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LEVITIN-POLYAK WELL-POSEDNESS FOR GENERALIZED
QUASI-VARIATIONAL INCLUSION AND DISCLUSION PROBLEMS

AND OPTIMIZATION PROBLEMS WITH CONSTRAINTS

San-Hua Wang and Nan-Jing Huang*

Abstract. In this paper, Levitin-Polyak well-posedness for generalized quasi-
variational inclusion and disclusion problems are introduced and studied. Nec-
essary and sufficient conditions for Levitin-Polyak well-posedness of these
problems are proved. Moreover, Levitin-Polyak well-posedness for optimiza-
tion problems with generalized quasi-variational inclusion problems, general-
ized quasi-variational disclusion problems and scalar generalized quasi-equilibrium
problems as constraints are also given under some suitable conditions.

1. INTRODUCTION

It is well known that the well-posedness is very important for both optimiza-
tion theory and numerical methods of optimization problems, which guarantees that,
for every approximating solution sequence, there is a subsequence which converges
to a solution. Well-posedness of unconstrained and constrained scalar optimization
problems was first introduced and studied by Tykhonov [45] and Levitin and Polyak
[21], respectively. Since then, various concepts of well-posedness have been intro-
duced and extensively studied for minimization problems and vector optimization
problems by many authors (see, for example, [2, 6, 7, 15, 38, 40, 42, 47, 48] and
the references therein).

In recent years, the concept of well-posedness has been generalized to several
related problems: variational inequality problems [4, 5, 9, 11, 12, 24, 25, 34, 44],
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saddle point problems [3], Nash equilibrium problems [24, 35-37, 39], inclusion
problems [5, 11, 19, 20], and fixed point problems [5, 11, 19, 20, 41, 46].

Recently, Fang et al. [10] generalized the concept of well-posedness to equi-
librium problems and optimization problems with equilibrium constraints and es-
tablished some metric characterizations of well-posedness for equilibrium problems
and optimization problems with equilibrium constraints. Kimura et al. [17] further
generalized it to vector equilibrium problems. Long et al. [32] generalized the
concept of Levitin-Polyak well-posedness to equilibrium problems with functional
constraints and obtained some metric characterizations and sufficient conditions for
Levitin-Polyak well-posedness of equilibrium problems with functional constraints.
Also, Long and Huang [33] introduced and studied α−well-posedness for sysmetric
quasi-equilibrium problems. Li and Li [22] introduced and studied Levitin-Polyak
well-posedness for vector equilibrium problems. Huang et al. [14] generalized it
to vector quasi-equilibrium problems. Li et al. [23] further generalized it to gener-
alized vector quasi-equilibrium problems. They obtained some criteria and metric
characterizations of the Levitin-Polyak well-posedness and established the relations
between Levitin-Polyak well-posedness of optimization problems and Levitin-Polyak
well-posedness of generalized vector quasi-equilibrium problems. Very recently, Lin
and Chuang [31] further extended the notion of well-posedness to variational inclu-
sion and disclusion problems and optimization problems with variational inclusion
and disclusion problems as constraints. They proved some results concerned with
the well-posedness in the generalized sense for variational inclusion problems and
variational disclusion problems, the well-posedness for optimization problems with
variational inclusion problems, variational disclusion problems and scalar equilib-
rium problems as constraints.

On the other hand, it is well known that the quasi-variational inclusion problem
is an important generalization of the variational inclusion problem, which contains
lots of important problems as special cases and has many applications, like varia-
tional disclusion problems, minimax inequalities, equilibrium problems, saddle point
problems, optimization theory, bilevel problems, mathematical program with equi-
librium constraint, variational inequalities, fixed point problems, coincidence point
problems, Ekeland’s variational principle, etc. For details, we refer the reader to
[13, 26-31, 43] and the references therein.

Motivated and inspired by the work mentioned above, in this paper, we shall
investigate Levitin-Polyak well-posedness (for short, LP well-posedness) for general-
ized quasi-variational inclusion and disclusion problems and optimization problems
with generalized quasi-variational inclusion problems, generalized quasi-variational
disclusion problems and scalar generalized quasi-equilibrium problems as constraints.
The results presented in this paper improve and generalize some known results in
Huang et al. [14], Li and Li [22] and Li et al. [23].



Levitin-Polyak Well-posedness for Inclusion Problems 239

2. PRELIMINARIES

In this section, we shall recall some definitions and lemmas used in the sequel.

Definition 2.1. ([1]). Let X and Y be two topological spaces. A multivalued
mapping T : X → 2Y is said to be

(i) upper semi-continuous (for short, u.s.c.) at x ∈ X if, for each open set V in
Y with T (x) ⊆ V , there exists an open neighborhood U(x) of x such that
T (x′) ⊆ V for all x′ ∈ U(x);

(ii) lower semi-continuous (for short, l.s.c.) at x ∈ X if, for each open set V in
Y with T (x) ∩ V �= ∅, there exists an open neighborhood U(x) of x such
that T (x′) ∩ V �= ∅ for all x′ ∈ U(x);

(iii) u.s.c. (resp. l.s.c.) on X if it is u.s.c. (resp. l.s.c.) at every point x ∈ X ;
(iv) continuous on X if it is both u.s.c. and l.s.c. on X ;
(v) closed if the graph of T is closed, i.e., the set Gr(T ) = {(x, y) ∈ X × Y :

y ∈ T (x)} is closed in X × Y ;
(vi) open if the graph of T is open in X × Y .

Lemma 2.1. ([1]). Let X and Y be two topological spaces, T : X → 2Y a
multivalued mapping.

