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LAGRANGIAN H-UMBILICAL SUBMANIFOLDS
OF PARA-KAHLER MANIFOLDS

Bang-Yen Chen

Abstract. The notion of Lagrangian H-umbilical submanifolds of Kahler
manifolds introduced in [3, 4] is closely related with several problems in La-
grangian geometry (cf. [7]). The classification of such submanifolds was done
in a series of author’s papers [3, 4, 5]. On the other hand, the study of La-
grangian submanifolds of para-Kahler manifolds was initiated very recently in
[10]. In this paper we study Lagrangian H-submanifolds of para-Kahler man-
ifolds. As results we prove several fundemental properties of such submani-
folds. Moreover, we are able to classify Lagrangian H-umbilical submanifolds
of the para-Kahler n-plane (E2", go, P) for n > 3.

1. INTRODUCTION

An almost para-Hermitian manifold is a manifold M endowed with an almost
product structure P # +1I and a semi-Riemannian metric g such that

(1.1) P? =1, g(PX,PY)=—g(X,Y)

for vector fields X, Y tangent to M, where I is the identity map. Consequently, the
dimension of M is even and the signature of g is (n,n), where dim M = 2n. Let
V denote the Levi-Civita connection of M. An almost para-Hermitian manifold is
called para-Kahler if it satisfies VP = 0 identically.

Properties of para-Kahler manifolds were first studied by R. K. Rashevski in
1948 in which he considered a neutral metric of signature (n,n) defined from a
potential function on a locally product 2n-manifold [20]. He called such manifolds
stratified space. Para-Kahler manifolds were explicitly defined by B. A. Rozenfeld
in 1949 [21]. Rozenfeld compared Rashevskij’s definition with K&hler’s definition
in the complex case and established the analogy between Kahler and para-Kahler
ones. Such manifolds were also defined independently by H. S. Ruse in 1949 [22].
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The Levi-Civita connection of a para-Kahler manifold (M, g, P) preserves P,
equivalently, its holonomy group Hol,, p € M, preserves the eigenspace decompo-
sition T,M = TJ;L @ T, . The parallel eigendistributions T+ of P are g-isotropic
integrable distributions. Moreover, they are Lagrangian distributions with respect
to the Kahler form w = g o P, which is parallel and hence closed. The leaves of
these distributions are totally geodesic submanifolds, Thus, from the standpoint of
symplectic manifolds, a para-Kahler structure can be regarded as a pair of com-
plementary integrable Lagrangian distributions (77, 7) on a symplectic manifold
(M, w). Such a structure is often called a bi-Lagrangian structure or a Lagrangian
2-web (cf. [16]).

There exist many para-Kahler manifolds, for instance, a homogeneous manifold
M = G/H of a semisimple Lie group G admits an invariant para-Kahler structure
(g, P) if and only if it is a covering of the adjoint orbit Adgh of a semisimple
element i (see [19] for details).

Analogous to totally real submanifolds in an almost Hermitian manifold (cf.
[11]), we call a space-like submanifold N in an almost para-Hermitian manifold
(M2m, g, P) totally real if P maps each tangent space 7,N, p € N, into the
normal space T;-N. In particular, we call N' Lagrangian if P(T,N) = T;-N for
each p € N.

Lagrangian submanifolds in Kahler manifolds have been studied extensively
since early 1970s (see [6, 7] for surveys). In contrast, no results on Lagrangian sub-
manifolds in para-Kahler manifolds are known (see [16, Section 5: Open Problems],
in particular, see Open Problem (3)). This is the reason the author initiated recently
the study of Lagrangian submanifolds of para-Kahler manifolds in [10] in which
two optimal inequalities for Lagrangian submanifolds in flat para-Kahler manifolds
were proved. Lagrangian submanifolds satisfying the equality case of one of the
two inequalities are also classified in [10].

On the other hand, the notion of Lagrangian H-umbilical submanifolds of Kahler
manifolds introduced in [3, 4] is closely related with several problems in Lagrangian
geometry (cf. [7]). The classification of such submanifolds was achieved in a series
of author’s papers [3, 4, 5].

In this paper we introduce and study Lagrangian H-submanifolds of para-Kahler
manifolds. As consequences, we prove several fundamental properties of such sub-
manifolds. Moreover, we classify Lagrangian H-umbilical submanifolds of the
para-Kahler n-plane (E2", go, P) with n > 3.

2. PRELIMINARIES
2.1. Para-Kahler manifolds

Definition 2.1. An almost para-Hermitian manifold is a manifold A/ endowed
with an almost product structure P # +1I and a pseudo-Riemannian metric g such
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that
(2.1) P? =1, and g(Pv, Pw)= —g(v,w)
for vectors v, w € T,(M), p € M, where I is the identity map.

