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BLOW-UP RATE FOR NON-NEGATIVE SOLUTIONS OF A NON-LINEAR
PARABOLIC EQUATION

Chi-Cheung Poon

Abstract. We study solutions of the equation

up = Z 8;; (aij aii u"”> + hu? on Qx(0,7)

i,j=1
u=0 on 00 x (0,7T),

where €2 is a bounded domain in R™ with smooth boundary, and ¢/ = a¥ (x) is
uniformly positive definite and h = h(z) > 0 on Q. When

2 2
0 1 R 1 < —_—
<m< <p<m—i—n+1 or <m<p_m+n+1,

we will show that if « is a non-negative solution and blows up at 7, then
u(z,t) < C|T — |~V =Y,

The proof relies on rescaling arguments and some, old and new, Fujita-type results.

1. INTRODUCTION

In this paper, we study solutions of the equation

0 0
= E — | a¥ mn hu? Qx(0,T
uy P oz, <a 8xz~u >—|— uw on x (0,T)

u=0 on 902 x(0,7).

(1.1)

Here, m > 0 and p > 1, Q is a bounded domain in R™ with smooth boundary, and
a’l = a"(x) and h = h(x) are smooth functions defined on 2. We also assume that a*/
is uniformly positive definite and 4 > 0 on €. Suppose that u(z,t) is a non-negative
solution of (1.1) and blows up at 7. Our goal is to show that there is a constant C' > 0
such that for all (z,t) € Q x (0,7T), we have
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(1.2) w(z,t) < C|T — |~/ =1,
For the semilinear heat equation

up = Au+uP on Qx(0,7)
(1.3)
u=20 on 002 x(0,T),

Friedman and McLeod, [4], proved that if Q is a convex, bounded domain in R",
p > 1, and u(z, t) is non-negative solution of (1.3), and is non-decreasing in time, then
(1.2) holds. Giga and Kohn, [10], among other results, proved that if €2 is a convex,
and w« is a non-negative solution of (1.3) for

2
1<p<n—+2 when n >3 or p>1 when n <2,
n

then (1.2) holds. Fila and Souplet, [3], proved the same result for solutions defined on
domains which may not be convex, but only for

2
l<p<l4 ——.
P +n—|—1

Let u(z,t) be a non-negative solution of (1.3). Let
M(t) = max {u(z,t): (z,t) in Qx[0,¢}.
For any t, € (0, T), we define tJ by
td =max{t € (to,T): M(t) =2M(ty)}.

In [3], Fila and Souplet showed that, if « blows up at 7, then there is a constant K
such that for all ¢y € (T'/2,T), we have

(1.4) MP (ko) (5 — to) < K.

We briefly describe their arguments: if (1.4) is not true, there is a sequence of the
rescaled solutions converges to a non-trivial bounded global non-negative solution of
the equation

(1.5) vy = Av + 0P

defined on R™ x (—o0, 00), or to a non-trivial bounded global non-negative solution,
v, of (1.5) which is defined on R} x (—o0,00) and v = 0 whenever z; = 0. Here,
we use the notation

R = {z : 21 > 0}.
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However, Fujita, [5], proved that there is no non-trivial global non-negative solution
of (1.5) defined on R™ x (0, 00), and Meier, [15], proved that there is no non-trivial
global non-negative solution v of (1.5) which is defined on R”! x (0,00) and v = 0
whenever z1 = 0. Thus, (1.4) has to be true. Using an argument of Hu, [11], from
(1.4), we obtain (1.2) immediately. The result of Fila and Souplet was improved to the

case
1
1<p<M if n>2, p>1 if n=1.
(n—1)2
See [18] for more information concerning solutions of the semilinear equation (1.5).
We will use Fila and Souplet’s method to study solutions of equation (1.1). In our

situations, we need some non-existence results for solutions of
(1.6) vy = Av™ + 0P

defined either on R™ x (0, 00) or R} x (0, co). Galaktionov, [6] [7], proved that when
1 <m < p < m+2/n, then any global solutions of (1.6) in R™ x (0, co) is identically
zero. Kawanago, [12], Mochizuki and Suzuki, [17], proved the case when m > 1 and
p=m+2/n. If v is a solution of (1.6) in R" x (0,00), v = 0 when z; = 0, Lian
and Liu, [14], proved that when

