VERTEX-COLORING EDGE-WEIGHTINGS OF GRAPHS

Gerard J. Chang, Changhong Lu, Jiaojiao Wu and Qinglin Yu

Abstract

A k-edge-weighting of a graph G is a mapping $w: E(G) \rightarrow$ $\{1,2, \ldots, k\}$. An edge-weighting w induces a vertex coloring $f_{w}: V(G) \rightarrow \mathbb{N}$ defined by $f_{w}(v)=\sum_{v \in e} w(e)$. An edge-weighting w is vertex-coloring if $f_{w}(u) \neq f_{w}(v)$ for any edge $u v$. The current paper studies the parameter $\mu(G)$, which is the minimum k for which G has a vertex-coloring k-edgeweighting. Exact values of $\mu(G)$ are determined for several classes of graphs, including trees and r-regular bipartite graph with $r \geq 3$.

1. Introduction

A k-edge-weighting of a graph G is a mapping $w: E(G) \rightarrow\{1,2, \ldots, k\}$. An edge-weighting w induces a vertex coloring $f_{w}: V(G) \rightarrow \mathbb{N}$ defined by $f_{w}(v)=$ $\sum_{v \in e} w(e)$. An edge-weighting w is vertex-coloring (respectively, vertex-injective) if $f_{w}(u) \neq f_{w}(v)$ for any edge $u v$ (respectively, every pair of distinct vertices u and v). Denote by $\mu(G)$ (respectively, $\mu^{*}(G)$) the minimum k for which G has a vertex-coloring (respectively, vertex-injective) k-edge-weighting. We refer a graph non-trivial if it contains no single edge as a component. Notice that $\mu(G) \leq \mu^{*}(G)$ for every non-trivial graph G.

An edge-weighting is adjacent vertex-distinguishing (respectively, vertexdistinguishing) if for any edge $u v$ (respectively, every pair of distinct vertices u and v), the multi-set of weights appearing on edges incident to u is distinct from the multi-set of weights appearing on the edges incident to v. Denote by $\mu_{m}(G)$ (respectively, $\mu_{m}^{*}(G)$) the minimum k for which G has an adjacent vertex-distinguishing (respectively, vertex-distinguishing) k-edge-weighting. Notice that $\mu_{m}(G) \leq \mu_{m}^{*}(G)$ for every non-trivial graph G. Then, upper bounds for $\mu(G)$ (respectively, $\mu^{*}(G)$) provide upper bounds for $\mu_{m}(G)$ (respectively, $\mu_{m}^{*}(G)$).

It is clear that a vertex-coloring (respectively, vertex-injective) edge-weighting is adjacent vertex-distinguishing (respectively, vertex-distinguishing), but the converse

[^0]is not necessarily true. Consequently, $\mu_{m}(G) \leq \mu(G)$ and $\mu_{m}^{*}(G) \leq \mu^{*}(G)$ for every non-trivial graph G.

Adjacent vertex-distinguishing edge-weighting and vertex-distinguishing edgeweighting have been studied by many researchers [4, 6, 5, 7]. Karoński, Luczak and Thomason [10] proved that $\mu_{m}(G) \leq 213$ for every non-trivial graph and that $\mu_{m}(G) \leq 30$ for every graph with minimum degree at least 10^{99}. AddarioBerry et al. [1] improved the results to $\mu_{m}(G) \leq 4$ for every non-trivial graph and $\mu_{m}(G) \leq 3$ for every graph of minimum degree at least 1000.

For vertex-coloring edge-weighting, Karoński, Luczak and Thomason [10] posed the following question:

Question. Does $\mu(G) \leq 3$ for every non-trivial graph G ?
Karoński, Luczak and Thomason [10] showed that if G is a k-colorable graph with k odd then G admits a vertex-coloring k-edge-weighting. So, for the class of 3 -colorable graphs, including bipartite graphs, the answer is affirmative. However, in general, this question is still open. The first constant bound was obtained by Addario-Berry et al. [2], who showed that $\mu(G) \leq 30$ for every non-trivial graph G. The bound is improved to $\mu(G) \leq 16$ in [3], to $\mu(G) \leq 13$ in [11], and to $\mu(G) \leq 5$ in [9].

