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GLOBAL STABILITY OF A REACTION-DIFFUSION SYSTEM OF A
COMPETITOR-COMPETITOR-MUTUALIST MODEL

Shihe Xu

Abstract. In this paper, we study a reaction-diffusion system of a competitor-
competitor-mutualist model with Neumann boundary condition. Using itera-
tion method, we investigate the global asymptotic stability of the unique posi-
tive constant steady-state solution under some assumptions. We also give some
sufficient conditions under which there are no nonconstant positive steady-state
solution exist.

1. INTRODUCTION

In this paper, we investigate the global asymptotic stability of a competitor-
competitor-mutualist model as follows:

(1.1)




ut − d1∆u = αu(1 − u

K1
− βv

1 + mω
), (t > 0, x ∈ Ω),

vt − d2∆v = δv(1− v

K2
) − ηuv, (t > 0, x ∈ Ω),

ωt − d3∆ω = γω(1− ω

L0 + lu
), (t > 0, x ∈ Ω),

∂u

∂υ
=

∂v

∂υ
=

∂ω

∂υ
= 0, (t > 0, x ∈ ∂Ω).

u(x, 0) = u0(x), v(x, 0) = v0(x), ω(x, 0) = ω0(x).

Here u(t, x), v(t, x), ω(t, x) represent the population of two competitor and mutu-
alist with diffusion constants d1, d2 and d3, respectively, Ω is a bounded domain
in Rn, ∂.

∂υ is the outer normal derivatives on ∂Ω. The all parameters in (1.1) are
positive constants, for details see [8].
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The model was initiated proposed and studied by Rai, Freedman and Addicott
in [4] in the ODE form:

(1.2)




ut = αu(1− u

K1
− β

v

1 + mω
), (t > 0),

vt = δv(1− v

K2
)− ηuv, (t > 0),

ωt = γω(1− ω

L0 + lu
), (t > 0),

u(t) = u0, v(x, 0) = v0, ω(x, 0) = ω0.

Their model was extended by Zheng [8] to the system (1.1). In [8], under some
assumptions the local stability of the unique positive constant steady-state solution
is discussed by the method of spectral analysis of linearized operator. The problem
(1.2) has been extended to periodic systems by several workers (cf.[1,2,5,7]), where
the diffusion coefficients di and the various reaction rates α, β, etc. are periodic
functions of t. Both the existence and asymptotic behavior of time-periodic solutions
were investigated in the above papers.

To investigate the asymptotic behavior of the solution of (1.1), as well as the
nonexistence of nonconstant positive steady states of (1.1), we also should consider
the corresponding steady-state system

(1.3)




−d1∆u = αu(1 − u

K1
− βv

1 + mω
), (x ∈ Ω),

−d2∆v = δv(1− v

K2
) − ηuv, (x ∈ Ω),

−d3∆ω = γω(1− ω

L0 + lu
), (x ∈ Ω),

∂u

∂υ
=

∂v

∂υ
=

∂ω

∂υ
= 0, (x ∈ ∂Ω).

The main purpose of this paper is to prove the global asymptotic stability of
the unique positive constant steady-state solution of (1.3)(see Theorem 2.1) and the
nonexistence of nonconstant positive steady-state solutions under some assumptions
(see Theorem 2.2).

2. THE MAIN RESULT

Before giving our main results, we recall some results in [8](cf.[4]) which we
will use later in the proof of our results.

Theorem A. (1) If 1 + mL0 = βK2 and ηK1 < δ, then system (1.1) has a
unique positive constant steady-state solution E ∗ = (u∗, v∗, ω∗), i.e., solution of

(2.1)




1 − u

K1
− β

v

1 + mω
= 0,

δ(1 − v

K2
) − ηu = 0,

1 − ω

L0 + lu
= 0
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and is given by

u∗ = K1 − (δ − ηK1)βK2

mlδ
, v∗ = K2 − η

δ
u∗, ω∗ = L0 + lu∗.

(2) If 1+mL0 > βK2 then system (1.1) has a unique positive constant steady-state
solution E ∗ = (u∗, v∗, ω∗) and is given by the positive value of

u∗ =
τ ± √

τ2 + 4mlδ2K1(1 + mL0 − βK2)
2mlδ

, v∗ = K2 − η

δ
u∗, ω∗ = L0 + lu∗.

where
τ = mlδK1 + βηK1K2 − δ(1 + mL0)

provided u∗ < δ
η .

