TAIWANESE JOURNAL OF MATHEMATICS Vol. 15, No. 6, pp. 2483-2502, December 2011 This paper is available online at http://tjm.math.ntu.edu.tw

LAGRANGIAN *H*-UMBILICAL SUBMANIFOLDS OF PARA-KÄHLER MANIFOLDS

Bang-Yen Chen

Abstract. The notion of Lagrangian H-umbilical submanifolds of Kähler manifolds introduced in [3, 4] is closely related with several problems in Lagrangian geometry (cf. [7]). The classification of such submanifolds was done in a series of author's papers [3, 4, 5]. On the other hand, the study of Lagrangian submanifolds of para-Kähler manifolds was initiated very recently in [10]. In this paper we study Lagrangian H-submanifolds of para-Kähler manifolds. As results we prove several fundemental properties of such submanifolds. Moreover, we are able to classify Lagrangian H-umbilical submanifolds of the para-Kähler n-plane $(\mathbb{E}_n^{2n}, g_0, P)$ for $n \geq 3$.

1. Introduction

An almost para-Hermitian manifold is a manifold M endowed with an almost product structure $P \neq \pm I$ and a semi-Riemannian metric g such that

(1.1)
$$P^2 = I, \quad q(PX, PY) = -q(X, Y)$$

for vector fields X, Y tangent to M, where I is the identity map. Consequently, the dimension of M is even and the signature of g is (n, n), where $\dim M = 2n$. Let ∇ denote the Levi-Civita connection of M. An almost para-Hermitian manifold is called para-Kahler if it satisfies $\nabla P = 0$ identically.

Properties of para-Kähler manifolds were first studied by R. K. Rashevski in 1948 in which he considered a neutral metric of signature (n,n) defined from a potential function on a locally product 2n-manifold [20]. He called such manifolds stratified space. Para-Kähler manifolds were explicitly defined by B. A. Rozenfeld in 1949 [21]. Rozenfeld compared Rashevskij's definition with Kähler's definition in the complex case and established the analogy between Kähler and para-Kähler ones. Such manifolds were also defined independently by H. S. Ruse in 1949 [22].

Received and accepted August 12, 2010.

Communicated by Jen-Chih Yao.

2010 Mathematics Subject Classification: Primary 53C40; Secondary 53C50, 53D12.

Key words and phrases: Para-Kähler manifold, Lagrangian H-umbilical submanifold, Para-Kähler n-plane.

The Levi-Civita connection of a para-Kähler manifold (M,g,P) preserves P, equivalently, its holonomy group $\operatorname{Hol}_p, p \in M$, preserves the eigenspace decomposition $T_pM = T_p^+ \oplus T_p^-$. The parallel eigendistributions T^\pm of P are g-isotropic integrable distributions. Moreover, they are Lagrangian distributions with respect to the Kähler form $\omega = g \circ P$, which is parallel and hence closed. The leaves of these distributions are totally geodesic submanifolds, Thus, from the standpoint of symplectic manifolds, a para-Kähler structure can be regarded as a pair of complementary integrable Lagrangian distributions (T^+, T^-) on a symplectic manifold (M, ω) . Such a structure is often called a bi-Lagrangian structure or a Lagrangian 2-web (cf. [16]).

There exist many para-Kähler manifolds, for instance, a homogeneous manifold M = G/H of a semisimple Lie group G admits an invariant para-Kähler structure (g, P) if and only if it is a covering of the adjoint orbit Ad_Gh of a semisimple element h (see [19] for details).

Analogous to totally real submanifolds in an almost Hermitian manifold (cf. [11]), we call a space-like submanifold N in an almost para-Hermitian manifold (M_m^{2m},g,P) totally real if P maps each tangent space T_pN , $p\in N$, into the normal space $T_p^{\perp}N$. In particular, we call N Lagrangian if $P(T_pN)=T_p^{\perp}N$ for each $p\in N$.

Lagrangian submanifolds in Kähler manifolds have been studied extensively since early 1970s (see [6, 7] for surveys). In contrast, no results on Lagrangian submanifolds in para-Kähler manifolds are known (see [16, Section 5: Open Problems], in particular, see Open Problem (3)). This is the reason the author initiated recently the study of Lagrangian submanifolds of para-Kähler manifolds in [10] in which two optimal inequalities for Lagrangian submanifolds in flat para-Kähler manifolds were proved. Lagrangian submanifolds satisfying the equality case of one of the two inequalities are also classified in [10].

On the other hand, the notion of Lagrangian *H*-umbilical submanifolds of Kähler manifolds introduced in [3, 4] is closely related with several problems in Lagrangian geometry (cf. [7]). The classification of such submanifolds was achieved in a series of author's papers [3, 4, 5].

In this paper we introduce and study Lagrangian H-submanifolds of para-Kähler manifolds. As consequences, we prove several fundamental properties of such submanifolds. Moreover, we classify Lagrangian H-umbilical submanifolds of the para-Kähler n-plane $(\mathbb{E}_n^{2n}, g_0, P)$ with $n \geq 3$.

2. Preliminaries

2.1. Para-Kähler manifolds

Definition 2.1. An almost para-Hermitian manifold is a manifold M endowed with an almost product structure $P \neq \pm I$ and a pseudo-Riemannian metric g such

that

(2.1)
$$P^2 = I$$
, and $g(Pv, Pw) = -g(v, w)$

for vectors $v, w \in T_p(M), p \in M$, where I is the identity map.

The dimension of an almost para-Hermitian manifold ${\cal M}$ is even and the metric is neutral.

Definition 2.2. An almost para-Hermitian manifold (M, g, P) is called *para-Kahler* if it satisfies $\nabla P = 0$ identically, where ∇ is the Levi-Civita connection of M.

The simplest example of para-Kähler manifolds is the pseudo-Euclidean 2n-space \mathbb{E}_n^{2n} endowed with the neutral metric:

(2.2)
$$g_0 = -\sum_{i=1}^n dx_i^2 + \sum_{j=1}^n dy_j^2$$

with P being defined by

(2.3)
$$P\left(\frac{\partial}{\partial x_j}\right) = \frac{\partial}{\partial y_j}, \ P\left(\frac{\partial}{\partial y_j}\right) = \frac{\partial}{\partial x_j}$$

for $j=1,\ldots,n$. We simply called $(\mathbb{E}_n^{2n},g_0,P)$ the para-Kahler n-plane.

The following result is well-known.

Lemma 2.1. The curvature tensor of a para-Kahler manifold satisfies

$$(2.4) R(X,Y) \circ P = P \circ R(X,Y),$$

$$(2.5) R(PX, PY) = R(X, Y),$$

$$(2.6) R(X, PY) = R(PX, Y).$$

For a para-Kähler manifold M, (2.1) implies that

(2.7)
$$g(Pv, w) + g(v, Pw) = 0, v, w \in T_p(M), p \in M.$$

Thus g(v, Pv) = 0. If $\{v, Pv\}$ determines a non-degenerate plane section called a P-section, the sectional curvature

$$H^{P(v)} = K(v \wedge Pv)$$

of Span $\{v, Pv\}$ is called a para-sectional curvature.

By definition a *para-Kähler space form* is a para-Kähler manifold of constant para-sectional curvature.

The para-Kähler n-plane $(\mathbb{E}_n^{2n}, g_0, P)$ is the standard model of flat para-Kähler manifolds. Models of para-Kähler space forms with nonzero para-sectional curvature were constructed in [17].