Even we are still far from providing a positive answer to the question, actually $\mu(G) \leq 2$ for many graphs (in fact, experiments suggest (see [10]) that $\mu(G) \leq 2$ for almost all graphs). The current paper is devoted to study graphs with such a property. We determine $\mu(G)$ for some classes of graphs with this property, including trees and r-regular bipartite graphs with $r \geq 3$.

In the rest of this section, we fix some notation. For $n \geq 1$, the n-path P_{n} is the graph with vertex set $\left\{v_{i}: 1 \leq i \leq n\right\}$ and edge set $\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\}$. For $n \geq 3$, the n-cycle C_{n} is the graph with vertex set $\left\{v_{i}: 1 \leq i \leq n\right\}$ and edge set $\left\{v_{i} v_{i+1}: 1 \leq i \leq n\right\}$, where $v_{n+1}=v_{1}$. The complete graph K_{n} is the graph with vertex set $\left\{v_{i}: 1 \leq i \leq n\right\}$ and edge set $\left\{v_{i} v_{j}: 1 \leq i<j \leq n\right\}$. The complete bipartite graph $K_{m, n}$ is the graph with vertex set $\left\{u_{i}: 1 \leq i \leq m\right\} \cup\left\{v_{j}: 1 \leq\right.$ $j \leq n\}$ and edge set $\left\{u_{i} v_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$. The neighborhood of a vertex v is the set $N(v)=\{u: u v \in E(G)\}$, and the closed neighborhood is $N[v]=N(v) \cup\{v\}$. The degree of a vertex v is $d(v)=|N(v)|$. We use $\delta(G)$ to denote the minimum degree of a vertex in a graph G.

2. $\boldsymbol{\mu}(\boldsymbol{G})$ for Some Classes of Graphs

This section establishes values of $\mu(G)$ for some classes of graphs, including paths, cycles, complete graphs and complete bipartite graphs.

Fact 1. For every non-trivial graph $G, \mu(G)=1$ if and only if G has no adjacent vertices with the same degree.

Fact 2. $\mu\left(P_{3}\right)=1$ and $\mu\left(P_{n}\right)=2$ for $n \geq 4$.
Proof. This follows from Fact 1 and the fact that the following mapping w is a vertex-coloring 2-edge-weighting: $w\left(v_{i} v_{i+1}\right)=1$ for $i \equiv 1,2(\bmod 4)$ and $w\left(v_{i} v_{i+1}\right)=2$ for $i \equiv 3,4(\bmod 4)$.

Proposition 3. $\mu\left(C_{n}\right)=2$ for $n \equiv 0(\bmod 4)$ and $\mu\left(C_{n}\right)=3$ for $n \not \equiv$ $0(\bmod 4)$.

Proof. First, $\mu\left(C_{n}\right) \geq 2$ by Fact 1 . For the case when $n \equiv 0(\bmod 4)$, $\mu\left(C_{n}\right)=2$ follows from that the following mapping w is a vertex-coloring 2-edgeweighting: $w\left(v_{i} v_{i+1}\right)=1$ for $i \equiv 1,2(\bmod 4)$ and $w\left(v_{i} v_{i+1}\right)=2$ for $i \equiv 3,4$ (mod 4).

For the case $n=4 k+r, 1 \leq r \leq 3, \mu\left(C_{n}\right) \leq 3$ follows from that the following mapping w is a vertex-coloring 3-edge-weighting: $w\left(v_{i} v_{i+1}\right)=1$ for $i \equiv 1,2$ $(\bmod 4)$ and $w\left(v_{i} v_{i+1}\right)=2$ for $i \equiv 3,4(\bmod 4)$ with the modifications that $w\left(v_{4 k+1} v_{4 k+2}\right)=w\left(v_{4 k+2} v_{4 k+3}\right)=3$ and $w\left(v_{4 k+3} v_{4 k+4}\right)=2$. On the other hand, we claim that $\mu\left(C_{n}\right) \neq 2$. Suppose to the contrary that C_{n} has a vertex-coloring 2 -edge-weighting w. Then, $f_{w}\left(v_{i+1}\right) \neq f_{w}\left(v_{i+2}\right)$ implies $w\left(v_{i} v_{i+1}\right) \neq w\left(v_{i+2} v_{i+3}\right)$ and so $w\left(v_{i} v_{i+1}\right)=w\left(v_{i+4} v_{i+5}\right)$, where the indices are taken modulo 4. These in turn imply that $w\left(v_{i} v_{i+1}\right) \neq w\left(v_{i+4 j+2} v_{i+4 j+3}\right)$. This is a contradiction since $v_{i}=v_{i+n}=v_{i+4 j+2}$ when $r=2$ with $j=\frac{n-2}{4}$ and $v_{i}=v_{i+2 n}=v_{i+4 j+2}$ when $r=1,3$ with $j=\frac{n-1}{2}$.