The dimension of an almost para-Hermitian manifold M is even and the metric
is neutral.

Definition 2.2. An almost para-Hermitian manifold (M, g, P) is called para-
Kahler if it satisfies VP = 0 identically, where V is the Levi-Civita connection of
M.

The simplest example of para-K&hler manifolds is the pseudo-Euclidean 2n-
space E2" endowed with the neutral metric:

(2.2) go=—> da}+) dy}
i=1 j=1
with P being defined by
) ) ) )
23 P(a5) = ")~

for j =1,...,n. We simply called (E2", gy, P) the para-Kahler n-plane.
The following result is well-known.

Lemma 2.1. The curvature tensor of a para-Kahler manifold satisfies

(2.4) R(X,Y)oP=PoR(X,Y),
(2.5) R(PX,PY) = R(X,Y),
(2.6) R(X,PY) = R(PX.,Y).

For a para-Kahler manifold A, (2.1) implies that
2.7) g(Pv,w)+ g(v, Pw) =0, v,w e T,(M), pe M.

Thus g(v, Pv) = 0. If {v, Pv} determines a non-degenerate plane section called a
P-section, the sectional curvature

HP®) = K(v A Po)

of Span{v, Pv} is called a para-sectional curvature.
By definition a para-Kahler space form is a para-Kahler manifold of constant
para-sectional curvature.
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The para-Kahler n-plane (E27, go, P) is the standard model of flat para-Kahler
manifolds. Models of para-Kahler space forms with nonzero para-sectional curvature
were constructed in [17].

The Riemann curvature tensor of a para-Kahler space forms M 2" (4c) of constant
para-sectional curvature 4c¢ satisfies

R(X,Y)Z =c{g(Y,2)X — g(X, Z)Y + g(PY, Z)PX
(2.8)
—g(PX,Z)PY +2g(X, PY)PZ}.

2.2. Basic formulas and definitions

Let ¢ : N — M?2" be an isometric immersion of a Riemannian n-manifold
N into a para-Kahler manifold (M?2", g, P). Denote by V' and V the Levi-Civita
connections on N and M?>", respectively.

For vector fields X, Y tangent to NV and £ normal to NV, the formulas of Gauss
and Weingarten are given respectively by (cf. [1, 2]):

(2.9) VxY = VY +h(X,Y),
(2.10) Vx§=—-A¢X + Dx¢,

where h, A and D are the second fundamental form, the shape operator, and the
normal connection of N in M2".
The shape operator and the second fundamental form are related by

(2.11) (h(X,Y), &) = (AeX,Y),

where ( , ) is the inner product. The mean curvature vector is defined by
2.12) H=— (%)traceh.

The equations of Gauss, Codazzi and Ricci are given respectively by
(2.13) R(X,Y)Z =R(X,Y)Z + Any,2)X — Anx,2)Y,

(2.14) (R(X,Y)2)" = (Vxh)(Y, Z) = (Vyh)(X, Z),

(2.15) g(RP(X,Y)€,n) = g(R(X,Y)&, n) + g([Ae, A7) X, Y)

for X,Y, Z tangent to IV and &, normal to N, where R (respectively, R) is the
curvature tensor of N (respectively, of M2™), (R(X,Y)Z)* is the normal component
of R(X,Y)Z, and Vh and RP are defined by

(2.16) (Vxh)(Y,Z) = Dxh(Y,Z) - WV'\Y,Z) - h(Y,V2),

(2.17) RP(X,Y) = DxDy — DyDx — Dix y]-
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3. LAGRANGIAN SUBMANIFOLDS OF PARA-KAHLER MANIFOLDS

The following basic lemma is given in [10].

Lemma 3.2. Let N be a Lagrangian submanifold of a para-K ahler manifold
M?2". Then we have

(i) P(VY) = Dx(PY),

(i) ApxY = —P(h(X,Y)),

(i) (h(X,Y),PZ) = (h(Y,Z),PX) = (h(Z,X), PY),
(iv) P(R'(X,Y)Z) = RP(X,Y)PZ

for X,Y, Z tangent to .

The equations of Gauss and Codazzi for a Lagrangian submanifold N of a
para-Kahler space form M2"(4c) are given respectively by

(3.1) R(X,Y;Z,W) = Ay 1 X, W) — {Apx. )Y, W)
+C(<X7 W> <Yv Z> - <X7 Z> <Y7 W>)7
(3.2) (Vxh)(Y, Z) = (Vyh)(X, Z)

for X,Y, Z, W tangent to V.
If we put h = P o o (equivalently o = P o h), then (2.1) and Lemma 3.2(iii)
imply that

<Ah(Y’Z)X, W> = (h(X,W),h(Y,Z)) = (h(X,W), Po(Y, Z))
= (h(o(Y,Z2),X),PW)=—(o(c(Y,2),X),W).
Therefore, equation (3.1) of Gauss can be rephrased as
R(X,Y)Z =0(0(X,2),Y)—0o(o(Y,Z),X)
+e(Y,Z)X —c(X,2)Y.