(i) If T is u.s.c. and closed-valued, then T is closed;
(ii) If T is closed and Y is compact, then T is u.s.c.;
(iii) If T is compact-valued, then T is u.s.c. at x ∈ X if and only if for any net

{xα} ⊆ X with xα → x and for any net {yα} ⊆ Y with yα ∈ T (xα), there
exist a subnet {yβ} of {yα} and y ∈ T (x) such that yβ → y;

(iv) T is l.s.c. at x ∈ X if and only if for any y ∈ T (x) and for any net {x α}
with xα → x, there exists a net {yα} with yα ∈ T (xα) such that yα → y.

Definition 2.2. Let A and B be nonempty subsets of a metric space (E, d).
The Hausdorff distance H(·, ·) between A and B is defined by

H(A, B) := max{e(A, B), e(B, A)},

where e(A, B) := supa∈A d(a, B) with d(a, B) = inf b∈B d(a, b). Let {An} be a
sequence of nonempty subsets of E . We say that An converges to A in the sense
of Hausdorff metric if H(An, A) → 0. It is easy to see that e(An, A) → 0 if and
only if d(an, A) → 0 for all selection an ∈ An. For more details on this topic, we
refer the readers to [18].
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3. LP WELL-POSEDNESS FOR GENERALIZED QUASI-VARIATIONAL

INCLUSION AND DISCLUSION PROBLEMS

Throughout this paper, unless otherwise specified, we use the following notations
and assumptions. Let (E, d) be a metric space, X ⊆ E and X0 ⊆ X be nonempty
closed subsets. Let F and Z be Hausdorff topological vector spaces and Y ⊆ F
be a nonempty closed subset. Let K : X � X , T : X � Y and G1, G2 :
X × Y × X � Z be multivalued mappings. Let e : X → Z be a continuous
mapping.

We consider the following generalized quasi-variational inclusion and disclusion
problems.

(GQVIP): Find x̄ ∈ X0 such that x̄ ∈ K(x̄) and there exists ȳ ∈ T (x̄) satisfying

0 ∈ G1(x̄, ȳ, u), ∀u ∈ K(x̄).

(GQVDP): Find x̄ ∈ X0 such that x̄ ∈ K(x̄) and there exists ȳ ∈ T (x̄)
satisfying

0 �∈ G2(x̄, ȳ, u), ∀u ∈ K(x̄).

Denote by S1 and S2 the solution sets of (GQVIP) and (GQVDP), respectively.

Definition 3.1. A sequence {xn} ⊆ X is called

(i) an LP approximating solution sequence for (GQVIP) if there exist a sequence
{εn} of real positive numbers with εn → 0 and a sequence {yn} with yn ∈
T (xn) such that, for each n,

d(xn, X0) ≤ εn,(3.1)

d(xn, K(xn)) ≤ εn,(3.2)

0 ∈ G1(xn, yn, u) + εne(xn), ∀u ∈ K(xn);(3.3)

(ii) an LP approximating solution sequence for (GQVDP) if there exist a sequence
{εn} of real positive numbers with εn → 0 and a sequence {yn} with yn ∈
T (xn) such that, for each n,

(3.4) 0 �∈ G2(xn, yn, u) + εne(xn), ∀u ∈ K(xn).

and (3.1) and (3.2) hold.

Definition 3.2. (GQVIP)(resp. (GQVDP)) is said to be LP well-posed if the
solution set S1 (resp. S2) of (GQVIP)(resp. (GQVDP)) is nonempty and every LP
approximating solution sequence for (GQVIP) (resp. (GQVDP)) has a subsequence
which converges to some point of S1 (resp. S2).
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Remark 3.1. (i) If F = E , Y = X0 = X , T = I(identical mapping) and for
any x, u ∈ X, y ∈ Y , e(x) ∈ intC(x) and

G1(x, y, u) = G1(x, u) = G(x, u) + [intC(x)]c,

where Ac denotes the coset of A and G : X × X � Z and C : X � Z are
multivalued mappings such that for each x ∈ X , C(x) is a proper, closed and
convex cone with nonempty interior, i.e., intC(x) �= ∅, then the LP well-posedness
for (GQVIP) reduces to the LP well-posedness for (GVQEP 1) introduced by Li et
al. [23]. Moreover, if

G2(x, y, u) = G2(x, u) = G(x, u) + [C(x)]c, ∀(x, y, u) ∈ X × Y × X,

and the mapping e(x) is replaced by −e(x), then the LP well-posedness for (GQVDP)
reduces to the LP well-posedness for (GVQEP 2) introduced by Li et al. [23].

(ii) If E is a real Banach space, F = E , Y = X0 = X , T = I and for any
x, u ∈ X, y ∈ Y , e(x) = e ∈ intC and

G1(x, y, u) = G1(x, u) = f(x, u) + [intC]c,

where C is a pointed, closed and convex cone in Z with intC �= ∅ and f : X×X →
Z is a vector-valued mapping, then the LP well-posedness for (GQVIP) reduces to
the well-posedness for (VQE) introduced by Huang et al. [14].

(iii) If Y = F = X = E , T = I and for any x, u ∈ X, y ∈ Y , e(x) ∈ intC(x),
K(x) = X0 and

G1(x, y, u) = G1(x, u) = f(x, u) + [intC(x)]c,

where f : E×E → Z is a vector-valued mapping and C : E � Z is a multivalued
mapping such that for each x ∈ X , C(x) is a pointed, closed and convex cone with
intC(x) �= ∅, then the LP well-posedness for (GQVIP) reduces to the type I LP
well-posedness for (VEP) introduced by Li and Li [22].

(iv) If E is a real Banach space, X0 = X , Z = R, F = Y = E∗(the dual space
of E) and for all x, u ∈ X, y ∈ Y , e(x) = −1 and

G1(x, y, u) = 〈y, η(x, u)〉+ f(x)− f(u) + R+,

where R+ = [0, +∞) and η : X × X → E is a vector-valued mapping and
f : X → R is a real-valued function, then the LP well-posedness for (GQVIP)
reduces to the well-posedness for (MQVLI) introduced by Ceng et al. [4].