Then our main results are the following Theorems:

Theorem 2.1 Let E∗ be the unique equilibrium of (1.1) stated in Theorem A.
If 1 + mL0 ≥ βK2 and ηK1 < δ, then E∗ is globally stable, i.e.,

(2.2) lim
t→∞U(x, t) = E∗

for any solution U(x, t) := (u(x, t), v(x, t), w(x, t)) of (1.1) with (u 0(x), v0(x),
w0(x)) �≡ (0, 0, 0), where u0, v0, w0 are nonnegative functions.

Theorem 2.2 Let µ1 be the smallest eigenvalue of the operator −∆ (ex-
cept 0) on Ω with the homogenous Neumann boundary condition and denote
α, δ, γ, β, L0, l, η, K1, K2, m collectively by Λ for notational convenience. Then

(i) there exists a positive constant d = d(n, Ω, Λ), such that (1.3) has no non-
constant positive classical solution for d 2, d3 ≥ d provided that µ1d1 >δ,

(ii) there exists a positive constant d = d(n, Ω, Λ), such that (1.3) has no non-
constant positive classical solution for d 1, d3 ≥ d provided that µ1d2 > α,

(iii) there exists a positive constant d = d(n, Ω, Λ), such that (1.3) has no non-
constant positive classical solution for d 1, d2≥d provided that µ1d3 >γ.

3. THE PROOF OF THE MAIN RESULTS

Lemma 3.1 (cf. [6]). Let f, K are positive constants, T ∈ [0,∞), and if w
satisfies

(3.1)




wt − d∆w ≤ (≥)fw(K − w), (x, t) ∈ Ω × (T,∞),

∂w

∂ν
= 0, (x, t) ∈ ∂Ω× [T,∞),

then
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lim sup
t→∞

max
Ω̄

w(., t) ≤ K (lim inf
t→∞ min

Ω̄
w(x, t) ≥ K).

Lemma 3.2 Let U(x, t) = (u(x, t), v(x, t), w(x, t)) be a solution of (1.1),
and if U(x, 0) = (u0(x), v0(x), w0(x)) ≥ (0, 0, 0), x ∈ Ω̄, then

(0, 0, 0)≤ lim sup
t→∞

max
Ω̄

U(x, t) ≤ (K1, K2, L0 + lK1), for t > 0, x ∈ Ω̄.

Moreover if for x ∈ Ω̄,U(x, 0) �≡ (0, 0, 0), then U(x, t) > (0, 0, 0) for x ∈ Ω̄, t > 0.

Proof. The first part easily obtain by Lemma 3.1 and if x ∈ Ω̄,U(x, 0) �≡
(0, 0, 0), by maximum principle, we can get U(x, t) > (0, 0, 0).

Lemma 3.3 For any positive classical solution (u(x), v(x), w(x)) of (1.3)
the following estimates hold

(u(x), v(x), w(x))≤ (K1, K2, L0 + lK1), for x ∈ Ω̄.

To prove Lemma 3.3, we should use the following Proposition from [3].

Proposition 3.4. Suppose that g ∈ (Ω̄ × R), then the following results hold:

(i) If w ∈ C2(Ω)∩C1(Ω̄) satisfies ∆w+ g(x, w(x)) ≥ 0 for x ∈ Ω, ∂w
∂ν ≥ 0 for

x ∈ ∂Ω and w(x0) = maxΩ̄ w, then g(x0, w(x0)) ≥ 0.

(ii) If w ∈ C2(Ω)∩C1(Ω̄) satisfies ∆w+ g(x, w(x)) ≤ 0 for x ∈ Ω, ∂w
∂ν ≤ 0 for

x ∈ ∂Ω and w(x0) = minΩ̄ w, then g(x0, w(x0)) ≤ 0.

Proof of Lemma 3.3 Let φ = d1u. From the first equation of (1.3) we have

−∆φ = αu(1− u

K1
− βv

1 + mω
), (x ∈ Ω);

∂φ

∂ν
= 0, (x ∈ ∂Ω).

Let x0 ∈ Ω̄ be such that φ(x0) = maxΩ̄ φ. Then by proposition 3.4 and the
positiveness of u, v, w, we get 1 − u(x0)

K1
− βv(x0)

1+mω(x0) ≥ 0. Hence u(x0) ≤ K1

which in turn implies that max Ω̄ u ≤ K1.

Analogously, by setting V = d2v and W = d3w, we can easily get from
proposition 3.4 that

v(x0) ≤ K2, w(x0) ≤ L0 + lK1.

These inequalities certainly implies our assertion.