Proposition 4. If $n \geq 3$, then $\mu\left(K_{n}\right)=3$.
Proof. We first consider the following mapping $w: w\left(v_{i} v_{j}\right)=1$ for $i+j \leq n$, $w\left(v_{i} v_{n}\right)=3$ for $\left\lfloor\frac{n+2}{2}\right\rfloor \leq i \leq n-1$, and $w\left(v_{i} v_{j}\right)=2$ for all other edges. It is straightforward to check that $f_{w}\left(v_{i}\right)=n-1+i$ for $1 \leq i \leq n-1$ and $f_{w}\left(v_{n}\right)=\left\lfloor\frac{5 n-5}{2}\right\rfloor$. Hence, f_{w} is vertex-coloring and so $\mu\left(K_{n}\right) \leq 3$.

On the other hand, we claim that $\mu\left(K_{n}\right) \neq 2$. Suppose to the contrary that K_{n} has a vertex-coloring 2-edge-weighting w. Then, each $f_{w}\left(v_{i}\right)$ is one of the n possible values in $\{n-1, n, \ldots, 2 n-2\}$. So, there is exactly one v_{i} (resp. v_{j}) with $f_{w}\left(v_{i}\right)=n-1$ (resp. $f_{w}\left(v_{j}\right)=2 n-2$). The first equation implies that $w\left(v_{i} v_{j}\right)=1$ while the second one implies that $v\left(v_{j} v_{i}\right)=2$, a contradiction. Thus, $\mu\left(K_{n}\right)=3$.

Proposition 5. $\mu\left(K_{m, n}\right)=1$ when $m \neq n$ and $\mu\left(K_{m, n}\right)=2$ when $m=n \geq 2$.
Proof. The former case follows from Fact 1. The latter case follows from that for $m=n \geq 2$ the following mapping w is a vertex-coloring 2-edge-weighting: $w\left(u_{i} v_{j}\right)=1$ and $w\left(u_{m} v_{j}\right)=2$ for $1 \leq i \leq m-1$ and $1 \leq j \leq n$.

The theta graph $\theta\left(\ell_{1}, \ell_{2}, \ldots, \ell_{r}\right)$ is the graph obtained from r disjoint paths of lengths $\ell_{1}, \ell_{2}, \ldots, \ell_{r}$, respectively, by identifying their end-vertices called the roots
of the graph. Notice that $\theta\left(\ell_{1}\right)=P_{1+\ell_{1}}$ and $\theta\left(\ell_{1}, \ell_{2}\right)=C_{\ell_{1}+\ell_{2}}$. In the following we only consider the case $r \geq 3$ and assume that $\ell_{1} \leq \ell_{2} \leq \ldots \leq \ell_{r}$. We also assume that $\ell_{1}=1$ implies $\ell_{2}>1$. In other words, we only consider simple graphs.

Proposition 6. Let $G=\theta\left(\ell_{1}, \ell_{2}, \ldots, \ell_{r}\right)$ with $r \geq 3$. Then $\mu(G)=1$ when $\ell_{i}=2$ for all $i ; \mu(G)=3$ when $\ell_{1}=1$ and $\ell_{i} \equiv 1(\bmod 4)$ for all $i \neq 1$; and $\mu(G)=2$ otherwise.