(v) If E is a normed space, F = E , Y = X , Z = R, T = I and for any
x, u ∈ X, y ∈ Y , e(x) = 1, K(x) = X0 and

G1(x, y, u) = G1(x, u) = f(x, u)− R+,
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where f : X × X → R is a real-valued function, then the LP well-posedness for
(GQVIP) reduces to the type I LP well-posedness for (EP) introduced by Long et
al. [32].

(vi) If E is a real reflexive Banach space, F = E , Y = X0 = X , Z = R,
T = I and for any x, u ∈ X, y ∈ Y , e(x) = 1 and

G1(x, y, u) = G1(x, u) = 〈A(x), u− x〉 − R+,

where A : X → E∗ is a vector-valued mapping and E∗ is the dual spaces of E , then
the LP well-posedness for (GQVIP) reduces to the well-posedness in the generalized
sense for (QVI) introduced by Lignola [25].

For each ε > 0, let

M1(ε) ={x ∈ X : d(x, X0) ≤ ε, d(x, K(x)) ≤ ε

and ∃ y ∈ T (x) s.t. 0 ∈ G1(x, y, u) + εe(x), ∀u ∈ K(x)};
M2(ε) ={x ∈ X : d(x, X0) ≤ ε, d(x, K(x)) ≤ ε

and ∃ y ∈ T (x) s.t. 0 �∈ G2(x, y, u) + εe(x), ∀u ∈ K(x)}.
Define the approximating solution sets for (GQVIP) and (GQVDP), respectively,

by
Ω1(ε) = M1(ε) ∪ S1 and Ω2(ε) = M2(ε) ∪ S2.

Next, we consider the properties for Ω1(ε) and Ω2(ε).

Property 3.1. Assume that K is closed-valued and T is compact-valued. For
each (x, u) ∈ X × X ,

(i) if y � G1(x, y, u) is closed, then S1 = ∩ε>0Ω1(ε);

(ii) if y � G2(x, y, u) is open, then S2 = ∩ε>0Ω2(ε).

Proof. (i) Clearly, S1 ⊆ ∩ε>0Ω1(ε). Hence, we only need to show that
∩ε>0Ω1(ε) ⊆ S1. Suppose to the contrary that there exists some x∗ ∈ ∩ε>0Ω1(ε)
such that x∗ �∈ S1. Then, for each ε > 0, x∗ ∈ Ω1(ε)\S1. Hence, for each n ∈ N ,
x∗ ∈ Ω1( 1

n)\S1, and so there exists yn ∈ T (x∗) such that

d(x∗, X0) ≤ 1
n ,(3.5)

d(x∗, K(x∗)) ≤ 1
n ,(3.6)

0 ∈ G1(x∗, yn, u) + 1
ne(x∗), ∀u ∈ K(x∗).(3.7)
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Note that X0 and K(x∗) are closed sets. Then, by (3.5) and (3.6), we have x∗ ∈ X0

and x∗ ∈ K(x∗). Since {yn} ⊆ T (x∗) and T (x∗) is a compact set, there exist
y∗ ∈ T (x∗) and a subsequence {ynk

} of {yn} such that ynk
→ y∗ as k → ∞, and

so, for each k ∈ N ,

0 ∈ G1(x∗, ynk
, u) +

1
nk

e(x∗), ∀u ∈ K(x∗).

For each u ∈ K(x∗), since y � G1(x∗, y, u) is closed, we get

0 ∈ G1(x∗, y∗, u).

Thus x∗ ∈ S1. This is a contradiction and so ∩ε>0Ω1(ε) ⊆ S1. Therefore S1 =
∩ε>0Ω1(ε).

(ii) Let G1 : X × Y × X � Z be defined by G1(x, y, u) = Z\G2(x, y, u)
for each (x, y, u) ∈ X × Y × X . Then S1 = S2 and M1(ε) = M2(ε), and so
Ω1(ε) = Ω2(ε). Since y � G2(x, y, u) is open, y � G1(x, y, u) is closed. By (i),
the proof is completed.

Example 3.1. Let E = F = Z = R, X = Y = [0, +∞), and X0 = [0, 1]. For
each x, u ∈ X, y ∈ Y , let

e(x) = 1, K(x) = [x, +∞), T (x) = [0, x],
G1(x, y, u) = (−∞, x − y + u], G2(x, y, u) = (x − y + u, +∞).

Then, it is easy to see that all the conditions of Property 3.1 are satisfied. Moreover,
by simple computation, we have, for each i = 1, 2, Si = [0, 1] and Ωi(ε) = [0, 1+ε]
for all ε > 0, and so Si = ∩ε>0Ωi(ε), i = 1, 2.

Property 3.2. Assume that K is continuous and closed-valued, T is u.s.c. and
compact-valued.

(i) If G1 is closed, then S1 is a closed subset of X0; Furthermore, if K is also
compact-valued, then, for each ε > 0, M1(ε) is a closed subset of X and so
is Ω1(ε);

(ii) if G2 is open, then S2 is a closed subset of X0; Furthermore, if K is also
compact-valued, then, for each ε > 0, M2(ε) is a closed subset of X and so
is Ω2(ε).