It follows Lemma 3.2(i) that the equation of Ricci is nothing but the equation
of Gauss for Lagrangian submanifolds of para-Kahler manifolds.

Now, we state the fundamental existence and uniqueness theorems for La-
grangian submanifolds in (E2", go, P) are given by the following.

Existence Theorem. Let N be a simply-connected Riemannian n-manifold. If
o is a T'N-valued symmetric bilinear form on N such that

(@) g(o(X,Y), Z) is totally symmetric,
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(b) (Vo)(X,Y, Z) is totally symmetric,
) R(X,)Y)Z =0(c(X,Z2),Y)—0(c(Y, Z),X),

then there is a Lagrangian isometric immersion L : N — (E 2", gy, P) whose
second fundamental formis h = P oo.

Uniqueness Theorem. Let Ly, Ly : N — (E2", go, P) be two Lagrangian
isometric immersions of a Riemannian n-manifold N with second fundamental
forms h! and A2, respectively. If

g(h"(X,Y), PL1.Z) = g(h*(X,Y), PLy, Z)

for all vector fields X, Y, Z tangent to N, then there is an isometry @ of (E 2, go, P)
such that L1 = ® o Ls.

Similar existence and uniqueness theorems also hold for Lagrangian submani-
folds in para-Kéahler space forms.

4. LAGRANGIAN H-UMBILICAL SUBMANIFOLDS

A pseudo-Riemannian submanifold N of a pseudo-Riemannian manifold is
called totally umbilical if its second fundamental form satisfies

(4.1) MX,Y)=(X,Y)H
for X,Y tangentto N.

Proposition 4.1. The only totally umbilical Lagrangian submanifold N of a
para-Kahler space form M 2" (4c) with n > 2 is the totally geodesic ones.

Proof. Let N be a totally umbilical Lagrangian submanifold of a para-Kahler
space form M2"(4c) with n > 2. Assume that NV is non-totally geodesic, then
H #0.

It follows from (4.1) that (Vxh)(Y, Z) = (Y, Z) DxH. Thus, after applying
equation (3.2) of Codazzi, we find

(4.2) (Y,Z)DxH = (X,Z) DyH

for X,Y, Z tangentto N. For any X € T'N, by choosing 0 #Y = Z 1 X, we get
DH = 0. Therefore, it follows from the equation of Gauss that N is of constant
sectional curvature ¢ — ||H||? < ¢, where ||H|| = \/— (H, H).

Let us put Z = PH. Then Lemma 3.1(i) implies that V'Z = 0. Thus, Z is
a nonzero parallel vector field on N, which implies that NV is a flat Riemannian
manifold. Hence, we get ¢ = — (H, H) > 0.
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Since N is totally umbilical, we have [Ay, A¢] = 0 for any normal vector &.
Hence, by using DH = 0 we find from equation (2.15) of Ricci that
(4.3) g(R(Z,Y)H,PY) =0
for Y, Z € T N. On the other hand, by applying (2.8) we also have
44) g(R(Z,Y)H,PY)=c{g(PY,H)g(PZ,PY)—qg(PZ,H)g(PY,PY)}

Thus, after choosing Y, Z such that Z = PH and g(Y, Z) = 0, we find g(H, H) =
0. But this is a contradiction. Consequently, N must be totally geodesic. |

Definition 4.3. A Lagrangian submanifold IV of a para-Kahler manifold is called
Lagrangian H-umbilical if the second fundamental form takes the following simple
form:

h(e1,e1) = APey, h(ea,e2) =--- = h(ep, e,) = pPey,

4.5
(45) h(ei,ej) = puPej, h(ej,er) =0, 2 < j#k <n,

for some functions A, i with respect to some orthonormal local frame field.

In view of Proposition 4.1, Lagrangian H -umbilical submanifolds are the sim-
plest Lagrangian submanifolds next to totally geodesic ones.

The following result shows that there exist many non-totally geodesic Lagrangian
H-umbilical submanifolds.