1
1.7 I<m<p< —
(1.7) m p_m—i-n_f_17

then v vanishes identically. See also [13]. In [20], Qi proved that when 0 < m < 1 <
p < m + 2/n, there is no non-trivial global non-negative solution of (1.6) defined on
R™ x (0,00). When 1 < p =m+2/n and max{0,1—2/n} < m < 1, Mochizuki and
Mukai, [16], proved the same result. Following Qi’s idea, we will prove that when

2
(1.8) O<m<l<p<m+——r,
n+1

there is no non-trivial global non-negative solution, v, of the equation (1.6) which is
defined on the half-space R”} x (0, 0c0) and v = 0 whenever z; = 0. However, when

2
n—+1

(1.9) l<p=m-+ and max{(),l—i}<m<1,
n+1
we are not able to prove the same result as in [16].

Suppose that « is a solution of (1.1) and « blows up at T'. In cases (1.7) and (1.8),
we will show that (1.2) holds by proving that (1.4) is true. If (1.4) is not true, we show
that there is a sequence of rescaled solutions which converges to a solution v of the
equation (1.6) on R™ x (—o0, 00) or on R} x (—oo, 00) and v = 0 whenever z; = 0.
This contradicts the non-existence results described in the above. We note that, as in
[3], the domain 2 need not be convex.
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Using the same scheme, we also consider solutions of (1.1) which are non-decreasing
in time. Suppose that 0 < m < 1 and

2
1<p when n <2, 1<p<m<n—+2> when n > 3;
n

or, m > 1 and

2
(1.10) m<p when n <2, m<p<m<n+2> when n > 3.
n p—
Let u be a non-negative solution of (1.1) and is non-decreasing in time. If « blows up at
T, then we show that (1.2) holds. This technique was used to treat time non-decreasing
solutions of the semilinear equation (1.3). See [18], Remarks 4.3(b) and 5.3(b).

In a recent paper, Souplet, [22], proved that, when 1 < m < p and p satisfies
(1.10), then the equation (1.6) has no non-trivial bounded radial non-negative solution
defined on R™ x (—o0, 00). This implies that, if 1 < m < p and (1.10) is satisfied,
then (1.2) holds for radial solutions of (1.1) defined on symmetric domains. See [1].

Suppose that in (1.1), we have o/ (z) = 6% and h(x) = 1 for all z € Q. When
m > 0, by taking U = v, M = (m—1)/m and P = p/m, we see that (1.1) is
equivalent to

U =UMAU+U") on Qx(0,7)
(1.11)
U=0 on 00 x(0,7T).

When 0 < M < 2 and P = 1, Winkler, [23], proved that if U is a non-negative
solution of (1.11), then there is a constant C' > 0 such that

Uz, t) < C|T — |~/ (P+HM=1)

Also, when M > 2 and P = 1, Winkler, [24], proved that if U is a non-negative
solution of (1.11), then |T" — #|'/(P+M=1y (s ¢) becomes unbounded as t — T.
Furthermore, there are solutions of (1.11) with M > 2 and P > 1, for which
|T — ¢|Y/(P+M=1)y (2 t) becomes unbounded as t — 7. See [19].

2. REGULARITY THEOREMS

We consider the weak solutions of the equation

(2.1) ig=1

u=0 on 00 x (t1,tq).
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Here, m > 0 and p > 1, and €2 is a bounded domain in R™ with smooth boundary.
We assume that o’ = @ (x) and h = h(x) are continuous functions defined in © and
there are positive constant ¢y and ¢; such that for any vector £ € R™ and z € 2, we
have

(2.2) ol < Y a¥ (@) <al¢? and o <h(x) < e
ij=1
Let u be a function so that u™ € L{° (t1,to; HY(Q)) and u(x, t) > 0 for all (z,t) €

Q% (t1,t2). We say u is a weak solution of (2.1) if for any n € Cg° (2 x (1, t2)), we
have

"9 . On
m Y ij
// e ijz,:l Ox;j <a ox

We have the following regularity theorems by DiBenedetto and Sacks. See [2] and
[21]. We use the notaions

(2

) + huPn | dz dt = 0.