The Riemann curvature tensor of a para-Kähler space forms $M_n^{2n}(4c)$ of constant para-sectional curvature 4c satisfies

(2.8)
$$R(X,Y)Z = c\{g(Y,Z)X - g(X,Z)Y + g(PY,Z)PX - g(PX,Z)PY + 2g(X,PY)PZ\}.$$

2.2. Basic formulas and definitions

Let $\psi: N \to M_n^{2n}$ be an isometric immersion of a Riemannian n-manifold N into a para-Kähler manifold (M_n^{2n},g,P) . Denote by ∇' and ∇ the Levi-Civita connections on N and M_n^{2n} , respectively.

For vector fields X, Y tangent to N and ξ normal to N, the formulas of Gauss and Weingarten are given respectively by (cf. [1, 2]):

(2.9)
$$\nabla_X Y = \nabla'_X Y + h(X, Y),$$

$$(2.10) \nabla_X \xi = -A_{\xi} X + D_X \xi,$$

where h,A and D are the second fundamental form, the shape operator, and the normal connection of N in M_n^{2n} .

The shape operator and the second fundamental form are related by

$$\langle h(X,Y), \xi \rangle = \langle A_{\xi}X, Y \rangle,$$

where $\langle \ , \ \rangle$ is the inner product. The *mean curvature vector* is defined by

$$(2.12) H = \left(\frac{1}{n}\right) \operatorname{trace} h.$$

The equations of Gauss, Codazzi and Ricci are given respectively by

(2.13)
$$R'(X,Y)Z = R(X,Y)Z + A_{h(Y,Z)}X - A_{h(X,Z)}Y,$$

$$(2.14) (R(X,Y)Z)^{\perp} = (\bar{\nabla}_X h)(Y,Z) - (\bar{\nabla}_Y h)(X,Z),$$

(2.15)
$$g(R^{D}(X,Y)\xi,\eta) = g(R(X,Y)\xi,\eta) + g([A_{\xi},A_{\eta}]X,Y)$$

for X,Y,Z tangent to N and ξ,η normal to N, where R' (respectively, R) is the curvature tensor of N (respectively, of M_n^{2n}), $(R(X,Y)Z)^{\perp}$ is the normal component of R(X,Y)Z, and $\bar{\nabla}h$ and R^D are defined by

$$(2.16) \qquad (\bar{\nabla}_X h)(Y, Z) = D_X h(Y, Z) - h(\nabla'_X Y, Z) - h(Y, \nabla'_X Z),$$

(2.17)
$$R^{D}(X,Y) = D_{X}D_{Y} - D_{Y}D_{X} - D_{[X,Y]}.$$

3. Lagrangian Submanifolds of Para-kähler Manifolds

The following basic lemma is given in [10].

Lemma 3.2. Let N be a Lagrangian submanifold of a para-Kähler manifold M_n^{2n} . Then we have

(i)
$$P(\nabla'_X Y) = D_X(PY)$$
,

(ii)
$$A_{PX}Y = -P(h(X, Y)),$$

(iii)
$$\langle h(X,Y), PZ \rangle = \langle h(Y,Z), PX \rangle = \langle h(Z,X), PY \rangle$$
,

(iv)
$$P(R'(X, Y)Z) = R^{D}(X, Y)PZ$$

for X, Y, Z tangent to N.

The equations of Gauss and Codazzi for a Lagrangian submanifold N of a para-Kähler space form $M_n^{2n}(4c)$ are given respectively by

(3.1)
$$R'(X,Y;Z,W) = \langle A_{h(Y,Z)}X,W \rangle - \langle A_{h(X,Z)}Y,W \rangle + c (\langle X,W \rangle \langle Y,Z \rangle - \langle X,Z \rangle \langle Y,W \rangle),$$

(3.2)
$$(\bar{\nabla}_X h)(Y, Z) = (\bar{\nabla}_Y h)(X, Z)$$

for X, Y, Z, W tangent to N.

If we put $h=P\circ\sigma$ (equivalently $\sigma=P\circ h$), then (2.1) and Lemma 3.2(iii) imply that

$$\langle A_{h(Y,Z)}X, W \rangle = \langle h(X,W), h(Y,Z) \rangle = \langle h(X,W), P\sigma(Y,Z) \rangle$$
$$= \langle h(\sigma(Y,Z), X), PW \rangle = -\langle \sigma(\sigma(Y,Z), X), W \rangle.$$

Therefore, equation (3.1) of Gauss can be rephrased as

$$R'(X,Y)Z = \sigma(\sigma(X,Z),Y) - \sigma(\sigma(Y,Z),X) + c \langle Y, Z \rangle X - c \langle X, Z \rangle Y.$$

It follows Lemma 3.2(i) that the equation of Ricci is nothing but the equation of Gauss for Lagrangian submanifolds of para-Kähler manifolds.

Now, we state the fundamental existence and uniqueness theorems for Lagrangian submanifolds in $(\mathbb{E}_n^{2n}, g_0, P)$ are given by the following.

Existence Theorem. Let N be a simply-connected Riemannian n-manifold. If σ is a TN-valued symmetric bilinear form on N such that

(a)
$$g(\sigma(X,Y),Z)$$
 is totally symmetric,

(b) $(\nabla \sigma)(X, Y, Z)$ is totally symmetric,

(c)
$$R'(X,Y)Z = \sigma(\sigma(X,Z),Y) - \sigma(\sigma(Y,Z),X)$$
,

then there is a Lagrangian isometric immersion $L:N\to (\mathbb{E}^{2n}_n,g_0,P)$ whose second fundamental form is $h=P\circ\sigma$.

Uniqueness Theorem. Let $L_1, L_2 : N \to (\mathbb{E}_n^{2n}, g_0, P)$ be two Lagrangian isometric immersions of a Riemannian n-manifold N with second fundamental forms h^1 and h^2 , respectively. If

$$g(h^{1}(X,Y), PL_{1\star}Z) = g(h^{2}(X,Y), PL_{2\star}Z)$$

for all vector fields X, Y, Z tangent to N, then there is an isometry Φ of $(\mathbb{E}_n^{2n}, g_0, P)$ such that $L_1 = \Phi \circ L_2$.

Similar existence and uniqueness theorems also hold for Lagrangian submanifolds in para-Kähler space forms.

4. LAGRANGIAN H-UMBILICAL SUBMANIFOLDS

A pseudo-Riemannian submanifold N of a pseudo-Riemannian manifold is called $totally\ umbilical$ if its second fundamental form satisfies

$$(4.1) h(X,Y) = \langle X,Y \rangle H$$

for X, Y tangent to N.

Proposition 4.1. The only totally umbilical Lagrangian submanifold N of a para-Kähler space form $M_n^{2n}(4c)$ with $n \geq 2$ is the totally geodesic ones.

Proof. Let N be a totally umbilical Lagrangian submanifold of a para-Kähler space form $M_n^{2n}(4c)$ with $n\geq 2$. Assume that N is non-totally geodesic, then $H\neq 0$.

It follows from (4.1) that $(\bar{\nabla}_X h)(Y, Z) = \langle Y, Z \rangle D_X H$. Thus, after applying equation (3.2) of Codazzi, we find

$$\langle Y, Z \rangle D_X H = \langle X, Z \rangle D_Y H$$

for X,Y,Z tangent to N. For any $X \in TN$, by choosing $0 \neq Y = Z \perp X$, we get DH = 0. Therefore, it follows from the equation of Gauss that N is of constant sectional curvature $c - ||H||^2 < c$, where $||H|| = \sqrt{-\langle H, H \rangle}$.