Proposition 4.2. Let v = (y1,72) : I — E? be a unit speed space-like curve
satisfying (v,v) < 0. Define L : I x R x S"2(1) — E2" by

(4.6) (71(s) cosht, va(s)zsinh t, yo(s) cosht, 1 (s)zsinh ),

where z = (z9,...,2,) € E"! satisfies 22 + 22 +--- + 22 = 1. Then L defines a
Lagrangian H-umbilical submanifold of (E 2", go, P) satisfying (4.5) with

/ _ /
(47) )= K, U= 717‘2‘7”3172

Proof.  Under the hypothesis it follows from (4.6) that

(4.8) Ls = (v cosht, v5z sinh ¢, v cosh t, v}z sinh t),
(4.9) L; = (y1sinht, y9z cosh t, o sinh ¢, 1z cosht),
(4.10) XL = (0,7v(sinh )X, 0, y1(sinh t) X),

(4.11) Lgs = (71 cosht, 4z sinht, v} cosh t, v}z sinh t),

(4.12) Lg = (v sinht, v5z cosht, 4 sinht, vz cosh t),



2490 Bang-Yen Chen

(4.13) X Ls = (v cosht,v5(sinh t) X, ~5 cosh t,~ (sinht) X),
(4.14) XL = (y1sinht, yo(cosht) X, vo sinh ¢, v (cosh t) X ),
(4.15) XYL = (0,92(cosh t)Vy Y, 0,71 (cosht) Vx Y)

— (0,(X,Y) y2z cosht,0, (X,Y) v1zcosht)

for X, Y tangent to S"~2(1). From (4.8)-(4.10) we get

(4.16) P(Ls) = (v4cosht,vizsinht, ] cosht, vz sinht),
(4.17) P(L¢) = (y2sinht, y12 cosht, vy sinh ¢, y92 cosh t),
(4.18) P(XL)=(0,v(sinht) X, 0, y2(sinh t) X).

Since v(s) = (71(s),72(s)) is a unit speed space-like curve in E2, (4.8)-(4.10)
imply that the induced metric via L is given by

(4.19) g = ds* + ||7||*(dt? + sinh? tgy),

where g; is the metric of S"~2(1). From (4.8)-(4.10) and (4.16)-(4.18), we know
that L is Lagrangian. Because ~ is unit speed and space-like, we have

(4.20) (71(s),72(s)) = K(s)(va(s), 71(s))

for some function . Thus, by (4.11)-(4.20) and (2, X) = 0 for X € T'N, we
obtain (4.5) with

[[vI[2
Consequently, L defines a Lagrangian H-umbilical submanifold with the desired
properties. This completes the proof of the proposition. ]

Similarly, we also have the following.

Proposition 4.3. Let v = (y1,72) : I — E? be a unit speed space-like curve
satisfying (y,~) > 0. Define L : I x R x S"7%(1) — E2" by

(4.22) (v1(s) sint, v1(s)z cost, y2(s) sint, y2(s)z cost),

where z = (z9,...,2,) € E"! satisfies 22 + 22 +--- + 22 = 1. Then L defines a
Lagrangian H-umbilical submanifold of (E 2", go, P) satisfying (4.5) with

Fmf /
(4.23) A=k, p= W
vy
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Proof. This can be proved in the same as Proposition 4.2 |
Let N be a Lagrangian H-umbilical submanifold of a para-Kahler submanifold
satisfying (4.5) with respect to an orthonormal frame {ey,...,e,}. We put
n .
(4.24) "cei :ng(X)ej, i=1,...,n.
j=1

Lemma 4.3. Let N be a Lagrangian H-umbilical submanifold of a para-K ahler
space form M?2"(4c) which satisfies (4.5) with respect to an orthonormal frame
{e1,...,en}. The we have

(4.25) erpp = (A= 2w (ea) = -+ = (A = 2p)wf (),
(4.26) eA = (2u— Nwj(er), j>1,

(4.27) (A =2wwi(er) =0, 1<j#k<n,

(4.28) eji = 3pw (1),

(4.29) pwl(er) =0, j>1.

Proof. By applying (4.5), Lemma 3.2(i) and Codazzi’s equation, we obtain
this lemma by direct computation. ]

Proposition 4.4. Let N be a Lagrangian H-umbilical submanifold of a para-
Kahler space form M 2" (4c) satisfying (4.5). If A = 2y, then p is a constant, say
b, and N is of constant sectional curvature ¢ — b2,

Proof.  Under the hypothesis, it follows from (4.25) and (4.26) that
e1pp =egd =---=¢e,A=0.

Thus, by using A = 2u we see that g is a constant, say . Now, by applying the
equation of Gauss and ;. = b we conclude that N is of constant curvature —b%. m

Theorem 4.1. A Lagrangian H-umbilical submanifold of (E 2", go, P) satisfying
A = 2 is either a flat totally geodesic Lagrangian submanifold or congruent to
an open portion of

2 . . . 2 .