B(zg,r) ={x: |z —xo| <r} and B(r)=B(0,r) ={z: |z| < r}.
Theorem 2.1. Let u(z,t) be a bounded weak solution of the equation

(2.3) w = Zn: 0 <af‘f (x)a(“m)> + h(z)uP

- ox; ox;
ij=1 "1 t

with m > 0 and p > 1, in B(2r) x (—2r,0). Then w is continuous on B(r) x (—r,0)
and the modulus of continuity of « depends only on sup u, ¢, ¢1, m and p only. Here,
co and ¢; are the constants in (2.2).

Let 2 be a bounded domain in R™ with piecewise smooth boundary. Let zy € 0€2.
Suppose that there is a constant § € (0, 1) and r¢ > 0 such that

(2.4) meas(2 N B(xg,r)) < (1 — @)meas(B(zg,r)).

Theorem 2.2. Let u(x,t) be a bounded weak solution of the equation (2.3) with
m > 0andp > 1in(B(zg,2r)NQ)x(—2r,0),and u = 0 on 9. Then u is continuous
in (B(zo,r)NQ)x(—r,0) and the modulus of continuity of v in (B(x ¢, 7)N§2) x (—r,0)
depends only on sup u, cg, ¢1, m, p, ro and & only.

If we assume that the domain  is smooth, then there are constant ¢ and r¢ such
that for all zp € 92 and 0 < r < rp, so that condition (2.4) holds.

3. NON-EXISTENCE OF GLOBAL SOLUTIONS

Let ©2 be a domain in R™. Let v(x,t) be a non-negative function defined on
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Q x (0,00). Suppose that v(x,t) is bounded. We say v is a weak solution of the
equation
ve=Av" 40P on Qx(0,00)

v=20 on 9 x (0,00)
with m > 0, p > 1, if for any function n(z, t) € C5°(2 x (0, c0)), we have

(3.1) // (vn +v™An +vPn) d dt = 0.
Q
We state some known results concerning the non-existence of weak solutions. When
m > 1, and the domain is the whole space, we have

Theorem 3.1. ([6, 7, 12, 17]). Let v be a bounded non-negative continuous weak
solution of the equation

vy = A(v™) + 0P in R™ x (0, c0).

2
l<m<p<m+ —,
n
then v is identically zero on R™ x (0, 00).
When m > 1, and the domain is the half space, we have

Theorem 3.2. ([13, 14]) Let v be a bounded non-negative continuous weak solu-
tion of the equation

vy = A(v™) + 0P in R x (0, 00),

v=20 in {z1 =0} x (0, 00)
2
l<m<p<m+——

n+1’
then v is identically zero on R} x (0, c0).

When, 0 < m < 1, the non-existence result is of the form:

Theorem 3.3. ([20, 16]) Let v be a bounded non-negative continuous weak solution
of the equation
vp=A@™)+o"P in  R"x(0,00).
If 9
0O<m<1 and 1<p<m—|—g,
or

2 2
l<p=m+— and max{(),l——}<m<1,
n n

then v is identically zero on R™ x (0, 00).
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If the solution is defined on R} x (0, 00), where R" = {z = (21,...,2,) € R":
x1 > 0}, we prove

Theorem 3.4. Let u be a bounded non-negative continuous weak solution of the
equation

vy =A@™) + P in R x (0, 00),
v=20 in {z1 =0} x (0, 00)

2
0O<m<1 and l<p<m+ ——:,
n-+1
then v is identically zero on R"} x (0, 00).
We will need the following technical lemma.

Lemma 3.5. Let w(s) be an absolutely continuous positive function which satisfies
the inequality

(3.2) w' > = w™ 4+ wP for s> 0,
where m > 0, and p > max{m, 1}. If wP~™(0) > A, then w blows up in finite time.
Proof.  Suppose that z is a solution of the equation
2= =A™+ 2P, 0 < 2z(0) < w(0) and  2P(0) > Az™(0).