Let us put Z=PH. Then Lemma 3.1(i) implies that $\nabla'Z=0$. Thus, Z is a nonzero parallel vector field on N, which implies that N is a flat Riemannian manifold. Hence, we get $c=-\langle H,H\rangle>0$.

Since N is totally umbilical, we have $[A_H, A_{\xi}] = 0$ for any normal vector ξ . Hence, by using DH = 0 we find from equation (2.15) of Ricci that

$$(4.3) g(R(Z,Y)H,PY) = 0$$

for $Y, Z \in TN$. On the other hand, by applying (2.8) we also have

$$(4.4) g(R(Z,Y)H,PY) = c\{g(PY,H)g(PZ,PY) - g(PZ,H)g(PY,PY)\}$$

Thus, after choosing Y, Z such that Z = PH and g(Y, Z) = 0, we find g(H, H) = 0. But this is a contradiction. Consequently, N must be totally geodesic.

Definition 4.3. A Lagrangian submanifold N of a para-Kähler manifold is called *Lagrangian H-umbilical* if the second fundamental form takes the following simple form:

(4.5)
$$h(e_1, e_1) = \lambda P e_1, \ h(e_2, e_2) = \dots = h(e_n, e_n) = \mu P e_1, \\ h(e_1, e_j) = \mu P e_j, \ h(e_j, e_k) = 0, \ 2 \le j \ne k \le n,$$

for some functions λ, μ with respect to some orthonormal local frame field.

In view of Proposition 4.1, Lagrangian H-umbilical submanifolds are the simplest Lagrangian submanifolds next to totally geodesic ones.

The following result shows that there exist many non-totally geodesic Lagrangian H-umbilical submanifolds.

Proposition 4.2. Let $\gamma = (\gamma_1, \gamma_2) : I \to \mathbb{E}^2_1$ be a unit speed space-like curve satisfying $\langle \gamma, \gamma \rangle < 0$. Define $L : I \times \mathbf{R} \times S^{n-2}(1) \to \mathbb{E}^{2n}_n$ by

$$(4.6) \qquad (\gamma_1(s)\cosh t, \gamma_2(s)z\sinh t, \gamma_2(s)\cosh t, \gamma_1(s)z\sinh t),$$

where $z=(z_2,\ldots,z_n)\in\mathbb{E}^{n-1}$ satisfies $z_2^2+z_3^2+\cdots+z_n^2=1$. Then L defines a Lagrangian H-umbilical submanifold of $(\mathbb{E}_n^{2n},g_0,P)$ satisfying (4.5) with

(4.7)
$$\lambda = \kappa, \quad \mu = \frac{\gamma_1' \gamma_2 - \gamma_1 \gamma_2'}{||\gamma||^2}.$$

Proof. Under the hypothesis it follows from (4.6) that

(4.8)
$$L_s = (\gamma_1' \cosh t, \gamma_2' z \sinh t, \gamma_2' \cosh t, \gamma_1' z \sinh t),$$

(4.9)
$$L_t = (\gamma_1 \sinh t, \gamma_2 z \cosh t, \gamma_2 \sinh t, \gamma_1 z \cosh t),$$

(4.10)
$$XL = (0, \gamma_2(\sinh t)X, 0, \gamma_1(\sinh t)X),$$

$$(4.11) L_{ss} = (\gamma_1'' \cosh t, \gamma_2'' z \sinh t, \gamma_2'' \cosh t, \gamma_1'' z \sinh t),$$

$$(4.12) L_{st} = (\gamma_1' \sinh t, \gamma_2' z \cosh t, \gamma_2' \sinh t, \gamma_1' z \cosh t),$$

$$(4.13) XL_s = (\gamma_1' \cosh t, \gamma_2' (\sinh t) X, \gamma_2' \cosh t, \gamma_1' (\sinh t) X),$$

$$(4.14) XL_t = (\gamma_1 \sinh t, \gamma_2(\cosh t)X, \gamma_2 \sinh t, \gamma_1(\cosh t)X),$$

(4.15)
$$XYL = (0, \gamma_2(\cosh t)\nabla_X'Y, 0, \gamma_1(\cosh t)\nabla_X'Y) - (0, \langle X, Y \rangle \gamma_2 z \cosh t, 0, \langle X, Y \rangle \gamma_1 z \cosh t)$$

for X, Y tangent to $S^{n-2}(1)$. From (4.8)-(4.10) we get

$$(4.16) \mathcal{P}(L_s) = (\gamma_2' \cosh t, \gamma_1' z \sinh t, \gamma_1' \cosh t, \gamma_2' z \sinh t),$$

$$(4.17) \mathcal{P}(L_t) = (\gamma_2 \sinh t, \gamma_1 z \cosh t, \gamma_1 \sinh t, \gamma_2 z \cosh t),$$

$$(4.18) \mathcal{P}(XL) = (0, \gamma_1(\sinh t)X, 0, \gamma_2(\sinh t)X).$$

Since $\gamma(s) = (\gamma_1(s), \gamma_2(s))$ is a unit speed space-like curve in \mathbb{E}^2_1 , (4.8)-(4.10) imply that the induced metric via L is given by

(4.19)
$$g = ds^2 + ||\gamma||^2 (dt^2 + \sinh^2 tg_1),$$

where g_1 is the metric of $S^{n-2}(1)$. From (4.8)-(4.10) and (4.16)-(4.18), we know that L is Lagrangian. Because γ is unit speed and space-like, we have

(4.20)
$$(\gamma_1''(s), \gamma_2''(s)) = \kappa(s)(\gamma_2'(s), \gamma_1'(s))$$

for some function κ . Thus, by (4.11)-(4.20) and $\langle z,X\rangle=0$ for $X\in TN$, we obtain (4.5) with

(4.21)
$$\lambda = \kappa, \quad \mu = \frac{\gamma_1' \gamma_2 - \gamma_1 \gamma_2'}{||\gamma||^2}.$$

Consequently, L defines a Lagrangian H-umbilical submanifold with the desired properties. This completes the proof of the proposition.

Similarly, we also have the following.

Proposition 4.3. Let $\gamma = (\gamma_1, \gamma_2) : I \to \mathbb{E}^2_1$ be a unit speed space-like curve satisfying $\langle \gamma, \gamma \rangle > 0$. Define $L : I \times \mathbf{R} \times S^{n-2}(1) \to \mathbb{E}^{2n}_n$ by

$$(4.22) \qquad (\gamma_1(s)\sin t, \gamma_1(s)z\cos t, \gamma_2(s)\sin t, \gamma_2(s)z\cos t),$$

where $z=(z_2,\ldots,z_n)\in\mathbb{E}^{n-1}$ satisfies $z_2^2+z_3^2+\cdots+z_n^2=1$. Then L defines a Lagrangian H-umbilical submanifold of $(\mathbb{E}_n^{2n},g_0,P)$ satisfying (4.5) with

(4.23)
$$\lambda = \kappa, \quad \mu = \frac{\gamma_1' \gamma_2 - \gamma_1 \gamma_2'}{||\gamma||^2}.$$

Proof. This can be proved in the same as Proposition 4.2 Let N be a Lagrangian H-umbilical submanifold of a para-Kähler submanifold satisfying (4.5) with respect to an orthonormal frame $\{e_1, \ldots, e_n\}$. We put

(4.24)
$$\nabla'_X e_i = \sum_{j=1}^n \omega_i^j(X) e_j, \quad i = 1, \dots, n.$$

Lemma 4.3. Let N be a Lagrangian H-umbilical submanifold of a para-K ahler space form $M_n^{2n}(4c)$ which satisfies (4.5) with respect to an orthonormal frame $\{e_1, \ldots, e_n\}$. The we have

(4.25)
$$e_1 \mu = (\lambda - 2\mu)\omega_1^2(e_2) = \dots = (\lambda - 2\mu)\omega_1^n(e_n),$$

(4.26)
$$e_j \lambda = (2\mu - \lambda)\omega_j^1(e_1), \quad j > 1,$$

$$(4.27) (\lambda - 2\mu)\omega_1^j(e_k) = 0, 1 < j \neq k \le n,$$

$$(4.28) e_j \mu = 3\mu \omega_1^j(e_1),$$

(4.29)
$$\mu \omega_1^j(e_1) = 0, \quad j > 1.$$

Proof. By applying (4.5), Lemma 3.2(i) and Codazzi's equation, we obtain this lemma by direct computation.