Proof of Theorem 2.1. We first prove if 1 + mL0 > βK2 and ηK1 < δ hold,
then E∗ is globally stable. Since U(x, t) = (u(x, t), v(x, t), w(x, t)) is a solution
of (1.1), by Lemma 3.2,
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(3.2)

ut − d1∆u ≤ αu(1 − u

K1
)

vt − d2∆v ≤ v(1− v

K2
),

ωt − d3∆ω ≥ γω(1− ω

L0
).

By Lemma 3.1, we have

(3.3)

lim supt→∞ maxΩ̄ u(., t) ≤ K1 =: ū1,

lim supt→∞ maxΩ̄ v(., t) ≤ K2 =: v̄1,

lim supt→∞ maxΩ̄ ω(., t) ≥ L0 =: ω1.

For any given ε > 0, there exists Tε
1 sufficient large, such that

u(x, t) < ū1 + ε, for x ∈ Ω̄, t > T ε
1 ,

v(x, t) < v̄1 + ε, for x ∈ Ω̄, t > T ε
1 ,

ω(x, t) > ω1 + ε, for x ∈ Ω̄, t > T ε
1 .

By the second and third equations of (1.1), we have for x ∈ Ω, t > Tε
1 ,

vt − d2∆v ≥ δv(1− v

K2
) − η(ū1 + ε)v,

ωt − d3∆ω ≤ γω(1− ω

L0 + l(ū1 + ε)
),

then again by Lemma 3.1, we obtain

lim inf
t→∞ min

Ω̄
v(x, t) ≥ [1− η

δ
(ū1 + ε)]K2,

lim sup
t→∞

max
Ω̄

ω(., t) ≤ L0 + l(ū1 + ε).

By the arbitrariness of ε > 0, it follows that

lim inf
t→∞ min

Ω̄
v(x, t) ≥ (1− η

δ
ū1)K2 =: v1,

lim sup
t→∞

max
Ω̄

ω(., t) ≤ L0 + lū1 =: ω̄1.

Hence, there exists T ε
2 sufficient large, such that

ω(x, t) ≤ ω̄1 + ε for x ∈ Ω̄, t ≥ T ε
2 .

From the equation for u in (1.1)
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ut − d1∆u ≥ αu(1 − u

K1
− βv̄1

1 + m(ω1 + ε)
).

Thanks to Lemma 3.1

lim inf
t→∞ min

Ω̄
u(., t) ≥ (1− βv̄1

1 + m(ω1 + ε)
)K1.

By the arbitrariness of ε > 0, it follows that

lim inf
t→∞ min

Ω̄
u(., t) ≥ (1 − βv̄1

1 + mω1

)K1 =: u1.

Hence, for any 0 < ε < ū1 there exists T ε
3 sufficient large, such that

u(x, t) ≥ u1 − ε for x ∈ Ω̄, t ≥ T ε
3 .

From the equation for ω and v in (1.1)

ωt − d3∆ω ≥ γω(1− ω

L0 + l(u1 − ε)
),

vt − d2∆v ≤ αv(1 − v

K2
− η

δ
(u1 − ε)).

Thanks to Lemma 3.1

lim inf
t→∞ min

Ω̄
ω(., t) ≥ L0 + l(u1 − ε),

lim sup
t→∞

max
Ω̄

v(., t) ≤ (1 − η

δ
(u1 − ε))K2.

By the arbitrariness of ε > 0, it follows that

lim inf
t→∞ min

Ω̄
ω(., t) ≥ L0 + lu1 =: ω2,

lim sup
t→∞

max
Ω̄

v(., t) ≤ (1− η

δ
u1)K2 =: v̄2.

Then there exists T ε
4 sufficiently large, for x ∈ Ω̄, t ≥ T ε

4 such that

ω(x, t) ≥ ω2 − ε,

v(x, t) ≤ v̄2 + ε.

From the equation for u in (1.1)

ut − d1∆u ≥ αu(1 − u

K1
− β(v̄2 + ε)

1 + m(ω2 − ε)
).

