}
\end{equation*}
$$

Then $\Delta \phi+2 \lambda \phi \geq 0$ in \mathbb{R}_{+}^{n}.
One can compute that

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{n}} \phi(x) d x=\frac{C(n) \Gamma(\gamma)}{k^{n+\gamma}} \tag{3.6}
\end{equation*}
$$

where

$$
\Gamma(\gamma)=\int_{0}^{\infty} x^{\gamma} \exp \left(-x^{2}\right) d x=\frac{1}{2} \int_{0}^{\infty} u^{(\gamma-1) / 2} e^{-u} d u
$$

and $C(n)$ is a positive constant depending on n only. It is not difficult to see that

$$
\begin{equation*}
\sup _{1<\gamma \leq 2} F(\gamma)=\sup _{1<\gamma \leq 2} \frac{1}{2} \int_{0}^{\infty} u^{(\gamma-1) / 2} e^{-u} d u<\infty \tag{3.7}
\end{equation*}
$$

We also note that ϕ is in $C^{1, \sigma}\left(\mathbb{R}_{+}^{n}\right)$, with $\sigma=\gamma-1, \phi(x)=0, D \phi(x)=0$ whenever $x_{1}=0$. Furthermore, $D \phi$ and $D^{2} \phi$ are in $L^{1}\left(\mathbb{R}_{+}^{n}\right)$. Therefore, we may find a sequence of functions φ_{j} which are smooth with compact support in \mathbb{R}_{+}^{n} and $\varphi_{j} \rightarrow \phi, D \varphi_{j} \rightarrow D \phi$ and $D^{2} \varphi_{j} \rightarrow D^{2} \phi$ in $L^{1}\left(\mathbb{R}_{+}^{n}\right)$. Thus, by (3.1), we have

$$
\begin{align*}
& \int_{\mathbb{R}_{+}^{n}} v\left(x, t_{2}\right) \phi(x) d x-\int_{\mathbb{R}_{+}^{n}} v\left(x, t_{1}\right) \phi(x) d x \\
= & \int_{t_{1}}^{t_{2}} \int_{\mathbb{R}_{+}^{n}}\left(v^{m}(x, s) \Delta \phi(x)+v^{p}(x, s) \phi(x)\right) d x d t \tag{3.8}\\
\geq & \int_{t_{1}}^{t_{2}} \int_{\mathbb{R}_{+}^{n}}\left(-\lambda v^{m}(x, s) \phi(x)+v^{p}(x, s) \phi(x)\right) d x d t .
\end{align*}
$$

Let

$$
F(s)=\frac{k^{n+\gamma}}{C(n) \Gamma(\gamma)} \int_{\mathbb{R}_{+}^{n}} v(x, s) \phi(x) d x
$$

By (3.6), if $0<m<1$ and $p>1$, we have

$$
\begin{equation*}
\frac{k^{n+\gamma}}{C(n) \Gamma(\gamma)} \int_{\mathbb{R}_{+}^{n}} v^{m}(x, s) \phi(x) d x \leq F^{m}(s) \tag{3.9}
\end{equation*}
$$

and

$$
\frac{k^{n+\gamma}}{C(n) \Gamma(\gamma)} \int_{\mathbb{R}_{+}^{n}} v^{p}(x, s) \phi(x) d x \geq F^{p}(s)
$$

Thus, from (3.8), we obtain,

$$
F^{\prime}(s) \geq-\lambda F^{m}(s)+F^{p}(s)
$$

By Lemma 3.5, if v is a global solution, then for any $s>0$, we have

$$
\begin{equation*}
F(s)=\frac{k^{n+\gamma}}{C(n) \Gamma(\gamma)} \int_{\mathbb{R}_{+}^{n}} v(x, s) \phi(x) d x \leq \lambda^{1 /(p-m)} \tag{3.10}
\end{equation*}
$$