(4.30) (cosh (bs) coshﬁ, sinh(2bs) smhtz, sinh(2bs) coshﬁ, cosh”(bs) smhﬁz)
b 2b 2b b

with b # 0, where z = (23, ..., 2,) € E"~! satisfies 23 + 22 + -+ + 22 = 1.

Proof. Let N be a Lagrangian H-umbilical submanifold of (E2", go, P)
satisfying A = 2. Then, by Proposition 4.4, . is a constant, say b. If b = 0, then
N is totally geodesic. In this case, N is a flat Lagrangian submanifold.
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Next, assume b is a nonzero constant. Then NV is of constant negative curvature
—b%. Thus, N is an open portion of a hyperbolic n-space H"(—b?) in E2" whose
second fundamental form satisfies

h(e1,e1) = 2bPey, h(eg,ez) =--- = h(e,,e,) = bPey,
(4.31)

h(ei,ej) = bPej, h(ej,ex) =0, 2 < j#k <n,
for some orthonormal frame ey, .. ., e,.

On the other hand, a direct computation shows that (4.30) defines a Lagrangian
H-umbilical immersion of H"(—b?) into (E2", go, P) whose second fundamental
form also satisfies (4.31). Therefore, by uniqueness theorem, N is congruent to an
open portion of (4.30). [ |

5. CLASSIFICATION OF LAGRANGIAN H -UMBILICAL SUBMANIFOLDS OF 2"

Next, we classify Lagrangian H-umbilical submanifolds in the para-Kahler n-
plane (E2", gy, P).

Theorem 5.1. Let L : N — (E2", go, P) be a Lagrangian H-umbilical im-
mersion of a Riemannian n-manifold N into the para-K ahler n-plane with n > 3.
Then

(i) If NV is of constant sectional curvature, then either N is flat or L is congruent
to an open portion of

1
% <2(:osh2 (bs) cosht, zsinh(2bs) sinht, sinh(2bs) cosht, 2z cosh? (bs) sinh t)

with b # 0, where z = (23, ..., 2,) € E"~! satisfies 23 + 22 + -+ + 22 = 1.
(if) If N contains no open subset of constant sectional curvature, then L is
locally congruent to one of the following three types of submanifolds:

(ii.1) a Lagrangian submanifold defined by

62’ 6_2’ 9 9 527,.12 + 7! 1— a2€2’ 1— a2€2’
< o +a E zj — 273 ds, 5 T2y = Tn,
Jj=2
err e Sop2 4 gt 1+ a2e?” 1+ a2e?”
- - + a? E - ds T —z
27”’2 7 621’7”/3 Y 2 27 ] 2 n Y
Jj=2

where r = r(s) is a non-constant function and « is positive number;
(ii.2) a Lagrangian submanifold defined by
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1 efs)\ds e~ J S Ads efs)\ds e~ S5 ds
— + sint, + zcost,
2\ \p+e  p—v [ "

efs)\ds e~ J S ds ) efs)\ds e~ J S Xds
— sint, — zcost |,
N Bty p—
where 1(s) and (s) are nonzero functions satisfies oo’ — pp’ = (u? — ¢?) and
A=2p+pp~tand z = (29,...,2,) € E"! satisfies 22 + 22 +--- + 22 =1;

(ii.3) a Lagrangian submanifold defined by

1 J S Ads — [*Xds S5 ds — [*Xds
b 48 cosht, ¢ _ ¢ zsinht,
2\\ut+e p-v pte  p—g

efs)\ds e~ J S Ads efs)\ds e~ J S ds )
- cosh t, + zsinht |,
N A
where p(s) and o(s) are nonzero functions satisfies o’ — up’ = (1> — ¢?)¢ and
A=2u+pp~tand z = (29,...,2,) € E" ! satisfies 22 + 22 +--- + 22 = 1.

Proof.  Assume thatn > 3 and L : N — (E2", go, P) is a Lagrangian H-
umbilical submanifold of the para-Kahler n-plane which satisfies (4.5) with respect
to some suitable orthonormal local frame field ey, .. ., e,.

If N is of constant curvature, then it follows from (4.5) and the equation of
Gauss that p(\ — 2p) = 0. Thus, either . = 0 or A = 2 at each point. If =0
identically, then N is flat. If x # 0, then A\ = 2u # 0 on a nonempty open subset
V of N. Thus, Proposition 4.4 implies that A and p are nonzero constants on V.
Thus, by continuity, V' = N. Therefore, it follows from Theorem 4.1 that N is
congruent to an open portion the Lagrangian submanifold given in (i).