Proof. The first equality follows from Proposition 1 and that any two adjacent vertices have different degrees if and only if all $\ell_{i}=2$.

For the case when $\ell_{1}=1$ with all $\ell_{i} \equiv 1(\bmod 4)$, we claim that $\mu(G) \geq 3$. Suppose, to the contrary that the graph admits a vertex-coloring 2 -edge-weighting w. Then, in each path the k th edge must have the different weight from the $(k+2)$ th edge, and has the same weight with the $(k+4)$ th edge. Consequently, the first edge has the same weight with the last edge in each path of the theta graph. Then, $f_{w}(u)=f_{w}(v)$ for the two roots u and v, however, this is impossible as they are adjacent. On the other hand, the following mapping w is a vertex-coloring 3 -edgeweighting: for each path of the theta graph, assign the weights $1,1,2,2$ periodically except the last edge assigned with 3 .

For the remaining case, we may construct a vertex-coloring 2-edge-weighting as follows. Notice that for a periodical weight assignment $\ldots 1,1,2,2 \ldots$ of a path with first edge e_{i} and last edge e_{i}^{\prime}, we may properly choose the starting weight such that $w\left(e_{i}\right)=w\left(e_{i}^{\prime}\right)=2\left(\right.$ respectively, $\left.w\left(e_{i}\right) \neq w\left(e_{i}^{\prime}\right)\right)$ when $\ell_{i} \not \equiv 3(\bmod 4)$ (respectively, $\ell_{1} \not \equiv 1(\bmod 4)$). We then may properly arrange the weights on edges to make a vertex-coloring 2 -edge-weighting.

3. $\boldsymbol{\mu}(\boldsymbol{G})$ for Bipartite Graphs

In this section, we consider $\mu(G)$ for a bipartite graph G. We use $G=(A, B, E)$ to denote a bipartite graph with vertex bipartition (A, B) and edge set E.

Theorem 7. Every non-trivial connected bipartite graph $G=(A, B, E)$ with $|A|$ even admits a vertex-coloring 2-edge-weighting w such that $f_{w}(u)$ is odd for $u \in A$ and $f_{w}(v)$ is even for $v \in B$. Consequently, $\mu(G) \leq 2$.

Proof. Assume that $A=\left\{a_{1}, a_{2}, \ldots, a_{2 r}\right\}$. Let P_{i} be a path from a_{i} to a_{r+i} for $1 \leq i \leq r$. For each edge e, denote $k(e)$ the number of such paths containing e; and for each vertex u, denote $m(u)$ the sum of $k(e)$ of all edges e incident to u. Then $m(u)$ is odd for $u \in A$ and $m(v)$ is even for $v \in B$. Now, let $w(e)=1$ for any edge e with $k(e)$ odd and $w(e)=2$ for any edge e with $k(e)$ even. Since $w(e)$ has the same parity as $k(e)$ for each edge e, the color $f_{w}(u)$ of a vertex u satisfies $f_{w}(u) \equiv m(u)(\bmod 2)$ for $u \in A \cup B$. Consequently, $f_{w}(u)$ is odd for $u \in A$ and $f_{w}(v)$ is even for $v \in B$. Hence, w is a vertex-coloring 2-edge-weighting of G.

Theorem 8. $\mu(G) \leq 2$ for every non-trivial connected bipartite graph $G=$ (A, B, E) with $\delta(G)=1$.

Proof. By Theorem 7, we may assume that both of $|A|$ and $|B|$ are odd. Without loss of generality, assume that $d(x)=1$ for some vertex x in A, and that x is adjacent to a vertex y in B. Then $G-x=(A \backslash\{x\}, B, E \backslash\{x y\})$ is a non-trivial connected bipartite graph with $|A-\{x\}|$ even. By Theorem 7, $G-x$ has a 2-edge-weighting w^{\prime} so that $f_{w^{\prime}}(u)$ is odd for $u \in A \backslash\{x\}$ and $f_{w^{\prime}}(v)$ is even for $v \in B$. Now, extend w^{\prime} to w for G by assigning $w(x y)=2$. This gives a vertex-coloring 2-edge-weighting with $f_{w}(x)=2, f_{w}(u)$ odd for $u \in A \backslash\{x\}$, $f_{w}(v)$ even for $v \in B$ and $f_{w}(y)>2$.