It implies that, using (3.5), for any $0<k<1$,

$$
\begin{aligned}
& k^{n+\gamma-2 /(p-m)} \int_{\mathbb{R}_{+}^{n}} v(x, s) x_{1}^{\gamma} \exp \left(-|x|^{2}\right) d x \\
\leq & k^{n+\gamma-2 /(p-m)} \int_{\mathbb{R}_{+}^{n}} v(x, s) \phi(x) d x \\
\leq & C(n) \Gamma(\gamma)(2(n+4))^{1 /(p-m)}
\end{aligned}
$$

We fix γ so that

$$
\gamma>1 \quad \text { and } \quad n+\gamma<\frac{2}{p-m}
$$

Using (3.7), we see that if k is chosen small enough, then it is impossible, unless v is identically zero.

4. Blowup Rate

We consider the non-negative solutions of the equation

$$
\begin{align*}
& u_{t}=\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{j}}\left(a^{i j} \frac{\partial}{\partial x_{i}} u^{m}\right)+h u^{p} \quad \text { on } \quad \Omega \times(0, T) \tag{4.1}\\
& u=0 \quad \text { on } \quad \partial \Omega \times(0, T) .
\end{align*}
$$

Here, $m>0$ and $p>1$, and Ω is a bounded domain in \mathbb{R}^{n} with smooth boundary. We assume that $a^{i j}=a^{i j}(x)$ is symmetric and $a^{i j} \in C^{1}(\bar{\Omega}), h=h(x)>0$ and $h \in C(\bar{\Omega})$. Also, we assume that $a^{i j}$ and h satisfy (2.2). Let u be a function so that $u^{m} \in L_{l o c}^{\infty}\left(0, T ; H_{0}^{1}(\Omega)\right)$ and $u(x, t) \geq 0$ for all $(x, t) \in \Omega \times(0, T)$. We say u is a weak solution of (4.1) in $\Omega \times(0, T)$ if for any $\eta \in C_{0}^{\infty}(\Omega \times(0, T))$, we have

$$
\int_{0}^{T} \int_{\Omega}\left(u \eta_{t}+u^{m} \sum_{i, j=1}^{n} \frac{\partial}{\partial x_{j}}\left(a^{i j} \frac{\partial \eta}{\partial x_{i}}\right)+h u^{p} \eta\right) d x d t=0
$$

Let

$$
\begin{equation*}
M(t)=\max \{u(x, t):(x, t) \quad \text { in } \quad \Omega \times[0, t]\} \tag{4.2}
\end{equation*}
$$

We assume that $M(t)<\infty$, for each $t \in(0, T)$. We say u blows up at T if $M(t) \rightarrow \infty$ as $t \rightarrow T$. Given any $t_{0} \in(0, T)$, we define t_{0}^{+}by

$$
\begin{equation*}
t_{0}^{+}=\max \left\{t \in\left(t_{0}, T\right): \quad M(t)=2 M\left(t_{0}\right)\right\} \tag{4.3}
\end{equation*}
$$

We need the following lemma which is due to Hu , [11] p895.

Lemma 4.1. Suppose that there is a constant $K>0$ such that is true for all $t_{0} \in(T / 2, T)$, we have

$$
\begin{equation*}
M^{p-1}\left(t_{0}\right)\left(t_{0}^{+}-t_{0}\right) \leq K \tag{4.4}
\end{equation*}
$$

Then there is a constant $C>0$ such that

$$
M(t) \leq C|T-t|^{-1 /(p-1)}
$$

Proof. We pick any $t_{0} \in(T / 2, T)$. Using (4.3), for each $k \geq 0$, we let $t_{k+1}=t_{k}^{+}$. By our assumption (4.4), we obtain

$$
t_{k+1}-t_{k} \leq \frac{K}{\left(M\left(t_{k}\right)\right)^{p-1}}=\frac{K}{\left(2^{k} M\left(t_{0}\right)\right)^{p-1}}
$$

Then, it follows that

$$
T-t_{0}=\sum_{k=0}^{\infty}\left(t_{k+1}-t_{k}\right) \leq \sum_{k=0}^{\infty} \frac{K}{\left(2^{k} M\left(t_{0}\right)\right)^{p-1}}=\frac{C}{\left(M\left(t_{0}\right)\right)^{p-1}}
$$

Hence, the Lemma is true.