Next, assume that N contains no open subset of constant curvature. Then

(5.1) U:={peN:puA—2u)#0atp}

is an open dense subset of N. Moreover, it follows from Lemma 4.3 that

(5.2) w{:<)\e_1gu>wj, eiA=¢eju=0, j=2,...,n.
(5.3) w{(el) = w{(ek) =0, 2<j#k<n.

From w{(el) = 0, we find V., e; = 0. Thus, the integral curves of e; are geodesics.
By using (5.2) and Cartan’s structure equations, we get dw! = 0. Hence, according
to Poincaré lemma, w' = ds for some local function s.
Let D denote the distribution spanned by e; which is clearly integrable. Using
(5.3) we find
{[ejs ex], er) = wi(es) —wj(ex) =0
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for j, k= 2,...,n. Thus the complementary orthogonal distribution D spanned by
{es,...,en} is an integrable distribution. Because D and D+ are both integrable,
there is a local coordinate system {s, xo, ..., z,} such that

(a) D is spanned by {0/0s} and D+ is spanned by {9/0x,, . ..,8/0x,} and
(b) e; = %, w! = ds.

From (4.26), (4.28) and (5.3) we have e;\ = e;u = 0 for j > 1. Hence, both
A and p depend only on s. Moreover, it follows from (5.2) and (5.3) that

!/

1

X e D+
)\—2M7 )

(5.4) Vixer =X, ¢=

where ' = dp/ds.

It follows from (5.4) and Ki; = (R(ej, e1)e1, e;) that the sectional curvature
K, of the plane section spanned by ey, e; is K1; = —¢' — 2. On the other hand,
(4.5) and the equation of Gauss shows that K; = u? — Au. Thus

(5.5) ¢ = A —p® — %
Also, from (5.4) we find that
(5.6) (VY. e1) = —p(X,Y).

This implies that the integrable distribution D -+ is spherical, i.e., the leaves of D~
are totally umbilical with parallel mean curvature vector in N. Moreover, it follows
from (4.6), (5.6) and Gauss’ equation that each leaf of D+ (with s = constant) is
of constant curvature ?(s) — u?(s). Hence, a result of [18] (see also [15, Remark
2.1]) implies that U is locally a warped product I x f(,) R"'(c), where R"~*(c)
is a Riemannian (n — 1)-manifold of constant curvature and f(s) is the warping
function, where we choose ¢ = 0, 1 or —1 according to * = p?, ©* > p?, or
©? < 1?2, respectively. Clearly, vectors tangent to I are in D and vectors tangent to
R ! are in D+,
The metric on I x ¢ R"~*(c) is given by

(5.7) g =ds* + f*(s)ge
where g, is metric of R"~!(c). From (5.7) we obtain

0 I 0
(5.8) Via/asg =0, Vj9,X = TXv VY =-ff(X.Y) 75 T L(VY),
for vector fields X,Y tangent to R"~!(c), where £(V%Y) is the lift of the the
covariant derivative V%Y of Y with respect to X on R"~1(c).
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Case (1). ¢? = u%. We may put ¢ = u. Also we have assume that
(5.9) g = ds® + f2(s)(da3 + dzi + - -+ da?).

Thus (5.8) becomes

B o f 0 B B
/ Y / ~ _ LY / -~ 1. Y
(510) v(‘)/asas 0, vi)/asaxj f a(I)j’ v(f)/am], a{I;k ff 5jk;a$

for j,k =2,...,n. From (4.5), (5.10) and (V,g5h) (£, %) = (Voyou,h) (5, &)
we derive that

oo
(5.11) e

Thus there is a real number a # 0 such that
(5.12) f(s)=ae"®, r(s) :/ w(x)dx.
From (5.11), we find

1!

.
(5.13) A=2r' 4

Consequently, (4.5), (5.10), (5.12), (5.13) and Gauss’ formula imply that the im-
mersion L : N — (E2", go, P) satisfies

,r,//
Lgs = <2r' + —,) PL,,
T
(514) Lsmj — r/(Laj]- + Png]-),
Lyz, = a*8j,e*" r'(PLs — Ly).
From P? = I and (5.14) we have
,r,//
PLSS = <27“/ + —/) L87
T
A
(5.15) PLay, =1Ly, + PLy),
PLyjy, = a2(5jke2rr'(L8 — PLy).
After solving the PDE system given by (5.14) and (5.15), we obtain

n S o, 12 " —2r
N 2 2 2 2r'c +r e
L(s,xa,...,xy) = c1e” + ¢y <2a E T — 2/ T ds — 3

=2

n n s
2
+> i+ ey enyjag, ?“Z/ p(s)ds,
i—2 i=2
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for some E2"-valued functions c1, ..., ca,. Consequently, after choosing suitable
initial values we obtain (ii.1).