Proposition 4.4. Let N be a Lagrangian H-umbilical submanifold of a para-Kähler space form $M_n^{2n}(4c)$ satisfying (4.5). If $\lambda = 2\mu$, then μ is a constant, say b, and N is of constant sectional curvature $c - b^2$.

Proof. Under the hypothesis, it follows from (4.25) and (4.26) that

$$e_1\mu = e_2\lambda = \cdots = e_n\lambda = 0.$$

Thus, by using $\lambda = 2\mu$ we see that μ is a constant, say b. Now, by applying the equation of Gauss and $\mu = b$ we conclude that N is of constant curvature $-b^2$.

Theorem 4.1. A Lagrangian H-umbilical submanifold of $(\mathbb{E}_n^{2n}, g_0, P)$ satisfying $\lambda = 2\mu$ is either a flat totally geodesic Lagrangian submanifold or congruent to an open portion of

$$(4.30) \qquad \left(\frac{\cosh^2(bs)\cosh t}{b}, \frac{\sinh(2bs)\sinh t}{2b}z, \frac{\sinh(2bs)\cosh t}{2b}, \frac{\cosh^2(bs)\sinh t}{b}z\right)$$

with
$$b \neq 0$$
, where $z = (z_2, \ldots, z_n) \in \mathbb{E}^{n-1}$ satisfies $z_2^2 + z_3^2 + \cdots + z_n^2 = 1$.

Proof. Let N be a Lagrangian H-umbilical submanifold of $(\mathbb{E}_n^{2n}, \tilde{g}_0, \mathcal{P})$ satisfying $\lambda = 2\mu$. Then, by Proposition 4.4, μ is a constant, say b. If b = 0, then N is totally geodesic. In this case, N is a flat Lagrangian submanifold.

Next, assume b is a nonzero constant. Then N is of constant negative curvature $-b^2$. Thus, N is an open portion of a hyperbolic n-space $H^n(-b^2)$ in \mathbb{E}_n^{2n} whose second fundamental form satisfies

(4.31)
$$h(e_1, e_1) = 2bPe_1, \ h(e_2, e_2) = \dots = h(e_n, e_n) = bPe_1, h(e_1, e_j) = bPe_j, \ h(e_j, e_k) = 0, \ 2 \le j \ne k \le n,$$

for some orthonormal frame e_1, \ldots, e_n .

On the other hand, a direct computation shows that (4.30) defines a Lagrangian H-umbilical immersion of $H^n(-b^2)$ into $(\mathbb{E}_n^{2n},g_0,P)$ whose second fundamental form also satisfies (4.31). Therefore, by uniqueness theorem, N is congruent to an open portion of (4.30).

5. Classification of Lagrangian H-Umbilical Submanifolds of \mathbb{E}_n^{2n}

Next, we classify Lagrangian H-umbilical submanifolds in the para-Kähler n-plane $(\mathbb{E}_n^{2n},g_0,P)$.

Theorem 5.1. Let $L: N \to (\mathbb{E}_n^{2n}, g_0, P)$ be a Lagrangian H-umbilical immersion of a Riemannian n-manifold N into the para-K ähler n-plane with $n \geq 3$. Then

(i) If N is of constant sectional curvature, then either N is flat or L is congruent to an open portion of

$$\frac{1}{2b} \Big(2\cosh^2(bs) \cosh t, z \sinh(2bs) \sinh t, \sinh(2bs) \cosh t, 2z \cosh^2(bs) \sinh t \Big)$$

with
$$b \neq 0$$
, where $z = (z_2, ..., z_n) \in \mathbb{E}^{n-1}$ satisfies $z_2^2 + z_3^2 + \cdots + z_n^2 = 1$.

- (ii) If N contains no open subset of constant sectional curvature, then L is locally congruent to one of the following three types of submanifolds:
 - (ii.1) a Lagrangian submanifold defined by

$$\left(\frac{e^{2r}}{8} - \frac{e^{-2r}}{2r'^2} + a^2 \sum_{j=2}^n x_j^2 - \int^s \frac{2r'^2 + r''}{e^{2r}r'^3} ds, \frac{1 - a^2 e^{2r}}{2} x_2, \dots, \frac{1 - a^2 e^{2r}}{2} x_n, -\frac{e^{2r}}{8} - \frac{e^{-2r}}{2r'^2} + a^2 \sum_{j=2}^n x_j^2 - \int^s \frac{2r'^2 + r''}{e^{2r}r'^3} ds, \frac{1 + a^2 e^{2r}}{2} x_2, \dots, \frac{1 + a^2 e^{2r}}{2} x_n\right),$$

where r = r(s) is a non-constant function and a is positive number;

(ii.2) a Lagrangian submanifold defined by

$$\frac{1}{2} \left(\left(\frac{e^{\int^s \lambda ds}}{\mu + \varphi} + \frac{e^{-\int^s \lambda ds}}{\mu - \varphi} \right) \sin t, \left(\frac{e^{\int^s \lambda ds}}{\mu + \varphi} + \frac{e^{-\int^s \lambda ds}}{\mu - \varphi} \right) z \cos t,
\left(\frac{e^{\int^s \lambda ds}}{\mu + \varphi} - \frac{e^{-\int^s \lambda ds}}{\mu - \varphi} \right) \sin t, \left(\frac{e^{\int^s \lambda ds}}{\mu + \varphi} - \frac{e^{-\int^s \lambda ds}}{\mu - \varphi} \right) z \cos t \right),$$

where $\mu(s)$ and $\varphi(s)$ are nonzero functions satisfies $\varphi \varphi' - \mu \mu' = (\mu^2 - \varphi^2) \varphi$ and $\lambda = 2\mu + \mu \varphi^{-1}$ and $z = (z_2, \ldots, z_n) \in \mathbb{E}^{n-1}$ satisfies $z_2^2 + z_3^2 + \cdots + z_n^2 = 1$;

(ii.3) a Lagrangian submanifold defined by

$$\frac{1}{2} \left(\left(\frac{e^{\int^s \lambda ds}}{\mu + \varphi} + \frac{e^{-\int^s \lambda ds}}{\mu - \varphi} \right) \cosh t, \left(\frac{e^{\int^s \lambda ds}}{\mu + \varphi} - \frac{e^{-\int^s \lambda ds}}{\mu - \varphi} \right) z \sinh t,
\left(\frac{e^{\int^s \lambda ds}}{\mu + \varphi} - \frac{e^{-\int^s \lambda ds}}{\mu - \varphi} \right) \cosh t, \left(\frac{e^{\int^s \lambda ds}}{\mu + \varphi} + \frac{e^{-\int^s \lambda ds}}{\mu - \varphi} \right) z \sinh t \right),$$

where $\mu(s)$ and $\varphi(s)$ are nonzero functions satisfies $\varphi \varphi' - \mu \mu' = (\mu^2 - \varphi^2) \varphi$ and $\lambda = 2\mu + \mu \varphi^{-1}$ and $z = (z_2, \dots, z_n) \in \mathbb{E}^{n-1}$ satisfies $z_2^2 + z_3^2 + \dots + z_n^2 = 1$.