Theorem 4.2. Let u be a non-negative weak solution of (4.1) in $\Omega \times(0, T)$ with

$$
0<m<1, \quad \text { and } \quad 1<p<m+\frac{2}{n+1} .
$$

If u blows up at T, then there is a constant $C>0$ such that

$$
\max _{x} u(x, t) \leq C|T-t|^{-1 /(p-1)} .
$$

Proof. We follow the arguments in [3]. By Lemma 4.1, we only need to prove (4.4). Suppose that (4.4) is not true. There exists a sequence t_{k}, such that $t_{k} \rightarrow T$ and

$$
\begin{equation*}
M^{p-1}\left(t_{k}\right)\left(t_{k}^{+}-t_{k}\right) \rightarrow \infty \quad \text { as } \quad k \rightarrow \infty \tag{4.5}
\end{equation*}
$$

For each $k=1,2,3 \ldots$, there is $\hat{x}_{k} \in \Omega$ and $\hat{t}_{k} \in\left(0, t_{k}\right]$ such that

$$
\begin{equation*}
M\left(\hat{t}_{k}\right)=u\left(\hat{x}_{k}, \hat{t}_{k}\right) \geq \frac{M\left(t_{k}\right)}{2} . \tag{4.6}
\end{equation*}
$$

Let

$$
d_{k}=\operatorname{dist}\left(\hat{x}_{k}, \partial \Omega\right) .
$$

Suppose that

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left(d_{k} M^{(p-m) / 2}\left(t_{k}\right)\right)=\infty \tag{4.7}
\end{equation*}
$$

There are subsequences, also denoted by \hat{x}_{k}, t_{k} and \hat{t}_{k}, and a point $\hat{x}_{0} \in \bar{\Omega}$ such that

$$
\begin{equation*}
\hat{x}_{k} \rightarrow \hat{x}_{0} \quad \text { and } \quad d_{k} M^{(p-m) / 2}\left(t_{k}\right) \rightarrow \infty \quad \text { as } \quad k \rightarrow \infty . \tag{4.8}
\end{equation*}
$$

We rescale the solution u about the point $\left(\hat{x}_{k}, \hat{t}_{k}\right)$ as follows:

$$
\begin{equation*}
v_{k}(y, s)=\frac{1}{M\left(t_{k}\right)} u\left(\frac{y}{M^{(p-m) / 2}\left(t_{k}\right)}+\hat{x}_{k}, \frac{s}{M^{p-1}\left(t_{k}\right)}+\hat{t}_{k}\right) . \tag{4.9}
\end{equation*}
$$

The function v_{k} is defined for
(4.10) $y \in B\left(d_{k} M^{(p-m) / 2}\left(t_{k}\right)\right) \quad$ and $\quad s \in\left(-M^{p-1}\left(t_{k}\right) \hat{t}_{k}, M^{p-1}\left(t_{k}\right)\left(\hat{t}_{k}^{+}-\hat{t}_{k}\right)\right)$,
where we denote $B(r)$ to be the open ball centered at 0 with radius r. Clearly, by (4.6), for each $k=1,2,3 \ldots$,

$$
\begin{equation*}
v_{k}(0,0) \geq 1 / 2 \quad \text { and } \quad 0 \leq v_{k}(y, s) \leq 2 . \tag{4.11}
\end{equation*}
$$