Case (2). »? > u?. With respect to a spherical coordinate chart {us, . .., u,},
the metric on I x ¢ R"~1(1) is given by

(5.16) g =ds* + f*(s){du3 + cos® ugdu3 + - - - + cos® uy - - -cos> up_1du’}.

From (5.16) we obtain

0 0 fo ) o
! —_—= / - - ! — 1 Y
Va/asas 07 vﬁ/asauk f aUk, Va/aw au2 ff 887
0 0
Via/aui—:—tanuz‘—, 2 <1<y,
(5.17) Ou; O | |
9 = 8 [ sin 2uy, = ) o
_ / 2
vg/au]'a—uj_ —ff HCOS W&"’Z( 5 H cos ul> B
(=2 k=2 I=k+1
7> 2.

From (4.5), (5.17) and and (V,s5h) (2, aiu]-) = (Voyou,h) (55, &) we find

I
(5.18) 7 =p= o

Thus, there is a real number ¢ # 0 such that

(5.19) f=aqel e@)dr

By applying (5.16) and (5.19) we know that the sectional curvature K»3 of the plane
section spanned by 9/0us, 9/0us is given by

(5.20) Koz = a 2e 2/ @(s)ds _ ;2

On the other hand, (4.5) and Gauss’ equation yields

(5.21) Kog = —p2.
Combining (5.18), (5.19), (5.20) and (5.21) gives

1 M/ M/
5.22 2 - = F a4 B
It follows from (5.5) and the last equation in (5.22) that ¢ and . satisfy the following
differential equation

!
(5.23) o =p® —p? + R
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Therefore, by applying (4.5), (5.16)-(5.19), (5.22) and Gauss’ formula, we obtain

Lss = )‘Pst
Lsu]- - “)OL'U/]' + /’LPLUj7
Lyu; = —tanuiLu]., 2<1<j3<n,
(5.24) ¥
u]u] H COS Uk M PLS — m[;s
- sin 2u =
+Z< k Hcos u1>Luk, 1=2,...,n.
k=2 I=k+1
By applying P? = I, we obtain from (5.24) that
PL,, = AL,
PLgy; = ply; + 9PLy;,
PLyu; = —tanuiPLu.7 2<1< g <n,
(5.25) ¥
Lyju; = H cos? uy, . M2 L, — PR PL,
j ! sin 2u
k 2 .
+Z< 2 Hcos u1>PLuk, 1=2,...,n.
k=2 I=k+1

A direct computation shows that the compatibility condition of the PDE system
(5.24)-(5.25) is (5.23).
From (5.24)-(5.25) we find

Luyyuguy + Ly, = 0.
Thus

(5.26) L = A(s,us,...,up)cosuy + B(s,us,...,u,)sinug + K(s,us,...,up)

for some E2"-valued functions A, B and K. Substituting (5.26) into the third
equation in (5.24) for i = 2,j > 3, we obtain A = A(s) and K = K(s). Thus,
(5.26) reduces to

(5.27) L = A(s,us, ..., uy) cosus + B(s)sinug + K(s).

By substituting (5.27) into the last equation in (5.24) for j = 2 and using the first
equation of (5.24), we conclude that A, B and K satisfy the following second order
differential equations:
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(5.28) A, — <2<p(s) + Ml(s)) Ag+ (9%(s) — p2(5)) (2 + A

)N,
u(5) u(8)¢(8)> 4=0
_ s ' (s) 2(s) — 12(s #(s) _
629 B (200604 200 ) Bt (20 - 200) (24 0 ) B o
W)\
(5.30) Ky — <2<p(s) + m) K, =0,

where u, ¢ satisfy (5.23). After solving these second order differential equations
we obtain

(5.31) A= Al(u:g, ceey un) efs}\ds + AQ(’U,g, RN un) . fskdsj
pt e p=
efskds e—-fskds
(532) B:CIM—F@—’—CQM_QO’
(5.33) K=c_1+c /SM(S)€2 fsw(u)duds

for some vectors c_1, cg, c1, c2 € E2" and E2"-valued functions Ay, A,. Thus, by
combining (5.31)-(5.33) with (5.27) we conclude that, up to a suitable translation,
the immersion L satisfies

J S xds
L(s,ug,...,up) = (e (p)(cl sinug + Aq(us, ..., up) cosus)

— [®Xds
(5.34) + ( " ) (cosinug + Az(us, . .., uy,) cosusg)

—|—co/ u(s)e”s“"(“)duds.