We first claim that z’(s) > 0 whenever z(s) is defined. Assume that there is s; > 0
such that z’(s) > 0in (0, 1) and z’(s1) = 0. Then, z(s) > 0 and 2P(s) — A\z"™(s) > 0
in (0,s1) and zP(s1) — A™(s1) = 0. It is easy to see that

d P(s) — A2"(s)) =2(s Lzs— ﬂzms
566 =2 (6) =(6) (L5700 - A0 )

z(s)
mz'(s) Pls) _ \a™(s
> 2 (7() = 2 (s).

Thus, the function 2P (s) — Az™(s) is increasing on (0, s1). If 2P(s) — Az (s) > 0 for
s € (0,s1), then 2/(s1) = 2P(s1) — Az™(s1) > 0. Thus, z(s) is increasing whenever
z(s) is defined. Furthermore, by (3.3), the function 2P(s) — Az""(s) is also increasing
whenever z(s) is defined. This implies that z’(s) is increasing, and z’(s) > 2/(0) > 0,
and

(3.4) 2(s) > 2(0) + s2'(0)

(3.3)

whenever z(s) is defined. When s is large enough, by (3.4), we have 2™ (s) > 2\ and

2P(s) —2X2"(s) = 2P (2™ (s) — 2A) > 0.
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Therefore, when s is large enough,
2'(s) = 2P(s) — X\2"(s) > % 2P(s).

By solving the ODE, we see that, if p > 1, the solution z has to blow up in finite

time. If w satisfies the inequality (3.2), then w(s) > z(s) whenever z(s) and w(s) are

defined. Thus, the function w also blows up in finite time. |
Proof. [Proof of Theorem 3.4] For x € R}, let

¢(x) =z exp(—k*|z|?),
where &k > 0 and ~ > 1 are constants to be determined. By straightforward computa-
tions, we have
A¢+ Ao
=(A- 42y + y(y — Dap? + 4k 2> — 2nk2) 0.

Thus, we see that if A > 2k%(2y +n) then Ap+ A > 0 in R7. We let 1 < <2
and choose

(3.5) A= Ak) =2(n+4)k>

Then Ag +2X¢ > 0 in R
One can compute that

C(n)I'(7)
3.6 P(x) do = ————
( ) R ( ) knty
where ~ | oo

L(y) = / 27 exp(—2?) dz = 5/ w267 gy,
0 0
and C(n) is a positive constant depending on n only. It is not difficult to see that
1 o
(3.7) sup F(y)= sup —/ w2y < .
1<y<2 1<y<2 0

We also note that ¢ is in C17(R), with 0 = v — 1, ¢(z) = 0, Dp(z) = 0
whenever z; = 0. Furthermore, D¢ and D?¢ are in Ll(Rﬁ). Therefore, we may
find a sequence of functions ¢; which are smooth with compact support in R’} and
v; — ¢, Dp; — D¢ and D?p; — D?¢ in L'(R™). Thus, by (3.1), we have

/R v(z, to)p(z) dx —/ v(z, t1)p(z) dx

RY

(3.8) :/tl2 /n (V™ (z, 8)Ad(z) + vP(x, s)p(z)) da dt

n
+

> /t / | (N 3)00e) + 0, 5)0(0)
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Let

f
F(s) = W/Rﬁ; v(z, s)p(z) dx.

By (3.6), if 0 <m < 1 and p > 1, we have

K m m
(3.9) W/Rﬁ; v"™(z, 8)op(x) de < F™(s)

and

ket » P (s
W/Rﬁ; vP(z, s)p(x) de > FP(s).

Thus, from (3.8), we obtain,
F'(s) > —=AF™(s) + FP(s).

By Lemma 3.5, if v is a global solution, then for any s > 0, we have

n+
(.10 FO) = Gt f 7 9)000) de <0

It implies that, using (3.5), forany 0 < k& < 1,
=2/ (p=m) / v(w, 8)x] exp(—|z|?) dx
R%

Sk”'w_w(p_m)/ v(z, s)p(z) dz

Ry
<C(m)T () (2(n+4)P~™.