Moreover, v_{k} is a weak solution of the equation

$$
\begin{equation*}
v_{k s}=\sum_{i, j=1}^{n} \frac{\partial}{\partial y_{j}}\left(a_{k}^{i j} \frac{\partial}{\partial y_{i}} v_{k}^{m}\right)+h_{k} v_{k}^{p} \tag{4.12}
\end{equation*}
$$

where

$$
a_{k}^{i j}(y)=a^{i j}\left(\frac{y}{M^{(p-m) / 2}\left(t_{k}\right)}+\hat{x}_{k}\right) \quad \text { and } \quad h_{k}(y)=h\left(\frac{y}{M^{(p-m) / 2}\left(t_{k}\right)}+\hat{x}_{k}\right) .
$$

Let $\eta(y, s)$ be a smooth function with compact support in $\mathbb{R}^{n} \times(-\infty, \infty)$. When k is large enough, we have

$$
\begin{equation*}
\iint\left(v_{k} \eta_{s}+v_{k}^{m} \sum_{i, j=1}^{n} \frac{\partial}{\partial y_{j}}\left(a_{k}^{i j} \frac{\partial \eta}{\partial y_{i}}\right)+h_{k} v_{k}^{p} \eta\right) d y d s=0 \tag{4.13}
\end{equation*}
$$

From (4.5), (4.10) and Theorem 2.1, the functions $\left\{v_{k}\right\}$ are equicontinuous on compact subsets in $\mathbb{R}^{n} \times(-\infty, \infty)$. Also, by (4.8), $a_{k}^{i j}(y)$ converges to $a^{i j}\left(\hat{x}_{0}\right)$, $D a_{k}^{i j}(y)$ converges to 0 , and $h_{k}(y)$ converges to $h\left(\hat{x}_{0}\right)$ uniformly on compact subsets in \mathbb{R}^{n}. Hence, there is a subsequence, which we also denote by $\left\{v_{k}\right\}$, and a continuous function v such that v_{k} converges to v uniformly on compact subsets in $\mathbb{R}^{n} \times(-\infty, \infty)$. When letting $k \rightarrow \infty$ in (4.13), we have

$$
\iint\left(v \eta_{s}+v^{m} \sum_{i, j=1}^{n} \frac{\partial}{\partial y_{j}}\left(a^{i j}\left(\hat{x}_{0}\right) \frac{\partial \eta}{\partial y_{i}}\right)+h\left(\hat{x}_{0}\right) v^{p} \eta\right) d y d s=0
$$

i.e., v is a weak solution of the equation

$$
\begin{equation*}
v_{s}=\sum_{i, j=1}^{n} \frac{\partial}{\partial y_{j}}\left(a^{i j}\left(\hat{x}_{0}\right) \frac{\partial}{\partial y_{i}} v^{m}\right)+h\left(\hat{x}_{0}\right) v^{p} \tag{4.14}
\end{equation*}
$$

in $\mathbb{R}^{n} \times(-\infty, \infty)$. After a change of variables, we may assume that v is a solution of the equation

$$
v_{s}=\Delta\left(v^{m}\right)+v^{p} \quad \text { in } \quad \mathbb{R}^{n} \times(-\infty, \infty)
$$

Also, by (4.11) and the fact that v_{k} converges to v uniformly on compact sets, we have $v(0,0) \geq 1 / 2$ and $0 \leq v(y, s) \leq 2$. However, by Theorem 3.3, it is impossible.

If (4.7) is not true, we may choose subsequences, also denoted by $t_{k}, \hat{x}_{k}, \hat{t}_{k}$, so that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(d_{k} M^{(p-m) / 2}\left(t_{k}\right)\right)=c \geq 0 \tag{4.15}
\end{equation*}
$$

It follows that $d_{k} \rightarrow 0$ as $k \rightarrow \infty$. We may assume that there is $\hat{x}_{0} \in \partial \Omega$ so that

$$
\hat{x}_{k} \rightarrow \hat{x}_{0} \quad \text { as } \quad k \rightarrow \infty
$$