Now, by substituting (5.34) into the remaining equations of system (5.24)-(5.25),
we obtain after long computation that

el As)ds . _ o= /¥ As)ds
L=——{c;sinug+cosus| cosinug + -+ ———
pAe T
n—2 n—1
{cn+1 sinug + ¢,p—1 SinUpy_1 H cos Uy + ¢y, H CcoS ug) }
=3 =3

n—2 n—1
+cosug | cpyosinug + - - 4 cop—1Sinup—1 H CcoS Uy + Cop, H COS Uy
=3 =3

+ co/ u(s)e”s“"(“)d“ds
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for some vectors c¢i,...,co, € IE%” Consequently, after choosing suitable initial
conditions, we obtain (ii.2).

Case (3). ¢? < p?. In this case, we may assume that the metric on I x;
R"1(-1) is given by

g=ds*+ f2(s){du% + sinh? ug (du3 + cos® ugdu? + - - -

(5.35) n—1
+ H cos? ukdui_l)}.
k=3
From (5.35) we obtain
0 0 fo
! P ! _—= — —
V@/@s Os 0, Va/as A, f aukv
0 0
! _— = — /_
Va/aug 8’[1,2 ff Os’
0 .
iy, = Cothuag, 3<i<nm,
(5.36) P00 P s
Va/aui du; tan u; ﬁuj’ 3 <1<y,
9 T 8 sinh2uy O
! — —_ 2 Fion2, 9 2 0
0/0u; O 1 COs™ Uy {ff sinh” ug s + 2 s }
Jj—1 . j—1
sin 2uy 9 o .
—_— >
+Z< 2 Hcos ul>au1€,]_3
k=3 I=k+1
From (4.5), (5.36) and and (V,a5h) (2, %) — (Vaoyou,h) (2, 2) we also find
/ /
(5.37) I 1

FoY T
Thus, there is a real number ¢ # 0 such that
(5.38) f=cel ez,

By applying (5.35) and (5.38) we know that the sectional curvature K»3 of the plane
section spanned by 9/0us, 9/0us is given by

(5.39) Koz = —c 2e2  w(9)ds _ 2.
On the other hand, (4.5) and Gauss’ equation yields
(5.40) K23 — _MQ-
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Combining (5.37), (5.38), (5.39) and (5.40) gives

1 M/ M/
(5.41) 2o~ o= . AN=2u+ .
f - YT N2 o

It follows from (5.5) and the last equation in (5.22) that ¢ and . satisfy the following
differential equation

/
(5:42) ¢ =p -+ %-

Therefore, by applying (4.5), (5.35)-(5.38), (5.41) and Gauss’ formula, we obtain

Lgs = A\PLs,
Lou; = ¢Luy; + pPLy;, 2<j<n,
H ¥
Luyu, = e <p2PLS T <p2L8’
Lyyu; = cothugLj, 3 <7 <n,
(5.43) Ly, = —tanu;Ly,;, 3 <i<j<n,
j—1
s 12 2 I "%
Ly;u; = sinh U2£H3 cos” uy {WPLS — mLS}
sinh 2us *¢ 9 I (sin 2uy, = ) .
— 5 Hcos Ug Ly, + Z 2 H cos“uy | Ly,, j = 3.
=3 k=3 I=k+1

Now, by applying P2 = I and (5.43), we get

Pss :)\st

PLsu]- :/’LL'LL]' +‘PPLu]-7 2<j<n,
I P

PLu2u2 = M2 — ¢2L8 - WPLS,

PLuQu]. = COthUQPLj, 3 <7 <n,
(5.44) PLyy, = —tanu;PLy,, 3<i<j<mn,

J—1
PLu].u]. = Sinh2 u9 H COS2 Uy {ﬁ[;s — %PLS}

/=3 e =
sinh 2u i1 i1 sin 2u i1
— 5 2 H cos? ugPL,, —|—Z < 5 k H cos? ul> PL,,, j=>3.
(=3 k=3 l=k+1

A direct computation shows that the compatibility condition of this system
(5.43)-(5.44) is (5.23). By solving system (5.23) in a similar way as Case (2)
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and after long computation and using (5.23), we obtain

efs A(s)ds

L(s,ug,...,u,) = ———— {1 coshug + sinh ug (cosinug + - - -

Kt p

n—2 n—1
+cCp_1Sinup_1 H COoS Uy + Cp, H COS Uy

=3 =3
e~ % X(s)ds

H—=

n—2 n—1
+Cop_1 SinUpy_1 H COS Uy + Cop, H COS Uy

=3 =3

{¢n+1 coshug + sinh ug (¢ o sinug + - - -

for some vectors ¢y, . . ., ca, € E2™. Hence, after choosing suitable initial conditions,
we obtain (ii.3). ]
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