Corollary 9. If T is a tree of at least three vertices, then $\mu(T) \leq 2$.
Theorem 10. $\mu(G) \leq 2$ for every non-trivial connected bipartite graph $G=$ (A, B, E) if $\lfloor d(u) / 2\rfloor+1 \neq d(v)$ for any edge $u v \in E(G)$.

Proof. By Theorem 7, we may assume that both of $|A|$ and $|B|$ are odd. We need a claim first.

Claim. There exists a vertex x, say $x \in B$, such that the vertices of $G-N[x]$ in A are all in a same component of $G-N[x]$.

Choose a vertex x such that the size of a maximum component of $G-N[x]$ becomes as large as possible. Without loss of generality, we assume that $x \in B$. Suppose that besides a maximum component $G_{1}=\left(A_{1}, B_{1}, E_{1}\right)$ the graph $G-N[x]$ has another component $G_{2}=\left(A_{2}, B_{2}, E_{2}\right)$, where A_{1} and A_{2} are nonempty subsets of A. Choose $x^{\prime} \in A_{2}$. Since G is connected, $N(x)$ has a vertex adjacent to a vertex in B_{1}. Then, G_{1} together with $N[x]$ are in a same component of $G-N\left[x^{\prime}\right]$, and then the size of a maximum component of $G-N\left[x^{\prime}\right]$ is larger than that of x, a contradiction to the choice of x.

From the claim, we see that $G-N[x]$ has a component $G_{1}=\left(A_{1}, B_{1}, E_{1}\right)$ with $A_{1}=A \backslash N(x)$ and all other components are isolated vertices in B. Now we consider two cases.

Case 1. $d(x)$ is odd. In this case, $\left|A_{1}\right|$ is even. According to Theorem 7, G_{1} has a 2-edge-weighting w^{\prime} such that $f_{w^{\prime}}(u)$ is odd for $u \in A_{1}$ and $f_{w^{\prime}}(v)$ is even for $v \in B_{1}$. We then extend w^{\prime} to w for G by assigning the edges incident to x with weight 1 and the remaining edges with weight 2 . Then, $f_{w}(u)$ is odd for $u \in A$ and $f_{w}(v)$ is even for $v \in B \backslash\{x\}$. Notice that $f_{w}(x)=d(x)$ and $f_{w}(u)=2 d(u)-1$ for all $u \in N(x)$. These imply $f_{w}(x) \neq f_{w}(u)$ by hypothesis. Therefore, w is a vertex-coloring 2 -edge-weighting of G.

Case 2. $d(x)$ is even. In this case, $\left|A_{1}\right|$ is odd. Notice that there is a vertex $u^{*} \in N(x)$ adjacent to some vertex $v^{*} \in B_{1}$. Let G^{\prime} be the graph obtained from
G_{1} by adding the vertex u^{*} and the edge $u^{*} v^{*}$. According to Theorem 7, G^{\prime} has a 2-edge-weighting w^{\prime} so that $f_{w^{\prime}}(u)$ is odd for $u \in A_{1} \cup\left\{u^{*}\right\}$ and $f_{w^{\prime}}(v)$ is even for $v \in B_{1}$. We may extend w^{\prime} to w for G by assigning the edges incident to x, except $x u^{*}$, with weight 1 and the remaining edges with weight 2 . Then, $f_{w}(u)$ is odd for $u \in A$ and $f_{w}(v)$ is even for $v \in B$ except x. Notice that $f_{w}(x)=d(x)+1$ and $f_{w}(u)=2 d(u)-1$ for all $u \in N(x)-u^{*}$. These imply $f_{w}(x) \neq f_{w}(u)$ by hypothesis. Therefore, w is a vertex-coloring 2 -edge-weighting of G.