Also, we may choose $\tilde{x}_{k} \in \partial \Omega$ so that

$$
\left|\hat{x}_{k}-\tilde{x}_{k}\right|=d_{k} .
$$

Let R_{k} be an orthonormal transformation in \mathbb{R}^{n} that maps $(-1,0, \ldots, 0)$ onto the outer normal vector to \tilde{x}_{k}. Again, we rescale the solution u about the point $\left(\hat{x}_{k}, \hat{t}_{k}\right)$. Let

$$
\begin{equation*}
v_{k}(y, s)=\frac{1}{M\left(t_{k}\right)} u\left(\frac{R_{k}(y)}{M^{(p-m) / 2}\left(t_{k}\right)}+\hat{x}_{k}, \frac{s}{M^{p-1}\left(t_{k}\right)}+\hat{t}_{k}\right) \tag{4.16}
\end{equation*}
$$

for

$$
y \in \Omega_{k}=\left\{y: \frac{R_{k}(y)}{M^{(p-m) / 2}\left(t_{k}\right)}+\hat{x}_{k} \in \Omega\right\}
$$

and

$$
s \in\left(-M^{p-1}\left(t_{k}\right) \hat{t}_{k}, M^{p-1}\left(t_{k}\right)\left(\hat{t}_{k}^{+}-\hat{t}_{k}\right)\right)
$$

Then, v_{k} is a weak solution of (4.12) with

$$
a_{k}^{i j}(y)=a_{k}^{i j}\left(\frac{R_{k}(y)}{M^{(p-m) / 2}\left(t_{k}\right)}+\hat{x}_{k}\right), \quad h_{k}(y)=h\left(\frac{R_{k}(y)}{M^{(p-m) / 2}\left(t_{k}\right)}+\hat{x}_{k}\right)
$$

Also, (4.11) holds. For each $r>0$, if k is large enough,

$$
\begin{aligned}
& \Omega_{k} \cap B(0, r) \\
= & \left\{y:|y|<r, \quad y_{1}>-d_{k} M^{(p-m) / 2}\left(t_{k}\right)+M^{(p-m) / 2}\left(t_{k}\right) f_{k}\left(\frac{y^{\prime}}{M^{(p-m) / 2}\left(t_{k}\right)}\right)\right\},
\end{aligned}
$$

where $y^{\prime}=\left(y_{2}, \ldots, y_{n}\right)$ and $f_{k}=f_{k}\left(x^{\prime}\right)$ is a smooth function defined on the set $\left\{x^{\prime}:\left|x^{\prime}\right|<r\right\}$. Also, since we assume that $(-1,0, \ldots, 0)$ is the outward normal to \tilde{x}_{k}, we have $D_{l} f_{k}(0)=0$ for each $l=2, \ldots, n$. By (4.15), we may assume that when $k \rightarrow \infty$, the set Ω_{k} approaches the halfspace

$$
H_{c}=\left\{y: y_{1}>-c\right\}
$$

By Theorem 2.2, the functions $\left\{v_{k}\right\}$ are equicontinuous on compact subsets in $\bar{H}_{c} \times$ $(-\infty, \infty)$. Hence, there is a subsequence, which we also denote by $\left\{v_{k}\right\}$, and a continuous function v such that v_{k} converges to v uniformly on compact subsets in $\bar{H}_{c} \times(-\infty, \infty)$. It follows that v is a weak solution of the equation (4.14). By (4.11), we have $v(0,0) \geq 1 / 2$ and $0 \leq v(y, s) \leq 2$. However, by Theorem 3.4, it is impossible. This completes the proof of Theorem 4.2.

For $m>1$, using Theorem 3.1 and 3.2, we have

Theorem 4.3. Let u be a non-negative weak solution of (4.1) in $\Omega \times(0, T)$ with

$$
1<m<p \leq m+\frac{2}{n+1}
$$

If u blows up at T, then there is a constant $C>0$ such that

$$
\max _{x} u(x, t) \leq C|T-t|^{-1 /(p-1)}
$$

The proof is similar and is left to the reader.