Proof. (i) Let x ∈ clS1. Then, there exists a sequence {xn} in S1 such that
xn → x as n → ∞. It follows that, for each n ∈ N , xn ∈ X0, xn ∈ K(xn) and
there exists some yn ∈ T (xn) such that

0 ∈ G1(xn, yn, u), ∀u ∈ K(xn).
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Since X0 is closed, we have x ∈ X0. Moreover, since K is u.s.c. and closed-
valued, K is closed and so x ∈ K(x). Since T is u.s.c. and compact-valued, there
exist a subsequence {ynk

} of {yn} and y ∈ T (x) such that ynk
→ y as k → ∞. It

follows that, for each k ∈ N ,

0 ∈ G1(xnk
, ynk

, u), ∀u ∈ K(xnk
).

For each u ∈ K(x), since K is l.s.c., there exists a sequence {uk} with uk ∈
K(xnk

) such that uk → u as k → ∞, and so

0 ∈ G1(xnk
, ynk

, uk), ∀ k ∈ N.

Since G1 is closed, we get0 ∈ G1(x, y, u) and so x ∈ S1. This implies that S1 is
a closed subset of X0.

Next, suppose that K is also compact-valued. We show that, for each ε > 0,
M1(ε) is a closed subset of X . Indeed, if x ∈ cl(M1(ε)) ⊆ X , then there exists
a sequence {xn} in M1(ε) such that xn → x as n → ∞. It follows that, for each
n ∈ N , there exists yn ∈ T (xn) such that

d(xn, X0) ≤ ε,(3.8)

d(xn, K(xn)) ≤ ε,(3.9)

0 ∈ G1(xn, yn, u) + εe(xn), ∀u ∈ K(xn).(3.10)

By (3.8), we have d(x, X0) ≤ ε. By (3.9), for each n ∈ N , there exists un ∈ K(xn)
such that

(3.11) d(xn, un) ≤ ε +
1
n

.

Since K is u.s.c. and compact-valued, there exist a subsequence {unk
} of {un}

and u ∈ K(x) such that unk
→ u as k → ∞. It follows that

d(x, u) = lim
k→∞

d(xnk
, unk

) ≤ ε.

Since u ∈ K(x), we get

(3.12) d(x, K(x)) ≤ ε.

By (3.10) and similar arguments as in the first part of the proof, we can show that
there exists y ∈ T (x) such that

0 ∈ G1(x, y, u) + εe(x), ∀u ∈ K(x).
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Thus x ∈ M1(ε) and so M1(ε) is a closed subset of X . Now it follows from the
closedness of S1 that Ω1(ε) is a closed subset of X .

(ii) Let G1 : X × Y × X � Z be defined by G1(x, y, u) = Z\G2(x, y, u)
for each (x, y, u) ∈ X × Y × X . Then S1 = S2 and M1(ε) = M2(ε), and so
Ω1(ε) = Ω2(ε). Since G2 is open, we know that G1 is closed. By (i), it is easy to
see that conclusions of (ii) hold. This completes the proof.

Remark 3.2. In Property 3.2, if K is a constant mapping, i.e., K(x) ≡ X̃ (X̃
is a subset of X) for all x ∈ X , then X̃ is only need to be assumed to be closed
but not necessarily compact, and the condition “G1 is closed” can be weakened by
“∀u ∈ X̃, (x, y) � G1(x, y, u) is closed” and the condition “G2 is open” can be
weakened by “∀u ∈ X̃, (x, y) � G2(x, y, u) is open”.

If E is finite-dimensional, then the assumption that “K is also compact-valued”
in Property 3.2 can be removed.

Property 3.3. Let E be finite-dimensional. Assume that K is continuous and
closed-valued, T is u.s.c. and compact-valued. For each ε > 0,

(i) if G1 is closed, then S1 is a closed subset of X0, M1(ε) and Ω1(ε) are closed
subsets of X ;

(ii) if G2 is open, then S2 is a closed subset of X0, M2(ε) and Ω2(ε) are closed
subsets of X .

Proof. We can proceed the proof exactly as that of Property 3.2 except for using
the assumption that E is finite-dimensional to get (3.12). In fact, since xn → x, it
follows that {xn} is bounded. By (3.11), we know that {un} is also bounded. Thus,
there exists a subsequence {unk

} of {un} such that {unk
} converges to some u ∈ X

as k → ∞. Since K is u.s.c. and closed-valued, K is closed and so u ∈ K(x). It
follows that d(x, u) = limk→∞ d(xnk

, unk
) ≤ ε and so d(x, K(x)) ≤ ε, i.e., (3.12)

holds. This completes the proof.

Remark 3.3. In Property 3.3, if K is a constant mapping, i.e., K(x) ≡ X̃ (X̃
is a subset of X) for all x ∈ X , then X̃ is only need to be assumed to be closed, and
the condition “G1 is closed” can be weakened by “∀u ∈ X̃, (x, y) � G1(x, y, u)
is closed” and the condition “G2 is open” can be weakened by “∀u ∈ X̃, (x, y) �
G2(x, y, u) is open”.

Theorem 3.1. If (GQVIP) is LP well-posed, then we have
(i) for each ε > 0, Ω1(ε) �= ∅;

(ii) H(Ω1(ε), S1) → 0 as ε → 0.

Proof. Clearly, S1 ⊆ Ω1(ε) for all ε > 0. If (GQVIP) is LP well-posed, then
S1 �= ∅ and so Ω1(ε) �= ∅ for all ε > 0.
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Now we show that

(3.13) H(Ω1(ε), S1) → 0 as ε → 0.

For each ε > 0, since S1 ⊆ Ω1(ε), we have e(S1, Ω1(ε)) = 0 and so

H(Ω1(ε), S1) = max{e(Ω1(ε), S1), e(S1, Ω1(ε)} = e(Ω1(ε), S1).