Consequently, we have the following result which is in fact our first thought.
Corollary 11. $\mu(G)=2$ for every r-regular bipartite graph G with $r \geq 3$.
Notice that the theta graph $G=\theta\left(\ell_{1}, \ell_{2}, \ldots, \ell_{r}\right)$ with $\ell_{1}=1$ and all $\ell_{i} \equiv$ $1(\bmod 4)$ is a bipartite graph with $\mu(G)=3$. In particular, $\mu\left(C_{4 k+2}\right)=3$, which shows that the condition $r \geq 3$ in Corollary 11 is necessary.

We conclude the paper by posing the following problem.
Problem. Characterize bipartite graphs with vertex-coloring 2 -edge-weighting.

Acknowledgments

The authors thank the referees for many useful suggestions.
The first author is supported in part by the National Science Council of Taiwan (grant no. NSC95-2115-M-002-0013-MY3); the second author is supported in part by the National Natural Science Foundation of China (grant no. 60673048); the fourth author is supported by the Natural Sciences and Engineering Research Council of Canada and also would like to express thanks to Dr. Liming Xiong and Dr. Yinghua Duan for their valuable discussions and Nankai University for the support.

References

1. L. Addario-Berry, R. E. L. Aldred, K. Dalal and B. A. Reed, Vertex colouring edge partitions, J. Combin. Theory, Series B, 94 (2005), 237-244.
2. L. Addario-Berry, K. Dalal, C. Mcdiarmid, B. A. Reed and A. Thomason, Vertexcolouring edge-weightings, Combinatorica, 27 (2007), 1-12.
3. L. Addario-Berry, K. Dalal and B. A. Reed, Degree constrainted subgraphs, Discrete Applied Math., 156 (2007), 1168-1174.
4. M. Aigner, E. Triesch and Zs. Tuza, Irregular assignments and vertex-distinguishing edge-colorings of graphs, Combinatorics 90, A. Barlotti et al., (eds), Elsevier Science Pub., New York, 1992, pp. 1-9.
5. P. N. Balister, O. M. Riordan and R. H. Schelp, Vertex-distinguishing edge colorings of graphs, J. Graph Theory, 42 (2003), 95-109.
6. A. C. Burris and R. H. Schelp, Vertex-distinguishing proper edge colorings of graphs, J. Graph Theory, 26 (1997), 73-82.
7. K. Edwards, The harmonious chromatic number of bounded degree graphs, J. London Math. Soc., 55 (1997), 435-447.
8. A. Frieze, R. J. Gould, M. Karoriski and F. Pfender, On graph irregularity strength, J. Graph Theory, 41 (2002), 120-137.
9. M. Kalkowski, M. Karoński and F. Pfender, Vertex-coloring edge-weighting: toward the 1-2-3-conjecture, J. Combin. Theory, Series B, 100 (2010), 347-349.
10. M. Karoński, T. Luczak and A. Thomason, Edge weights and vertex colours, J. Combin. Theory, Series B, 91 (2004), 151-157.
11. T. Wang and Q. Yu, On vertex-coloring 13-edge-weighting, Front. Math. China, 3 (2008), 1-7.

Gerard J. Chang, ${ }^{1,2,3}$ Changhong Lu, ${ }^{4,5}$ Jiaojiao Wu^{1} and Qinglin Yu^{6}
${ }^{1}$ Department of Mathematics
National Taiwan University
Taipei 10617, Taiwan
E-mail: gjchang@math.ntu.edu.tw
wujj0007@yahoo.com.tw
${ }^{2}$ Institute for Mathematical Science
National Taiwan University
Taipei 10617, Taiwan
${ }^{3}$ National Center for Theoretical Sciences
Taipei, Taiwan
${ }^{4}$ Department of Mathematics, East China Normal University
Shanghai 200062, P. R. China
E-mail: chlu@math.ecnu.edu.cn
${ }^{5}$ Institute of Theoretical Computing
ECNU, Shanghai 200062, P. R. China
${ }^{6}$ Department of Mathematics and Statistics
Thompson Rivers University
Kamloops, Canada
E-mail: yu@tru.ca

[^0]: Received November 27, 2009, accepted April 12, 2010.
 Communicated by Hung-Lin Fu.
 2000 Mathematics Subject Classification: 05C15.
 Key words and phrases: Edge-weighting, Vertex-coloring, Tree, Bipartite graph.