5. Solutions Which Are Non-decreasing in Time

In this section, we consider solutions which are non-decreasing in time. In the semilinear case, a similar result was obtained in [18] Remarks 4.3b and 5.3b.

Theorem 5.1. Let v be a bounded continuous weak solution of the equation

$$
\begin{equation*}
v_{t}=\Delta\left(v^{m}\right)+v^{p} \tag{5.1}
\end{equation*}
$$

in $\mathbb{R}^{n} \times(0, \infty)$, with $m>0$,

$$
1<\frac{p}{m} \quad \text { when } \quad n \leq 2, \quad 1<\frac{p}{m}<\frac{n+2}{n-2} \quad \text { when } \quad n \geq 3
$$

Suppose that for each $x \in \mathbb{R}^{n}$, the function $t \rightarrow v(x, t)$ is a non-decreasing function, then v is identically zero on $\mathbb{R}^{n} \times(0, \infty)$.

Proof. Let

$$
w(x)=\lim _{t \rightarrow \infty} v(x, t)
$$

Let $\eta(x, t)=\varphi(x) \xi(t)$ in (3.1), where $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and $\xi \in C_{0}^{\infty}(0,1)$. Then, for each $k=1,2,3 \ldots$,

$$
\begin{aligned}
& -\int_{0}^{1} \int_{\mathbb{R}^{n}} v(x, t+k) \varphi(x) \xi^{\prime}(t) d x d t \\
= & \int_{0}^{1} \int_{\mathbb{R}^{n}}\left(v^{m}(x, t+k) \Delta \varphi(x) \xi(t)+v^{p}(x, t+k) \varphi(x) \xi(t)\right) d x d t
\end{aligned}
$$

By letting $k \rightarrow \infty$, using the bounded convergence theorem, we obtain

$$
\begin{aligned}
& -\int_{0}^{1} \int_{\mathbb{R}^{n}} w(x) \varphi(x) \xi^{\prime}(t) d x d t \\
= & \int_{0}^{1} \int_{\mathbb{R}^{n}}\left(w^{m}(x) \Delta \varphi(x) \xi(t)+w^{p}(x) \varphi(x) \xi(t)\right) d x d t
\end{aligned}
$$

Since ξ has compact support in $(0,1)$, we have

$$
\int_{0}^{1} \int_{\mathbb{R}^{n}} w(x) \varphi(x) \xi^{\prime}(t) d x d t=\left(\int_{\mathbb{R}^{n}} w(x) \varphi(x) d x\right)\left(\int_{0}^{1} \xi^{\prime}(t) d t\right)=0 .
$$

Thus, for any $\xi \in C_{0}^{\infty}(0,1)$ and $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right.$, we obtain

$$
\int_{0}^{1} \int_{\mathbb{R}^{n}}\left(w^{m}(x) \Delta \varphi(x)+w^{p}(x) \varphi(x)\right) \xi(t) d x d t=0
$$

This implies that, for any $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$,

$$
\int_{\mathbb{R}^{n}}\left(w^{m}(x) \Delta \varphi(x)+w^{p}(x) \varphi(x)\right) d x=0
$$

and w is a non-negative weak solution of the equation $\Delta w^{m}+w^{p}=0$. Let $W=w^{m}$. Then the function W is a non-negative bounded weak solution of the equation

$$
\begin{equation*}
\Delta W+W^{P}=0 \quad \text { with } \quad P=p / m \tag{5.2}
\end{equation*}
$$

in \mathbb{R}^{n}. By the elliptic regularity theory, W is smooth in \mathbb{R}^{n}. Gidas and Spruck's result, [8], tells us that if $1 \leq P<(n+2) /(n-2)$, then $W(x)=0$ in \mathbb{R}^{n}. This implies that $w(x)=0$ in \mathbb{R}^{n}. Since $v(x, t)$ is non-negative, $t \rightarrow v(x, t)$ is non-decreasing and

$$
\lim _{t \rightarrow \infty} v(x, t)=0,
$$

we must have $v(x, t)=0$ in $\mathbb{R}^{n} \times(0, \infty)$.
The same method also works for solution u of (5.1) in $\mathbb{R}_{+}^{n} \times(0, \infty)$, which vanishes on the plane $\left\{x_{1}=0\right\}$.