We fix v so that

v>1 and n+y< .
p—m

847

Using (3.7), we see that if & is chosen small enough, then it is impossible, unless v is

identically zero.

4, BLowupr RATE

We consider the non-negative solutions of the equation

"9 ( 0 )
up = — | e’ —u" ) + huP on Qx(0,7)
4.1) =2 dz; \ O

ij=1
u=0 on 9N x(0,7).
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Here, m > 0 and p > 1, and Q is a bounded domain in R™ with smooth boundary.
We assume that a”/ = a%(z) is symmetric and ¢ € C*(Q), h = h(z) > 0 and
h € C(Q). Also, we assume that a* and h satisfy (2.2). Let u be a function so that
u™ € L2 (0, T; Hi(2)) and u(z,t) > 0 for all (z,t) € Q x (0,T). We say u is a
weak solution of (4.1) in Q x (0,T) if for any n € C3° (2 x (0,T)), we have

m P —
//(um—i—u Z@xj< xZ)—i—hun)dwdt 0.

Let
4.2) M(t) = max{u(z,t): (z,t) in Qx][0,¢}.

We assume that M (t) < oo, foreach ¢t € (0,7). We say u blows up at 7" if M (t) — oo
ast — T. Given any t, € (0,T), we define tJ by

(4.3) td =max{t € (to,T): M(t) =2M(ty)}.
We need the following lemma which is due to Hu, [11] p895.

Lemma 4.1. Suppose that there is a constant K > 0 such that is true for all
to € (T'/2,T), we have

(4.4) MPH(t) (1§ — to) < K.
Then there is a constant C > 0 such that

M(t) < C|T —t|~V/®=1),

Proof. We pickany t € (T'/2,T). Using (4.3), foreach k& > 0, we let ;.1 =t} .
By our assumption (4.4), we obtain

teet =tk S T T @M ()P L

Then, it follows that

o0 o0
T —ty= thg1 — tg) < = — -
2 S e~

Hence, the Lemma is true. ]
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Theorem 4.2. Let u be a non-negative weak solution of (4.1) in 2 x (0,7") with

2
0<m <1, and l<p<m+ ——-.
n+1

If u blows up at 7', then there is a constant C' > 0 such that
maxu(z,t) < C|T —t|~Y/®=1,
x

Proof.  We follow the arguments in [3]. By Lemma 4.1, we only need to prove
(4.4). Suppose that (4.4) is not true. There exists a sequence ¢, such that ¢, — 7" and

(4.5) MP ) (8 —ty) — oo as k — oo.

For each k = 1,2, 3..., there is ;, € Q and # € (0, t] such that

(4.6) M () = (i, i) > 2.

Let
dip = dist(i‘k, 00).

Suppose that

(4.7) lim sup <dkM(p_m)/2(tk)> = 0.

k— o0
There are subsequences, also denoted by i, ¢, and t;, and a point &, € Q such that
(4.8) ip — & and dpMP2(4H) 00 as k — oo.

We rescale the solution « about the point (&, ;) as follows:

1 Y R s N
4.9) vi(y, s) = N u <M(P—m)/2(tk) + 2y, NP1 +tk> )

The function vy, is defined for

(4.10) y € B <dkM(p_m)/2(tk)> and s € (—MP~L(ty)Ee, MP L (t0) (5 — 1))

where we denote B(r) to be the open ball centered at 0 with radius r. Clearly, by
(4.6), foreach k =1,2,3...,

(4.11) v(0,0) > 1/2 and 0 < wvi(y,s) <2
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Moreover, v is a weak solution of the equation

"9 [0
(4.12) Vps = Z B9, (a,g 5
where

ij _ i Y A _ Y A
al(y) =a <—M(P—m)/2(tk) + xk> and hi(y) =h <—M(P—m)/2(tk) + xk> .