To prove (3.13), it is sufficient to show that e(Ω1(ε), S1) → 0 as ε → 0. Suppose it
is not true. Then there exist a real number r > 0, a sequence {εn} of real positive
numbers with εn → 0 as n → ∞ and a sequence {xn} with xn ∈ Ω1(εn) such that

(3.14) xn �∈ S1 + B(0, r), ∀n ∈ N,

where B(0, r) denotes the closed ball centered at 0 with radius r. For each n ∈ N ,
since xn ∈ Ω1(εn) and xn �∈ S1 + B(0, r), we have xn ∈ M1(εn). Hence {xn} is
an LP approximating solution sequence for (GQVIP). Since (GQVIP) is LP well-
posed, the sequence {xn} has a subsequence {xnk

} converging to some point of
S1. This contradicts to (3.14) and so e(Ω1(ε), S1) → 0 as ε → 0. This completes
the proof.

By Property 3.2 and Theorem 3.1, we can get the following result.

Corollary 3.1. Let X0 be a nonempty compact subset of X . Assume that K is
continuous and closed-valued, T is u.s.c. and compact-valued and G 1 is closed. If
(GQVIP) is LP well-posed, then we have

(i) S1 is a nonempty compact subset of X 0;
(ii) for each ε > 0, Ω1(ε) �= ∅;
(iii) H(Ω1(ε), S1) → 0 as ε → 0.

Proof. By the definition of LP well-posedness and Property 3.2, S1 is a
nonempty closed subset of X0. Since X0 is compact, S1 is a nonempty compact
subset of X0. By Theorem 3.1, the proof is completed.

Remark 3.4. In Corollary 3.1,
(i) the assumption “X0 is a nonempty compact subset of X” can be replaced by

“X is a nonempty compact subset of E”. Indeed, if X is a nonempty compact
subset of E , then, by the closedness of X0, X0 is a nonempty compact subset
of X ;

(ii) if K is a constant mapping, i.e., K(x) ≡ X̃ (X̃ is a subset of X) for all x ∈ X ,
then X̃ is only need to be assumed to be closed, and the condition “G1 is
closed” can be weakened by “∀u ∈ X̃, (x, y) � G1(x, y, u) is closed”.

Theorem 3.2. Assume that
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(i) S1 is a nonempty compact subset of X 0;
(ii) H(Ω1(ε), S1) → 0 as ε → 0.

Then (GQVIP) is LP well-posed.

Proof. Let {xn} ⊆ X be an approximating solution sequence for (GQVIP).
Then, there exist a sequence {εn} of real positive numbers with εn → 0 and a
sequence {yn} with yn ∈ T (xn) such that, for each n ∈ N , d(xn, X0) ≤ εn and
d(xn, K(xn)) ≤ εn with

0 ∈ G1(xn, yn, u) + εne(xn), ∀u ∈ K(xn).

Thus, xn ∈ M1(εn) ⊆ Ω1(εn) and so, by (ii), we have d(xn, S1) → 0 as n → ∞.
Since S1 is compact, for each n ∈ N , there exists x̄n ∈ S1 such that

(3.15) d(xn, x̄n) = d(xn, S1) → 0 as n → ∞.

Again from the compactness of S1, there exist a subsequence {x̄nk
} of {x̄n} and

x̄ ∈ S1 such that x̄nk
→ x̄ as k → ∞. Hence, by (3.15), the corresponding

subsequence {xnk
} of {xn} converges to x̄. Therefore, (GQVIP) is LP well-posed.

This completes the proof.

Example 3.2. Let E = F = Z = R, X = Y = [0, +∞), and X0 = [0, 1]. For
each x, u ∈ X and y ∈ Y , let

e(x) = 1, K(x) = [0, x], T (x) = [2x, +∞), G1(x, y, u) = [u− y, u + x].

Then, it is easy to compute that S1 = [0, 1] and Ω1(ε) = [0, 1 + ε] for all ε > 0.
It follows that S1 is compact and H(Ω1(ε), S1) → 0 as ε → 0. By Theorem 3.2,
(GQVIP) is LP well-posed.

The following example illustrates that the compactness condition in Theorem
3.2 is essential.

Example 3.3. Let E, F, Z, X, Y, e,K, T and G1 be as in Example 3.2. Let
X0 = [0, +∞). Then, it is easy to compute that S1 = [0, +∞) and Ω1(ε) =
[0, +∞) for all ε > 0. Thus H(Ω1(ε), S1) → 0 as ε → 0. Let xn = n for
n = 1, 2, · · · . Then, {xn} is an approximating solution sequence for (GQVIP),
which has no convergent subsequence. This implies that (GQVIP) is not LP well-
posed.

From Theorem 3.2, we can get the following corollary.

Corollary 3.2. Let X0 be a nonempty compact subset of X . Let K be continu-
ous and closed-valued, T be u.s.c. and compact-valued and G 1 be closed. Assume
that
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(i) ∩ε>0Ω1(ε) �= ∅;
(ii) H(Ω1(ε), S1) → 0 as ε → 0.

Then (GQVIP) is LP well-posed.

Proof. By (i) and Properties 3.1 and 3.2, S1 is a nonempty closed subset of X0.
Since X0 is compact, S1 is a nonempty compact subset of X0. Then, by Theorem
3.2, (GQVIP) is LP well-posed. This completes the proof.

Remark 3.5. In Corollary 3.2, if K is a constant mapping, i.e., K(x) ≡ X̃ (X̃
is a subset of X) for all x ∈ X , then X̃ is only need to be assumed to be closed, and
the condition “G1 is closed” can be weakened by “∀u ∈ X̃, (x, y) � G1(x, y, u)
is closed”.

From Theorems 3.1 and 3.2, we have the following theorem which gives a metric
characterization for LP well-posedness of (GQVIP).

Theorem 3.3. Assume that S1 be a nonempty compact subset of X0. Then
(GQVIP) is LP well-posed if and only if

Ω1(ε) �= ∅, ∀ ε > 0, and H(Ω1(ε), S1) → 0 as ε → 0.