Theorem 5.2. Let v be a bounded continuous weak solution of the equation (5.1) in $\mathbb{R}_{+}^{n} \times(0, \infty)$, with $m>0$,

$$
1<\frac{p}{m} \quad \text { when } \quad n \leq 2, \quad 1<\frac{p}{m}<\frac{n+2}{n-2} \quad \text { when } \quad n \geq 3 .
$$

Suppose that $v(x, t)=0$ when $x_{1}=0$, and, for each $x \in \mathbb{R}_{+}^{n}$, the function $t \rightarrow v(x, t)$ is a non-decreasing function, then v is identically zero on $\mathbb{R}_{+}^{n} \times(0, \infty)$.

Proof. By Theorem 2.2, for all $t>1$, the functions $x \rightarrow v(x, t)$ are equicontinuous on compact subset of the set $\left\{x: x_{1} \geq 0\right\}$. If

$$
w(x)=\lim _{t \rightarrow \infty} v(x, t),
$$

then $w(x)=0$ when $x_{1}=0$. It follows that the function $W=w^{m}$ also vanishes on the plane $\left\{x: x_{1}=0\right\}$ and is a solution of (5.2) in in \mathbb{R}_{+}^{n}. Gidas and Spruck, [9],
also proved that if W is a non-negative solution of (5.2) in \mathbb{R}_{+}^{n} and $W(x)=0$ on $\left\{x_{1}=0\right\}$, then $W(x)=0$ in \mathbb{R}_{+}^{n}. We have the same conclusion as in Theorem 5.1.

Using Theorem 5.1 and 5.2, we obtain results for solutions which are non-decreasing in time. The conditions for the domain Ω, the coefficients $a^{i j}$ and h, and the solution u are the same as in previous section.

Theorem 5.3. Let u be a positive solution of (4.1). When $0<m<1$, we assume that

$$
p>1 \quad \text { when } \quad n \leq 2, \quad 1<p<m\left(\frac{n+2}{n-2}\right) \quad \text { when } \quad n \geq 3
$$

When $m>1$, we assume that

$$
p>m \quad \text { when } \quad n \leq 2, \quad m<p<m\left(\frac{n+2}{n-2}\right) \quad \text { when } \quad n \geq 3
$$

If u is non-decreasing in time and u blows up at T, then there is a constant $C>0$ such that

$$
\max _{x} u(x, t) \leq C|T-t|^{-1 /(p-1)}
$$

Proof. Suppose that for each $x \in \Omega$, the function $t \rightarrow u(x, t)$ is non-decreasing. For for each $k=1,2,3 \ldots$, let v_{k} be the function in (4.9) or (4.16). Then, for each fixed y in the domain of v_{k}, the function $s \rightarrow v_{k}(y, s)$ is non-decreasing. By Theorem 2.1 or Theorem $2.2, v_{k}$ converges uniformly to a function v in compact subsets in $\mathbb{R}^{n} \times(-\infty, \infty)$ or $\mathbb{R}_{+}^{n} \times(-\infty, \infty)$. Thus, $s \rightarrow v(y, s)$ is also non-decreasing. The rest of the proof is almost the same as in Theorem 4.2.