) + hk’ui,

Let (y, s) be a smooth function with compact support in R™ x (—oo, co). When k is
large enough, we have

(4.13) / / ORTs + U Z oy (

i,7=1

) + hypvin | dy ds = 0.

From (4.5), (4.10) and Theorem 2.1, the functions {v;} are equicontinuous on
compact subsets in R™ x (—oo0,00). Also, by (4.8), a(y) converges to a’/ (),
Dazj(y) converges to 0, and hy(y) converges to h(Zy) uniformly on compact subsets
in R™. Hence, there is a subsequence, which we also denote by {v;}, and a continuous
function v such that v, converges to v uniformly on compact subsets in R x (—oo, 00).
When letting £ — oo in (4.13), we have

8?7) A
vns + v + h(Zo)vPn | dy ds =0,
// K ”Z:I ayj < ayz ( 0)
i.e., v is a weak solution of the equation
0 . 0
4,14 Vg = — | a% (2 vm> + h(Zg)0?
(414 > o (a7 0)gmem) + hiao)

in R™ x (—oo, 00). After a change of variables, we may assume that v is a solution of
the equation
vs =AW™)+vP in R" x (—o00,00).

Also, by (4.11) and the fact that v, converges to v uniformly on compact sets, we have
v(0,0) > 1/2 and 0 < v(y, s) < 2. However, by Theorem 3.3, it is impossible.

If (4.7) is not true, we may choose subsequences, also denoted by t., &, tx, SO
that

(4.15) lim <dkM(p_m)/ 2(tk)> —¢>0.
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It follows that d, — 0 as k — oo. We may assume that there is 2o € 99 so that
T — Zg as k — oo.
Also, we may choose 7, € 92 so that
|Zr — Z| = d.

Let Ry be an orthonormal transformation in R™ that maps (—1,0, ...,0) onto the outer
normal vector to Zj. Again, we rescale the solution u about the point (i, #x). Let

1 Ri(y) 5 5 i
4.1 = MP=1(t)
(4.16) vi(y, s) N u <M(P_m)/2(tk) + Tk, MP=1(t;,) +1i ),
for Ri(y)

_ )y, Y

and
s € (=MP7 ()t MP () (B — ) -

Then, vy, is a weak solution of (4.12) with

ij g Ry (y) . _ Ri(y) .

Also, (4.11) holds. For each » > 0, if & is large enough,
QN B(O, 7“)

/

D _ (p—m)/2 (p—m)/2 ¥y
—{ustl <> bR 2 (1)
where v = (y2,...,yn) and fr = fr(z’) is a smooth function defined on the set
{z' : |2'| < r}. Also, since we assume that (-1,0,...,0) is the outward normal to z;, we
have D, f(0) = 0 for each [ = 2, ..., n. By (4.15), we may assume that when k& — oo,

the set 2, approaches the halfspace

H.={y:y1 > —c}.

By Theorem 2.2, the functions {v;} are equicontinuous on compact subsets in H . x
(—o0,00). Hence, there is a subsequence, which we also denote by {v:}, and a
continuous function v such that v, converges to v uniformly on compact subsets in
H,. x (—o0,00). It follows that v is a weak solution of the equation (4.14). By (4.11),
we have v(0,0) > 1/2and 0 < v(y, s) < 2. However, by Theorem 3.4, it is impossible.
This completes the proof of Theorem 4.2. [ |

For m > 1, using Theorem 3.1 and 3.2, we have
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Theorem 4.3. Let u be a non-negative weak solution of (4.1) in 2 x (0,7") with

2
l<m<p< —_—.
m<psm+ n+1
If u blows up at 7', then there is a constant C' > 0 such that
maxu(z,t) < C|T —t|~Y/®=1),
x

The proof is similar and is left to the reader.

5. SorLuTions WHICH ARE NON-DECREASING IN TIME

In this section, we consider solutions which are non-decreasing in time. In the
semilinear case, a similar result was obtained in [18] Remarks 4.3b and 5.3b.