Proof. Assume that $n \geq 3$ and $L: N \to (\mathbb{E}_n^{2n}, g_0, P)$ is a Lagrangian H-umbilical submanifold of the para-Kähler n-plane which satisfies (4.5) with respect to some suitable orthonormal local frame field e_1, \ldots, e_n .

If N is of constant curvature, then it follows from (4.5) and the equation of Gauss that $\mu(\lambda-2\mu)=0$. Thus, either $\mu=0$ or $\lambda=2\mu$ at each point. If $\mu=0$ identically, then N is flat. If $\mu\neq 0$, then $\lambda=2\mu\neq 0$ on a nonempty open subset V of N. Thus, Proposition 4.4 implies that λ and μ are nonzero constants on V. Thus, by continuity, V=N. Therefore, it follows from Theorem 4.1 that N is congruent to an open portion the Lagrangian submanifold given in (i).

Next, assume that N contains no open subset of constant curvature. Then

(5.1)
$$U := \{ p \in N : \mu(\lambda - 2\mu) \neq 0 \text{ at } p \}$$

is an open dense subset of N. Moreover, it follows from Lemma 4.3 that

(5.2)
$$\omega_1^j = \left(\frac{e_1 \mu}{\lambda - 2\mu}\right) \omega^j, \quad e_j \lambda = e_j \mu = 0, \quad j = 2, \dots, n.$$

(5.3)
$$\omega_1^j(e_1) = \omega_1^j(e_k) = 0, \ 2 \le j \ne k \le n.$$

From $\omega_1^j(e_1)=0$, we find $\nabla_{e_1}e_1=0$. Thus, the integral curves of e_1 are geodesics. By using (5.2) and Cartan's structure equations, we get $d\omega^1=0$. Hence, according to Poincaré lemma, $\omega^1=ds$ for some local function s.

Let $\mathcal D$ denote the distribution spanned by e_1 which is clearly integrable. Using (5.3) we find

$$\langle [e_j, e_k], e_1 \rangle = \omega_k^1(e_j) - \omega_j^1(e_k) = 0$$

for $j,k=2,\ldots,n$. Thus the complementary orthogonal distribution \mathcal{D}^{\perp} spanned by $\{e_2,\ldots,e_n\}$ is an integrable distribution. Because \mathcal{D} and \mathcal{D}^{\perp} are both integrable, there is a local coordinate system $\{s,x_2,\ldots,x_n\}$ such that

(a) \mathcal{D} is spanned by $\{\partial/\partial s\}$ and \mathcal{D}^{\perp} is spanned by $\{\partial/\partial x_2,\ldots,\partial/\partial x_n\}$ and

(b)
$$e_1 = \frac{\partial}{\partial s}$$
, $\omega^1 = ds$.

From (4.26), (4.28) and (5.3) we have $e_j\lambda=e_j\mu=0$ for j>1. Hence, both λ and μ depend only on s. Moreover, it follows from (5.2) and (5.3) that

(5.4)
$$\nabla_X' e_1 = \varphi X, \quad \varphi = \frac{\mu'}{\lambda - 2\mu}, \quad X \in \mathcal{D}^{\perp},$$

where $\mu' = d\mu/ds$.

It follows from (5.4) and $K_{1j} = \langle R(e_j, e_1)e_1, e_j \rangle$ that the sectional curvature K_{1j} of the plane section spanned by e_1, e_j is $K_{1j} = -\varphi' - \varphi^2$. On the other hand, (4.5) and the equation of Gauss shows that $K_{1j} = \mu^2 - \lambda \mu$. Thus

$$(5.5) \varphi' = \lambda \mu - \mu^2 - \varphi^2.$$

Also, from (5.4) we find that

(5.6)
$$\langle \nabla'_X Y, e_1 \rangle = -\varphi \langle X, Y \rangle.$$

This implies that the integrable distribution \mathcal{D}^{\perp} is spherical, i.e., the leaves of \mathcal{D}^{\perp} are totally umbilical with parallel mean curvature vector in N. Moreover, it follows from (4.6), (5.6) and Gauss' equation that each leaf of \mathcal{D}^{\perp} (with s=constant) is of constant curvature $\varphi^2(s)-\mu^2(s)$. Hence, a result of [18] (see also [15, Remark 2.1]) implies that U is locally a warped product $I\times_{f(s)}R^{n-1}(c)$, where $R^{n-1}(c)$ is a Riemannian (n-1)-manifold of constant curvature and f(s) is the warping function, where we choose c=0,1 or -1 according to $\varphi^2=\mu^2,\ \varphi^2>\mu^2$, or $\varphi^2<\mu^2$, respectively. Clearly, vectors tangent to I are in I0 and vectors tangent to I1 are in I2.

The metric on $I \times_f R^{n-1}(c)$ is given by

(5.7)
$$g = ds^2 + f^2(s)\hat{g}_c$$

where \hat{g}_c is metric of $R^{n-1}(c)$. From (5.7) we obtain

$$(5.8) \quad \nabla'_{\partial/\partial s} \frac{\partial}{\partial s} = 0, \ \nabla'_{\partial/\partial s} X = \frac{f'}{f} X, \ \nabla'_X Y = -f f' \left\langle X, Y \right\rangle \frac{\partial}{\partial s} + \mathcal{L}(\nabla''_X Y),$$

for vector fields X, Y tangent to $R^{n-1}(c)$, where $\mathcal{L}(\nabla_X''Y)$ is the lift of the the covariant derivative $\nabla_X''Y$ of Y with respect to X on $R^{n-1}(c)$.

Case (1). $\varphi^2 = \mu^2$. We may put $\varphi = \mu$. Also we have assume that

(5.9)
$$g = ds^2 + f^2(s)(dx_2^2 + dx_3^2 + \dots + dx_n^2).$$

Thus (5.8) becomes

(5.10)
$$\nabla'_{\partial/\partial s} \frac{\partial}{\partial s} = 0, \ \nabla'_{\partial/\partial s} \frac{\partial}{\partial x_i} = \frac{f'}{f} \frac{\partial}{\partial x_i}, \ \nabla'_{\partial/\partial x_j} \frac{\partial}{\partial x_k} = -ff' \delta_{jk} \frac{\partial}{\partial s}$$

for $j,k=2,\ldots,n$. From (4.5), (5.10) and $(\bar{\nabla}_{\partial/\partial s}h)(\frac{\partial}{\partial s},\frac{\partial}{\partial x_j})=(\bar{\nabla}_{\partial/\partial x_j}h)(\frac{\partial}{\partial s},\frac{\partial}{\partial s})$ we derive that

$$\frac{f'}{f} = \mu = \frac{\mu'}{\lambda - 2\mu}.$$

Thus there is a real number $a \neq 0$ such that

(5.12)
$$f(s) = a e^{r(s)}, \quad r(s) = \int_{-s}^{s} \mu(x) dx.$$

From (5.11), we find

$$\lambda = 2r' + \frac{r''}{r'}.$$

Consequently, (4.5), (5.10), (5.12), (5.13) and Gauss' formula imply that the immersion $L: N \to (\mathbb{E}_n^{2n}, g_0, P)$ satisfies