Theorem 3.4. Let K be continuous and closed-valued, T be u.s.c. and compact-
valued and G1 be closed. Assume that

(i) E is finite-dimensional;
(ii) S1 �= ∅;
(iii) there exists some ε̄ > 0 such that Ω1(ε̄) is bounded and Ω1(ε′) ⊆ Ω1(ε̄) for

every ε′ ∈ (0, ε̄).

Then the following conclusions hold:

(a) (GQVIP) is LP well-posed;

(b) Ω1(ε) �= ∅, ∀ ε > 0, and H(Ω1(ε), S1) → 0 as ε → 0.

Proof. (a) Let {xn} ⊆ X be an LP approximating solution sequence for
(GQVIP). Then, there exist a sequence {εn} of real positive numbers with εn → 0
and a sequence {yn} with yn ∈ T (xn) such that (3.1), (3.2) and (3.3) hold. Thus,
for each n ∈ N , xn ∈ M1(εn) ⊆ Ω1(εn). Since εn → 0, there exists n0 ∈ N such
that εn < ε̄ for all n ≥ n0. Hence, xn ∈ Ω1(εn) ⊆ Ω1(ε̄) for all n ≥ n0, and
so {xn} is a bounded sequence in E . Since E is finite-dimensional, there exists a
subsequence {xnk

} of {xn} such that xnk
→ x̄ ∈ X as k → ∞. Then, by (3.1),

(3.2) and (3.3), we have, for each k ∈ N ,
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d(xnk
, X0) ≤ εnk

,(3.16)

d(xnk
, K(xnk

)) ≤ εnk
,(3.17)

0 ∈ G1(xnk
, ynk

, u) + εnk
e(xnk

), ∀u ∈ K(xnk
).(3.18)

Since X0 is closed and (3.16) holds, we have x̄ ∈ X0. By (3.17), for each k ∈ N ,
there exists some uk ∈ K(xnk

) such that

d(xnk
, uk) ≤ 2d(xnk

, K(xnk
)) ≤ 2εnk

.

Since xnk
→ x̄ and εnk

→ 0, we get uk → x̄ as k → ∞. Since K is u.s.c. and
closed-valued, K is closed and so x̄ ∈ K(x̄). Furthermore, by similar arguments
as in the proof of Property 3.2, we can show that there exists some ȳ ∈ T (x̄) such
that

0 ∈ G1(x̄, ȳ, u), ∀u ∈ K(x̄).

Therefore x̄ ∈ S1, and this implies that (GQVIP) is LP well-posed.
(b) By (a), (GQVIP) is LP well-posed. Then, by Theorem 3.1, we have Ω1(ε) �=

∅, ∀ ε > 0 and H(Ω1(ε), S1) → 0 as ε → 0. This completes the proof.

Remark 3.6. In Theorem 3.4, if K is a constant mapping, i.e., K(x) ≡ X̃ (X̃
is a subset of X) for all x ∈ X , then X̃ is only need to be assumed to be closed, and
the condition “G1 is closed” can be weakened by “∀u ∈ X̃, (x, y) � G1(x, y, u)
is closed”.

Remark 3.7. (a) By Lemma 3.2 of Lin et al. [29] and Remark 3.1, it is easy to
see that Theorems 3.4 generalizes Theorems 3.4 of Li et al. [23]; (b) By Remarks
3.1 and 3.6, we know that Theorems 3.4 generalizes Theorems 3.3 of Li and Li [22];
(c) By Lemma 2.1(ii) and Remark 3.1, we can see that Theorems 3.4 generalizes
Theorems 3.4 of Huang et al. [14].

Example 3.4. Let E = F = Z = R, X = Y = [0, +∞), and X0 = [0, 1]. For
each x, u ∈ X, y ∈ Y , let

e(x) = 1, K(x) = [x, +∞), T (x) = [0, 2x],

G1(x, y, u) = (−∞, y − x + u].

By simple computation, we have S1 = [0, 1] and Ω1(ε) = [0, 1 + ε] for all ε > 0.
Then, it is easy to see that all the conditions of Theorem 3.4 are satisfied. By
Theorem 3.4, (GQVIP) is LP well-posed and H(Ω1(ε), S1) → 0 as ε → 0.

The following example illustrates that the boundedness condition in Theorem
3.4 is essential.
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Example 3.5. Let E, F, Z, X, Y, e,K, T and G1 be as in Example 3.4. Let
X0 = [0, +∞). By simple computation, we have S1 = [0, +∞) and Ω1(ε) =
[0, +∞) for all ε > 0. Then, it is easy to see that all the conditions of Theorem 3.4
are satisfied except for the boundedness condition. Let xn = n for n = 1, 2, · · · .
Then, {xn} is an LP approximating solution sequence for (GQVIP), which has no
convergent subsequence. This implies that (GQVIP) is not LP well-posed.

By Theorems 3.1-3.4, we can get the following results.

Theorem 3.5. If (GQVDP) is LP well-posed, then we have
(i) for each ε > 0, Ω2(ε) �= ∅;

(ii) H(Ω2(ε), S2) → 0 as ε → 0.

Theorem 3.6. Assume that
(i) S2 is a nonempty compact subset of X 0;

(ii) H(Ω2(ε), S2) → 0 as ε → 0.

Then (GQVDP) is LP well-posed.

Theorem 3.7. Assume that S2 be a nonempty compact subset of X0. Then
(GQVDP) is LP well-posed if and only if

Ω2(ε) �= ∅, ∀ ε > 0, and H(Ω2(ε), S2) → 0 as ε → 0.