Theorem 5.1. Let v be a bounded continuous weak solution of the equation
(5.1) v =AW™) + 0P

in R™ x (0, c0), with m > 0,

1<£ when n <2, 1< =<
m

Suppose that for each x € R", the function ¢ — v(x, t) is a non-decreasing function,
then v is identically zero on R™ x (0, 00).

Proof. Let
w(z) = tlim v(z,t).
Let n(z,t) = @(x)&(t) in (3.1), where ¢ € C{°(R") and £ € C5°(0,1). Then, for
each k. =1,2,3

- /01/ v(z,t+ k)p()g(t) do dt
B /o1 [ @t R0 + o7t + Kpla)€(0) da dr
By letting k& — oo, using the bounded convergence theorem, we obtain
[ wwewe a
:/01 / (@M (@)Ap@)E(t) + P (@)p(2)E(H)) da dt.
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Since ¢ has compact support in (0,1), we have

/ol/n w(z)p(@)¢ (1) do dt = (/ w(x)p(2) dx) (/01 £(t) dt) —0.

Thus, for any £ € C5°(0,1) and ¢ € C§°(R™, we obtain

1
/0 / (" (@) Ap(x) + wP(2)p(a))€(t) da dt =0.

This implies that, for any ¢ € C5°(R"™),

[ @r@ae@) +ur@p@) dz=o,

and w is a non-negative weak solution of the equation Aw™ +wP = 0. Let W = w™.
Then the function W is a non-negative bounded weak solution of the equation

(5.2) AW +WP =0  with P=p/m,

in R™. By the elliptic regularity theory, 1 is smooth in R™. Gidas and Spruck’s result,
[8], tellsus that if 1 < P < (n+2)/(n—2), then W(z) = 0 in R™. This implies that
w(z) =0 in R™. Since v(z,t) is non-negative, ¢ — v(x,t) is non-decreasing and

lim v(z,t) =0,

t—o0
we must have v(z,t) = 0 in R™ x (0, c0). |

The same method also works for solution « of (5.1) in R”} x (0, 0o), which vanishes
on the plane {z; = 0}.

Theorem 5.2. Let v be a bounded continuous weak solution of the equation (5.1)
in R x (0, 00), with m > 0,

1<£ when n <2, 1< —<
m

Suppose that v(x,t) = 0 when x; = 0, and, for each = € R, the function t — v(x, )
is a non-decreasing function, then v is identically zero on R"} x (0, 00).

Proof. By Theorem 2.2, for all ¢ > 1, the functions x — v(x, t) are equicontin-
uous on compact subset of the set {z : z; > 0}. If

w(z) = lim v(z,1),

then w(xz) = 0 when xz; = 0. It follows that the function W = w™ also vanishes on
the plane {x : 21 = 0} and is a solution of (5.2) in in R". Gidas and Spruck, [9],
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also proved that if W is a non-negative solution of (5.2) in R” and W(z) = 0 on
{x1 =0}, then W (x) = 0 in R’}. We have the same conclusion as in Theorem 5.1. m

Using Theorem 5.1 and 5.2, we obtain results for solutions which are non-decreasing
in time. The conditions for the domain €2, the coefficients a*/ and h, and the solution
u are the same as in previous section.

Theorem 5.3. Let u be a positive solution of (4.1). When 0 < m < 1, we assume
that

2
p>1 when n <2, 1<p<m<n+2> when n > 3.
n_
When m > 1, we assume that
2
p>m when n <2, m<p<m<n—+2> when n > 3.

If u is non-decreasing in time and « blows up at 7', then there is a constant C' > 0
such that
maxu(z,t) < C|T —t|~1/ =1,
x

Proof.  Suppose that for each x € Q, the function ¢t — u(x, t) is non-decreasing.
For for each £ = 1,2, 3..., let v, be the function in (4.9) or (4.16). Then, for each
fixed y in the domain of vy, the function s — v (y, s) is non-decreasing. By Theorem
2.1 or Theorem 2.2, v converges uniformly to a function v in compact subsets in
R™ x (=00, 00) or R x (—o00,00). Thus, s — v(y,s) is also non-decreasing. The
rest of the proof is almost the same as in Theorem 4.2. ]
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