(5.14)
$$L_{ss} = \left(2r' + \frac{r''}{r'}\right) PL_s,$$

$$L_{sx_j} = r'(L_{x_j} + PL_{x_j}),$$

$$L_{x_j x_k} = a^2 \delta_{jk} e^{2r} r'(PL_s - L_s).$$

From $P^2 = I$ and (5.14) we have

(5.15)
$$PL_{ss} = \left(2r' + \frac{r''}{r'}\right)L_s,$$

$$PL_{sx_j} = r'(L_{x_j} + PL_{x_j}),$$

$$PL_{x_jx_k} = a^2\delta_{jk}e^{2r}r'(L_s - PL_s).$$

After solving the PDE system given by (5.14) and (5.15), we obtain

$$L(s, x_2, ..., x_n) = c_1 e^{2r} + c_2 \left(2a^2 \sum_{j=2}^n x_j^2 - 2 \int^s \frac{2r'^2 + r''}{e^{2r}r'^3} ds - \frac{e^{-2r}}{r'^2} \right)$$
$$+ \sum_{i=2}^n c_{i+1} x_j + e^{2r} \sum_{j=2}^n c_{n+j} x_j, \quad r = \int^s \mu(s) ds,$$

for some \mathbb{E}_n^{2n} -valued functions c_1, \ldots, c_{2n} . Consequently, after choosing suitable initial values we obtain (ii.1).

Case (2). $\varphi^2 > \mu^2$. With respect to a spherical coordinate chart $\{u_2, \ldots, u_n\}$, the metric on $I \times_f R^{n-1}(1)$ is given by

(5.16)
$$g = ds^2 + f^2(s) \{ du_2^2 + \cos^2 u_2 du_3^2 + \dots + \cos^2 u_2 \dots \cos^2 u_{n-1} du_n^2 \}.$$

From (5.16) we obtain

$$\nabla'_{\partial/\partial s} \frac{\partial}{\partial s} = 0, \quad \nabla'_{\partial/\partial s} \frac{\partial}{\partial u_k} = \frac{f'}{f} \frac{\partial}{\partial u_k}, \quad \nabla'_{\partial/\partial u_2} \frac{\partial}{\partial u_2} = -ff' \frac{\partial}{\partial s},
\nabla'_{\partial/\partial u_i} \frac{\partial}{\partial u_j} = -\tan u_i \frac{\partial}{\partial u_j}, \quad 2 \le i < j,
\nabla'_{\partial/\partial u_j} \frac{\partial}{\partial u_j} = -ff' \prod_{\ell=2}^{j-1} \cos^2 u_\ell \frac{\partial}{\partial s} + \sum_{k=2}^{j-1} \left(\frac{\sin 2u_k}{2} \prod_{l=k+1}^{j-1} \cos^2 u_l \right) \frac{\partial}{\partial u_k},
j > 2.$$

From (4.5), (5.17) and and $(\bar{\nabla}_{\partial/\partial s}h)(\frac{\partial}{\partial s},\frac{\partial}{\partial u_i})=(\bar{\nabla}_{\partial/\partial u_j}h)(\frac{\partial}{\partial s},\frac{\partial}{\partial s})$ we find

$$\frac{f'}{f} = \varphi = \frac{\mu'}{\lambda - 2\mu}.$$

Thus, there is a real number $c \neq 0$ such that

$$(5.19) f = a e^{\int^s \varphi(x) dx}.$$

By applying (5.16) and (5.19) we know that the sectional curvature K_{23} of the plane section spanned by $\partial/\partial u_2$, $\partial/\partial u_3$ is given by

(5.20)
$$K_{23} = a^{-2} e^{-2 \int \varphi(s) ds} - \varphi^2.$$

On the other hand, (4.5) and Gauss' equation yields

$$(5.21) K_{23} = -\mu^2.$$

Combining (5.18), (5.19), (5.20) and (5.21) gives

(5.22)
$$f^{2} = \frac{1}{\varphi^{2} - \mu^{2}}, \quad \varphi = \frac{\mu'}{\lambda - 2\mu}, \quad \lambda = 2\mu + \frac{\mu'}{\varphi}.$$

It follows from (5.5) and the last equation in (5.22) that ϕ and μ satisfy the following differential equation

$$\varphi' = \mu^2 - \varphi^2 + \frac{\mu \mu'}{\varphi}.$$

Therefore, by applying (4.5), (5.16)-(5.19), (5.22) and Gauss' formula, we obtain

(5.24)
$$L_{ss} = \lambda P L_{s},$$

$$L_{su_{j}} = \varphi L_{u_{j}} + \mu P L_{u_{j}},$$

$$L_{u_{i}u_{j}} = -\tan u_{i} L_{u_{j}}, \quad 2 \leq i < j \leq n,$$

$$L_{u_{j}u_{j}} = \prod_{k=2}^{j-1} \cos^{2} u_{k} \left(\frac{\mu}{\varphi^{2} - \mu^{2}} P L_{s} - \frac{\varphi}{\varphi^{2} - \mu^{2}} L_{s} \right)$$

$$+ \sum_{k=2}^{j-1} \left(\frac{\sin 2u_{k}}{2} \prod_{l=k+1}^{j-1} \cos^{2} u_{l} \right) L_{u_{k}}, \quad j = 2, \dots, n.$$

By applying $P^2 = I$, we obtain from (5.24) that

$$PL_{ss} = \lambda L_{s},$$

$$PL_{su_{j}} = \mu L_{u_{j}} + \varphi PL_{u_{j}},$$

$$PL_{u_{i}u_{j}} = -\tan u_{i}PL_{u_{j}}, \quad 2 \leq i < j \leq n,$$

$$PL_{u_{j}u_{j}} = \prod_{k=2}^{j-1} \cos^{2} u_{k} \left(\frac{\mu}{\varphi^{2} - \mu^{2}} L_{s} - \frac{\varphi}{\varphi^{2} - \mu^{2}} PL_{s}\right)$$

$$+ \sum_{k=2}^{j-1} \left(\frac{\sin 2u_{k}}{2} \prod_{l=k+1}^{j-1} \cos^{2} u_{l}\right) PL_{u_{k}}, \quad j = 2, \dots, n.$$

A direct computation shows that the compatibility condition of the PDE system (5.24)-(5.25) is (5.23).

From (5.24)-(5.25) we find

$$L_{u_2u_2u_2} + L_{u_2} = 0.$$

Thus

$$(5.26) L = A(s, u_3, \dots, u_n) \cos u_2 + B(s, u_3, \dots, u_n) \sin u_2 + K(s, u_3, \dots, u_n)$$

for some \mathbb{E}_n^{2n} -valued functions A,B and K. Substituting (5.26) into the third equation in (5.24) for $i=2,j\geq 3$, we obtain A=A(s) and K=K(s). Thus, (5.26) reduces to

(5.27)
$$L = A(s, u_3, \dots, u_n) \cos u_2 + B(s) \sin u_2 + K(s).$$

By substituting (5.27) into the last equation in (5.24) for j=2 and using the first equation of (5.24), we conclude that A,B and K satisfy the following second order differential equations:

(5.28)
$$A_{ss} - \left(2\varphi(s) + \frac{\mu'(s)}{\mu(s)}\right)A_s + (\varphi^2(s) - \mu^2(s))\left(2 + \frac{\mu'(s)}{\mu(s)\varphi(s)}\right)A = 0,$$

$$(5.29) \quad B_{ss} - \left(2\varphi(s) + \frac{\mu'(s)}{\mu(s)}\right) B_s + (\varphi^2(s) - \mu^2(s)) \left(2 + \frac{\mu'(s)}{\mu(s)\varphi(s)}\right) B = 0,$$