Theorem 3.8. Let K be continuous and closed-valued, T be u.s.c. and compact-
valued and G2 be open. Assume that

(i) E is finite-dimensional;
(ii) S2 �= ∅;
(iii) there exists some ε̄ > 0 such that Ω2(ε̄) is bounded and Ω2(ε′) ⊆ Ω2(ε̄) for

every ε′ ∈ (0, ε̄).

Then the following conclusions hold:
(a) (GQVDP) is LP well-posed;
(b) Ω2(ε) �= ∅, ∀ ε > 0, and H(Ω2(ε), S2) → 0 as ε → 0.

Remark 3.8. In Theorem 3.8, if K is a constant mapping, i.e., K(x) ≡ X̃ (X̃
is a subset of X) for all x ∈ X , then X̃ is only need to be assumed to be closed, and
the condition “G2 is open” can be weakened by “∀u ∈ X̃, (x, y) � G2(x, y, u) is
open”.

Remark 3.9. By Lemma 3.1 of Lin et al. [29] and Remark 3.1, it is easy to
see that Theorems 3.8 is a generalization of Theorems 3.5 due to Li et al. [23].
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4. LP WELL-POSEDNESS FOR OPTIMIZATION PROBLEMS WITH CONSTRAINTS

In this section, we study LP well-posedness for optimization problems with
generalized quasi-variational inclusion problems, generalized quasi-variational dis-
clusion problems and scalar generalized quasi-equilibrium problems as constraints.

Let W be a normed space and C ⊆ W be a pointed, closed and convex cone
with intC �= ∅. Let H : X � W be a multivalued mapping with nonempty values
and f : X × Y × X → R be a real-valued function. We consider the following
problems:

(OPVI) Min H(x) subject to x ∈ S1;

(OPVD) Min H(x) subject to x ∈ S2;

(OPEC) Min H(x) subject to x ∈ S3, where

S3 = {x ∈ X0 : x ∈ K(x) and ∃ y ∈ T (x) s.t. f(x, y, u) ≥ 0, ∀u ∈ K(x)}.

Suppose that S1, S2 and S3 are nonempty closed subsets of X0. A point
p ∈ H(S1) (resp. H(S2), H(S3)) is called a minimal point of H(S1) (resp.
H(S2), H(S3)) if H(S1) ∩ (p − C\{0}) = ∅ (resp. H(S2) ∩ (p − C\{0}) =
∅, H(S3)∩ (p−C\{0}) = ∅)). A point x ∈ S1 (resp. S2, S3) is called an efficient
solution of (OPVI) (resp. (OPVD), (OPEC)) if there exists p ∈ H(x) such that p

is a minimal point of H(S1) (resp. H(S2), H(S3)).
For each p, q ∈ W and each δ > 0 and ε > 0, let

M3(ε) := {x ∈ X : d(x, X0) ≤ ε, d(x, K(x)) ≤ ε and

∃ y ∈ T (x) s.t. f(x, y, u) + ε ≥ 0, ∀u ∈ K(x)};
A(p, q, δ) := {x ∈ X : H(x) ∩ (p + δq − C) �= ∅};

L1(p, q, δ, ε) := A(p, q, δ)∩ Ω1(ε);

L2(p, q, δ, ε) := A(p, q, δ)∩ Ω2(ε);

L∗
1(p, q, δ, ε) := A(p, q, δ)∩ M1(ε);

L∗
2(p, q, δ, ε) := A(p, q, δ)∩ M2(ε);

L3(p, q, δ, ε) := A(p, q, δ)∩ M3(ε).

Clearly, we have the following inclusions:

L∗
1(p, q, δ, ε) ⊆ L1(p, q, δ, ε) ⊆ A(p, q, δ)

and
L∗

2(p, q, δ, ε) ⊆ L2(p, q, δ, ε) ⊆ A(p, q, δ).
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Definition 4.1. Let x be an efficient solution of (OPVI) (resp. (OPVD),
(OPEC)). A sequence {xn} ⊆ X is said to be an LP approximating solution se-
quence for (OPVI) (resp. (OPVD), (OPEC)) at x if

(i) there exist a sequence {kn} in W with kn → 0 and p ∈ H(x) with p is a
minimal point of H(S1)(resp. H(S2), H(S3)) such that H(xn) ∩ (p + kn −
C) �= ∅ for all n ∈ N ;

(ii) there exists a sequence {εn} of real positive numbers with εn → 0 such that
xn ∈ M1(εn) (resp. M2(εn), M3(εn)) for all n ∈ N .

Definition 4.2. Let q ∈ intC and let x be an efficient solution of (OPVI) (resp.
(OPVD), (OPEC)). Then (OPVI) (resp. (OPVD), (OPEC)) is said to be LP well-
posed at x if every LP approximating solution sequence for (OPVI) (resp. (OPVD),
(OPEC)) at x converges to x.

Remark 4.1. Definitions of LP well-posedness for (OPVI), (OPVD) and (OPEC)
are similar to ones defined by Lin and Chuang [31].

The following lemma is a useful tool in this paper.

Lemma 4.2. ([8]). Let {kn} ⊆ W be any sequence with kn → 0. Then, for
each q ∈ intC, there exists a sequence {δn} of real positive numbers with δn → 0
such that δnq − kn ∈ intC for all n ∈ N .

Theorem 4.1. Let q ∈ intC and let x ∈ S1 be an efficient solution of
(OPVI). Assume that, for each p ∈ H(x) with p is a minimal point of H(S 1),
diam(L1(p, q, δ, ε))→ 0 as (δ, ε) → (0, 0). Then (OPVI) is LP well-posed at x.