References

1. K. Ammar and P. Souplet, Liouville-type theorems and universal bounds for nonnegative solutions of the porous medium equation with source, Discrete and Continuous Dynamical Systems, Series A, 2 (2010), 665-689.
2. E. DiBenedetto, Continuity of weak solutions to a general porous media equation, Indiana Univ. Math. J., 32 (1983), 83-118.
3. M. Fila and P. Souplet, The blow-up rate for semilinear parabolic problems on general domains, Nonlinear Differ. Equ. Appl., 8 (2001), 473-480.
4. A. Friedman and B. McLeod, Blowup of positive solutions of semilinear heat equations, Indiana Univ. Math. J., 34 (1985), 425-447.
5. H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_{t}=\triangle u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sec. IA Math., 13 (1966), 105-113.
6. V. A. Galaktionov et al., On unbounded solutions of the Cauchy problem for a parabolic equation $u_{t}=\nabla\left(u^{\sigma} \nabla u\right)+u^{\beta}$, Dokl. Akad. Nauk SSSR, 252 (1980), 1362-1364; English translation: Sov. Phys. Dokl., 25 (1980), 458-459.
7. V. A. Galaktionov, Blow-up for quasilinear heat equations with critical Fujita's exponents, Proceedings of the Edinburgh Mathematical Society, 124A (1994), 517-525.
8. B. Gidas and J. Spruck, Global and local behavior or positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.
9. B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, 6 (1981), 883-901.
10. Y. Giga and R. V. Kohn, Characterizing blowup using similarity variables, Indiana Univ. Math. J., 36 (1987), 1-40.
11. B. Hu, Remarks on the blowup estimate for solution of the heat equation with a nonlinear boundary condition, Differential Integral Equations, 9 (1996), 891-901.
12. T. Kawanago, Existence and behaviour of solutions for $u_{t}=\Delta\left(u^{m}\right)+u^{l}, \operatorname{Adv}$. Math. Sci. Appl., 7 (1997), 367-400.
13. G. G. Laptev, Nonexistence of solutions for parabolic inequalities in unbounded cone-like domains via the test function method, J. Evol. Equ., 2 (2002), 459-470.
14. S. Lian and C. Liu, On the existence and nonexistence of global solutions for the porous medium equation with strongly nonlinear sources in a cone, Arch. Math., 94 (2010), 245-253.
15. P. Meier, Blow-up of solutions of semilinear parabolic differential equations, ZAMP, 39 (1988), 135-149.
16. K. Mochizuki and K. Mukai, Existence and nonexistence of golbal solutions to fast diffusions with source, Methods and Applications of Analysis, 2 (1995), 92-102.
17. R. Mochizuki and R. Suzuki, Critical exponent and critical blow-up for quasilinear parabolic equations, Israel J. Math., 98 (1997), 141-156.
18. P. Polacik, P. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via liouville-type theorems, Part II: Parabolic equations, Indiana Univ. Math. J., 56 (2007), 879-908.
19. C.-C. Poon, Blow-up of a degenerate non-linear heat equation, Taiwanese J. Math., 15 (2011), 1201-1225.
20. Y. Qi, On the equation $u_{t}=\Delta u^{\alpha}+u^{\beta}$, Proceedings of the Royal Society of Edingburgh, 123A (1993), 373-390.
21. P. E. Sacks, Continuity of solutions of a singular parabolic equation, Nonlinear Analysis, 7 (1983), 387-409.
22. P. Souplet, An optimal Louville-type theorem for radial entire solutions of the porous medium equation with source, J. Differential Equations, 246 (2009), 3980-4005.
23. M. Winkler, Blow-up of solution to a degenerate parabolic equation not in divergence form, J. Differential Equation, 192 (2003), 445-474.
24. M. Winkler, Blow-up in a degenerate parabolic equation, Indiana University Math. J., 53 (2004), 1415-1442.
[^1]
[^0]: Received July 3, 2010, accepted February 15, 2011.
 Communicated by Jong-Shenq Guo.
 2010 Mathematics Subject Classification: 35K55.
 Key words and phrases: Quasilinear parabolic equations, Blows up.

[^1]: Chi-Cheung Poon
 Department of Mathematics
 National Chung Cheng University
 Minghsiung, Chiayi 621, Taiwan
 E-mail: ccpoon@math.ccu.edu.tw