(5.30)
$$K_{ss} - \left(2\varphi(s) + \frac{\mu'(s)}{\mu(s)}\right)K_s = 0,$$

where μ, φ satisfy (5.23). After solving these second order differential equations we obtain

(5.31)
$$A = A_1(u_3, \dots, u_n) \frac{e^{\int_0^s \lambda ds}}{\mu + \varphi} + A_2(u_3, \dots, u_n) \frac{e^{-\int_0^s \lambda ds}}{\mu - \varphi},$$

$$(5.32) B = c_1 \frac{e^{\int^s \lambda ds}}{\mu + \varphi} + c_2 \frac{e^{-\int^s \lambda ds}}{\mu - \varphi},$$

(5.33)
$$K = c_{-1} + c_0 \int_{-\infty}^{s} \mu(s) e^{2\int_{-\infty}^{s} \varphi(u) du} ds$$

for some vectors $c_{-1}, c_0, c_1, c_2 \in \mathbb{E}_n^{2n}$ and \mathbb{E}_n^{2n} -valued functions A_1, A_2 . Thus, by combining (5.31)-(5.33) with (5.27) we conclude that, up to a suitable translation, the immersion L satisfies

(5.34)
$$L(s, u_2, \dots, u_n) = \left(\frac{e^{\int^s \lambda ds}}{\mu + \varphi}\right) (c_1 \sin u_2 + A_1(u_3, \dots, u_n) \cos u_2)$$
$$+ \left(\frac{e^{-\int^s \lambda ds}}{\mu - \varphi}\right) (c_2 \sin u_2 + A_2(u_3, \dots, u_n) \cos u_2)$$
$$+ c_0 \int^s \mu(s) e^{2\int^s \varphi(u) du} ds.$$

Now, by substituting (5.34) into the remaining equations of system (5.24)-(5.25), we obtain after long computation that

$$L = \frac{e^{\int_{-s}^{s} \lambda(s)ds}}{\mu + \varphi} \left\{ c_{1} \sin u_{2} + \cos u_{2} \left(c_{2} \sin u_{3} + \dots + \frac{e^{-\int_{-s}^{s} \lambda(s)ds}}{\mu - \varphi} \right) \right\}$$

$$\left\{ c_{n+1} \sin u_{2} + c_{n-1} \sin u_{n-1} \prod_{\ell=3}^{n-2} \cos u_{\ell} + c_{n} \prod_{\ell=3}^{n-1} \cos u_{\ell} \right) \right\}$$

$$+ \cos u_{2} \left(c_{n+2} \sin u_{3} + \dots + c_{2n-1} \sin u_{n-1} \prod_{\ell=3}^{n-2} \cos u_{\ell} + c_{2n} \prod_{\ell=3}^{n-1} \cos u_{\ell} \right)$$

$$+ c_{0} \int_{-s}^{s} \mu(s) e^{2 \int_{-s}^{s} \varphi(u) du} ds$$

for some vectors $c_1, \ldots, c_{2n} \in \mathbb{E}_n^{2n}$. Consequently, after choosing suitable initial conditions, we obtain (ii.2).

Case (3). $\varphi^2 < \mu^2$. In this case, we may assume that the metric on $I \times_f R^{n-1}(-1)$ is given by

(5.35)
$$g = ds^{2} + f^{2}(s) \left\{ du_{2}^{2} + \sinh^{2} u_{2} (du_{3}^{2} + \cos^{2} u_{3} du_{4}^{2} + \cdots + \prod_{k=3}^{n-1} \cos^{2} u_{k} du_{n-1}^{2}) \right\}.$$

From (5.35) we obtain

$$\nabla'_{\partial/\partial s} \frac{\partial}{\partial s} = 0, \quad \nabla'_{\partial/\partial s} \frac{\partial}{\partial u_k} = \frac{f'}{f} \frac{\partial}{\partial u_k},$$

$$\nabla'_{\partial/\partial u_2} \frac{\partial}{\partial u_2} = -ff' \frac{\partial}{\partial s},$$

$$\nabla'_{\partial/\partial u_2} \frac{\partial}{\partial u_j} = \coth u_2 \frac{\partial}{\partial u_j}, \quad 3 \le j \le n,$$

$$(5.36) \qquad \nabla'_{\partial/\partial u_i} \frac{\partial}{\partial u_j} = -\tan u_i \frac{\partial}{\partial u_j}, \quad 3 \le i < j,$$

$$\nabla'_{\partial/\partial u_j} \frac{\partial}{\partial u_j} = -\prod_{\ell=3}^{j-1} \cos^2 u_\ell \left\{ ff' \sinh^2 u_2 \frac{\partial}{\partial s} + \frac{\sinh 2u_2}{2} \frac{\partial}{\partial u_2} \right\}$$

$$+ \sum_{k=3}^{j-1} \left(\frac{\sin 2u_k}{2} \prod_{l=k+1}^{j-1} \cos^2 u_l \right) \frac{\partial}{\partial u_k}, \quad j \ge 3.$$

From (4.5), (5.36) and and $(\bar{\nabla}_{\partial/\partial s}h)(\frac{\partial}{\partial s},\frac{\partial}{\partial x_j})=(\bar{\nabla}_{\partial/\partial x_j}h)(\frac{\partial}{\partial s},\frac{\partial}{\partial s})$ we also find

$$\frac{f'}{f} = \varphi = \frac{\mu'}{\lambda - 2\mu}.$$

Thus, there is a real number $c \neq 0$ such that

$$(5.38) f = c e^{\int_{-\infty}^{s} \varphi(x) dx}.$$

By applying (5.35) and (5.38) we know that the sectional curvature K_{23} of the plane section spanned by $\partial/\partial u_2$, $\partial/\partial u_3$ is given by

(5.39)
$$K_{23} = -c^{-2}e^{-2\int \varphi(s)ds} - \varphi^2.$$

On the other hand, (4.5) and Gauss' equation yields

$$(5.40) K_{23} = -\mu^2.$$

Combining (5.37), (5.38), (5.39) and (5.40) gives

(5.41)
$$f^{2} = \frac{1}{\mu^{2} - \varphi^{2}}, \quad \varphi = \frac{\mu'}{\lambda - 2\mu}, \quad \lambda = 2\mu + \frac{\mu'}{\varphi}.$$

It follows from (5.5) and the last equation in (5.22) that ϕ and μ satisfy the following differential equation

$$(5.42) \varphi' = \mu^2 - \varphi^2 + \frac{\mu \mu'}{\varphi}.$$

Therefore, by applying (4.5), (5.35)-(5.38), (5.41) and Gauss' formula, we obtain

$$L_{ss} = \lambda P L_{s},$$

$$L_{su_{j}} = \varphi L_{u_{j}} + \mu P L_{u_{j}}, \quad 2 \leq j \leq n,$$

$$L_{u_{2}u_{2}} = \frac{\mu}{\mu^{2} - \varphi^{2}} P L_{s} - \frac{\varphi}{\mu^{2} - \varphi^{2}} L_{s},$$

$$L_{u_{2}u_{j}} = \coth u_{2} L_{j}, \quad 3 \leq j \leq n,$$

$$(5.43) \quad L_{u_{i}u_{j}} = -\tan u_{i} L_{u_{j}}, \quad 3 \leq i < j \leq n,$$

$$L_{u_{j}u_{j}} = \sinh^{2} u_{2} \prod_{\ell=3}^{j-1} \cos^{2} u_{\ell} \left\{ \frac{\mu}{\mu^{2} - \varphi^{2}} P L_{s} - \frac{\varphi}{\mu^{2} - \varphi^{2}} L_{s} \right\}$$

$$-\frac{\sinh 2u_{2}}{2} \prod_{\ell=3}^{j-1} \cos^{2} u_{\ell} L_{u_{2}} + \sum_{k=3}^{j-1} \left(\frac{\sin 2u_{k}}{2} \prod_{l=k+1}^{j-1} \cos^{2} u_{l} \right) L_{u_{k}}, \quad j \geq 3.$$