Proof. Let {xn} ⊆ X be an LP approximating solution sequence for (OPVI) at
x. Then, we have the following conclusions:

(a) there exist a sequence {kn} in W with kn → 0 and p ∈ H(x) with p is a
minimal point of H(S1) such that H(xn)∩ (p+kn −C) �= ∅ for all n ∈ N ;

(b) there exists a sequence {εn} of real positive numbers with εn → 0 such that
xn ∈ M1(εn) for all n ∈ N .

By (a), for each n ∈ N , there exists pn ∈ H(xn) such that pn ∈ p + kn − C.
Note that {kn} ⊆ W and kn → 0. It follows from Lemma 4.2 that there exists a
sequence {δn} of real positive numbers with δn → 0 such that kn ∈ δnq − intC.
Hence,

pn ∈ p + kn − C ⊆ p + δnq − intC − C ⊆ p + δnq − intC,

and this implies that pn ∈ H(xn) ∩ (p + δnq − intC). Thus we have xn ∈
L1(p, q, δn, εn). Moreover, for each n ∈ N , x ∈ S1 ⊆ Ω1(εn) and p ∈ H(x) ∩
(p + δnq − C). Hence, x ∈ L1(p, q, δn, εn). Then, we have

d(xn, x) ≤ diam(L1(p, q, δn, εn)).
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By the assumption, we get xn → x as n → ∞, and this implies that (OPVI) is LP
well-posed at x. This completes the proof.

Theorem 4.2. Let q ∈ intC and let x ∈ S1 be an efficient solution of (OPVI).
If (OPVI) is LP well-posed at x, then, for each p ∈ H(x) with p is a minimal point
of H(S1), diam(L∗

1(p, q, δ, ε)) → 0 as (δ, ε) → (0, 0).

Proof. Suppose that there exists some p ∈ H(x) with p is a minimal point of
H(S1) such that diam (L∗

1(p, q, δ, ε)) �→ 0 as (δ, ε) → (0, 0). Then there exist a
positive number r and two sequences {δn} and {εn} of real positive numbers and
two sequences {xn} and {x′

n} in X such that
(a) (δn, εn) → (0, 0) as n → ∞;
(b) for each n ∈ N , xn, x′

n ∈ L∗
1(p, q, δn, εn) and d(xn, x′

n) ≥ r.
By (b), for each n ∈ N , we have the following conclusions:

(c) H(xn) ∩ (p + δnq − C) �= ∅ and H(x′
n) ∩ (p + δnq − C) �= ∅;

(d) xn, x′
n ∈ M1(εn).

By (a), δnq → 0 as n → ∞. Thus, by (c) and (d), {xn} and {x′
n} are both LP

approximating solution sequences for (OPVI) at x. Since (OPVI) is LP well-posed
at x, xn → x and x′

n → x as n → ∞. This leads to a contradiction. Therefore,
for each p ∈ H(x) with p is a minimal point of H(S1), diam(L∗

1(p, q, δ, ε)) → 0
as (δ, ε) → (0, 0). This completes the proof.

The following corollary is a special case of Theorems 4.1 and 4.2.

Corollary 4.3. Let q ∈ intC and let x ∈ S3 be an efficient solution of (OPEC).
Then (OPEC) is LP well-posed at x if and only if for each p ∈ H(x) with p is a
minimal point of H(S3),

(4.19) diam(L3(p, q, δ, ε)) → 0 as (δ, ε) → (0, 0).

Proof. For each x ∈ X , let e(x) = 1. Define a multivalued mapping G1 :
X × Y × X � R as follows:

G1(x, y, u) = f(x, y, u)− R+, ∀ (x, y, u) ∈ X × Y × X.

Then, 0 ∈ G1(x, y, u) if and only if f(x, y, u) ≥ 0 and 0 ∈ G1(x, y, u) + εe(x)
if and only if f(x, y, u) + ε ≥ 0. Hence, for each δ > 0 and ε > 0, S1 = S3,
M1(ε) = M3(ε),

L1(p, q, δ, ε) = A(p, q, δ)∩ [M1(ε) ∪ S1]

= A(p, q, δ)∩ [M3(ε) ∪ S3]

= A(p, q, δ)∩ M3(ε)

= L3(p, q, δ, ε)
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and

L∗
1(p, q, δ, ε) = A(p, q, δ)∩ M1(ε)

= A(p, q, δ)∩ M3(ε)

= L3(p, q, δ, ε).

If (4.19) holds, then all the conditions of Theorem 4.1 are satisfied and it follows
from Theorem 4.1 that (OPVI) is LP well-posed at x. Thus, if {xn} ⊆ X is
an LP approximating solution sequence for (OPVI) at x, then xn → x. That is,
if {xn} ⊆ X is an LP approximating solution sequence for (OPEC) at x, then
xn → x. Therefore, (OPEC) is LP well-posed at x.

Conversely, if (OPEC) is LP well-posed at x, then all the conditions of Theorem
4.2 are satisfied and it follows from Theorem 4.2 that diam(L∗

1(p, q, δ, ε)) → 0 as
(δ, ε) → (0, 0). That is

diam(L3(p, q, δ, ε)) → 0 as (δ, ε) → (0, 0).

This completes the proof.
Similar to proofs of Theorems 4.1 and 4.2, we have the following results.

Theorem 4.3. Let q ∈ intC and x ∈ S2 be an efficient solution of (OPVD). As-
sume that, for each p∈H(x) with p is a minimal point of H(S 2), diam(L2(p, q, δ, ε))
→ 0 as (δ, ε) → (0, 0). Then (OPVD) is LP well-posed at x.

Theorem 4.4. Let q ∈ intC and let x ∈ S2 be an efficient solution of (OPVD).
If (OPVD) is LP well-posed at x, then, for each p ∈ H(x) with p is a minimal
point of H(S2), diam(L∗

2(p, q, δ, ε))→ 0 as (δ, ε) → (0, 0).
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