Now, by applying P2 = I and (5.43), we get

$$P_{ss} = \lambda L_{s},$$

$$PL_{su_{j}} = \mu L_{u_{j}} + \varphi PL_{u_{j}}, \quad 2 \leq j \leq n,$$

$$PL_{u_{2}u_{2}} = \frac{\mu}{\mu^{2} - \varphi^{2}} L_{s} - \frac{\varphi}{\mu^{2} - \varphi^{2}} PL_{s},$$

$$PL_{u_{2}u_{j}} = \coth u_{2} PL_{j}, \quad 3 \leq j \leq n,$$

$$(5.44) \quad PL_{u_{i}u_{j}} = -\tan u_{i} PL_{u_{j}}, \quad 3 \leq i < j \leq n,$$

$$PL_{u_{j}u_{j}} = \sinh^{2} u_{2} \prod_{\ell=3}^{j-1} \cos^{2} u_{\ell} \left\{ \frac{\mu}{\mu^{2} - \varphi^{2}} L_{s} - \frac{\varphi}{\mu^{2} - \varphi^{2}} PL_{s} \right\}$$

$$-\frac{\sinh 2u_{2}}{2} \prod_{\ell=3}^{j-1} \cos^{2} u_{\ell} PL_{u_{2}} + \sum_{k=3}^{j-1} \left(\frac{\sin 2u_{k}}{2} \prod_{l=k+1}^{j-1} \cos^{2} u_{l} \right) PL_{u_{k}}, \quad j \geq 3.$$

A direct computation shows that the compatibility condition of this system (5.43)-(5.44) is (5.23). By solving system (5.23) in a similar way as Case (2)

and after long computation and using (5.23), we obtain

$$L(s, u_2, \dots, u_n) = \frac{e^{\int_s^s \lambda(s)ds}}{\mu + \varphi} \left\{ c_1 \cosh u_2 + \sinh u_2 \left(c_2 \sin u_3 + \dots + c_{n-1} \sin u_{n-1} \prod_{\ell=3}^{n-2} \cos u_{\ell} + c_n \prod_{\ell=3}^{n-1} \cos u_{\ell} \right) \right\}$$

$$+ \frac{e^{-\int_s^s \lambda(s)ds}}{\mu - \varphi} \left\{ c_{n+1} \cosh u_2 + \sinh u_2 \left(c_{n+2} \sin u_3 + \dots + c_{2n-1} \sin u_{n-1} \prod_{\ell=3}^{n-2} \cos u_{\ell} + c_{2n} \prod_{\ell=3}^{n-1} \cos u_{\ell} \right) \right\}$$

for some vectors $c_1, \ldots, c_{2n} \in \mathbb{E}_n^{2n}$. Hence, after choosing suitable initial conditions, we obtain (ii.3).

REFERENCES

- 1. B.-Y. Chen, Geometry of Submanifolds, Mercer Dekker, New York, 1973.
- 2. B.-Y. Chen, *Total Mean Curvature and Submanifolds of Finite Type*, World Scientific, New Jersey, 1984.
- 3. B.-Y. Chen, Interaction of Legendre curves and Lagrangian submanifolds, *Israel J. Math.*, **99** (1997), 69-108.
- 4. B.-Y. Chen, Complex extensors and Lagrangian submanifolds in complex Euclidean spaces, *Tohoku Math. J.*, **49** (1997), 277-297.
- 5. B.-Y. Chen, Representation of flat Lagrangian *H*-umbilical submanifolds in complex Euclidean spaces, *Tohoku Math. J.*, **51** (1999), 13-20.
- 6. B. Y. Chen, Riemannian submanifolds, in: *Handbook of Differential Geometry*, Vol. I, 187-418, (F. Dillen and L. Verstraelen, eds.), North-Holland, Amsterdam, 2000.
- 7. B. Y. Chen, Riemannian geometry of Lagrangian submanifolds, *Taiwanese J. Math.*, **5** (2001), 681-723.
- 8. B.-Y. Chen, Complex extensors and Lagrangian submanifolds in indefinite complex Euclidean spaces, *Bull. Inst. Math. Acad. Sinica*, **31** (2003), 151-179.
- 9. B.-Y. Chen, Totally geodesic complex extensors in indefinite complex Euclidean spaces, *Bull. Inst. Math. Acad. Sinica*, **33** (2005), 253-259.
- 10. B.-Y. Chen, Lagrangian submanifolds in para-Kähler manifolds, *Nonlinear Analysis*, **73** (2010), 3561-3571.
- 11. B.-Y. Chen and K. Ogiue, On totally real submanifolds, *Trans. Amer. Math. Soc.*, **193** (1974), 257-266.

- 12. V. Cortés, The special geometry of Euclidean supersymmetry: a survey, *Rev. Un. Mat. Argentina*, **47** (2006), 29-34.
- 13. V Cortés, M.-A. Lawn and L. Schäfer, Affine hyperspheres associated to special para-Kähler manifolds, *Int. J. Geom. Methods Mod. Phys.*, **3** (2006), 995-1009.
- 14. V. Cortés, C. Mayer, T. Mohaupt and F. Saueressig, Special geometry of Euclidean supersymmetry, I, Vector multiplets, *J. High Energy Phys.*, 2004, No. 3, 028, 73 pp.
- 15. F. Dillen and S. Nölker, Semi-parallelity, multi-rotation surfaces and the helix-property, *J. Reine Angew. Math.*, **435** (1993), 33-63.
- 16. F. Etayo, R. Santamaría and U. R. Trías, The geometry of a bi-Lagrangian manifold, *Differential Geom. Appl.*, **24** (2006), 33-59.
- 17. P. M. Gadea and A. Montesinos Amilibia, Spaces of constant para sectional curvature, *Pacific J. Math.*, **136** (1989), 85-101.
- 18. S. Hiepko, Eine innere Kennzeichung der verzerrten Produkte, *Math. Ann.*, **241** (1979), 209-215.
- 19. Z. Hou, S. Deng and S. Kaneyuki, Dipolarizations in compact Lie algebras and homogeneous para-Kähler manifold, *Tokyo J. Math.*, **20** (1997), 381-388.
- 20. P. K. Rashevskij, The scalar field in a stratified space, *Trudy Sem. Vektor. Tenzor. Anal.*, **6** (1948), 225-248.
- 21. B. A. Rozenfeld, On unitary and stratified spaces, *Trudy Sem. Vektor. Tenzor. Anal.*, **7** (1949), 260-275.
- 22. H. S. Ruse, On parallel fields of planes in a Riemannian manifold, *Quart. J. Math. Oxford Ser.*, **20** (1949), 218-234.

Bang-Yen Chen Department of Mathematics Michigan State University East Lansing, Michigan 48824-1027 U.S.A.

E-mail: bychen@math.msu.edu