Thanks to Lemma 3.1 and by the arbitrariness of ε > 0, it follows that

lim inf
t→∞ min

Ω̄
u(., t) ≥ (1 − βv̄2

1 + mω2

)K1 =: u2.
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Applying the inductive method we can construct sequences {ūi},{v̄i}, {ω̄i}, {ui},
{vi}, {ωi} as follows: ū1 = K1, v̄1 = K2, ω̄1 = L0 + lū1, u1 = (1− βv̄1

1+mω1
)K1, v1

= (1− η
δ ū1)K2, ω1 = L0 and for n > 1

(3.4)
v̄n = (1 − η

δ
un−1)K2, vn = (1− η

δ
ūn)K2, ωn = L0 + lun−1,

ω̄n = L0 + lūn, un = (1− βv̄n

1 + mωn

)K1, ūn = (1− βvn−1

1 + mω̄n−1
)K1.

The constants ū1, v̄1, ω̄1, u2, v1, ω1 constructed above satisfy the relation:

(3.5)

v1 ≤ v̄1, u1 ≤ ū1,

u1 ≤ lim inft→∞ minΩ̄ u(., t) ≤ lim supt→∞ maxΩ̄ u(., t) ≤ ū1,

v1 ≤ lim inft→∞ minΩ̄ v(., t) ≤ lim supt→∞ maxΩ̄ v(., t) ≤ v̄1,

and the sequence {ūi},{v̄i}, {ω̄i}, {ui}, {vi}, {ωi} satisfy

(3.6)

ui ≤ lim inft→∞ minΩ̄ u(., t) ≤ lim supt→∞ maxΩ̄ u(., t) ≤ ūi,

vi ≤ lim inft→∞ minΩ̄ v(., t) ≤ lim supt→∞ maxΩ̄ v(., t) ≤ v̄i,

0 < u1 ≤ u2 ≤ ... ≤ un−1 ≤ un ≤ ūn ≤ ūn−1 ≤ ... ≤ ū2 ≤ ū1 = K1,

0 < v1 ≤ v2 ≤ ... ≤ vn−1 ≤ vn ≤ v̄n ≤ v̄n−1 ≤ ... ≤ v̄2 ≤ v̄1 = K2,

L0 < ω1≤ω2≤ ... ≤ ωn−1 ≤ ωn ≤ ω̄n≤ ω̄n−1≤ ...≤ ω̄2≤ ω̄1 =L0+K1.

Actually, since 1 + mL0 > βK2, we have

K1 = ū1 ≥ u1 = (1− βv̄1

1 + mω1

)K1 = (1 − βK2

1 + mL0
)K1 > 0.

Then noting that ηK1 < δ, we obtain

v̄2 = (1− η

δ
u1)K2 ≥ v1 = (1 − η

δ
ū1)K2 > 0,

L0 < ω2 = L0 + lu1 ≤ ω̄1 = L0 + lū1.

Thus
u2 = (1− βv̄2

1 + mω2

)K1 ≤ ū2 = (1− βv1

1 + mω̄1
)K1 ≤ ū1,

and
u2 = (1− βv̄2

1 + mω2

)K1 ≥ u1 = (1 − βv̄1

1 + mω1

)K1 > 0.

The above conclusions show that

0 < u1 ≤ u2 ≤ ū2 ≤ ū1 = K1.
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Use induction principle, it is not hard to prove that

0 < u1 ≤ u2 ≤ ... ≤ un−1 ≤ un ≤ ūn ≤ ūn−1 ≤ ... ≤ ū2 ≤ ū1 = K1.

Then using inductive principle, the proof of the remainder of (3.6) is immediately
get from (3.5) and

v̄n = (1− η

δ
un−1)K2, vn = (1− η

δ
ūn)K2 and ωn = L0 + lun−1, ω̄n = L0 + lūn.

By monotone bounds principle, we get

lim
n→∞ ūn = ū, lim

n→∞un = u.

In (3.4), letting n → ∞, we have

(3.7) v̄ = (1 − η

δ
u)K2, v = (1− η

δ
ū)K2,

(3.8) ω = L0 + lu, ω̄ = L0 + lū,

(3.9) u = (1 − βv̄

1 + mω
)K1, ū = (1 − βv

1 + mω̄
)K1.

It follows from (3.7) (3.8) that

(3.10) ω̄ − ω = l(ū − u), v̄ − v =
η

δ
(ū− u).

Next, we will prove that ū = u, and hence v̄ = v, ω̄ = ω by (3.10). Substituting
the first equation of (3.7)and (3.8) to the first equation of (3.9), we get u satisfies
the following equation:

(3.11) mlδu2 − τu − δK1(1 + mL0 − βK2) = 0,

where
τ = mlδK1 + βηK1K2 − δ(1 + mL0).

Similarly substituting the second equation of (3.7)and (3.8)to the second equation
of (3.9), we get ū also satisfies the equation (3.11). From [8], we known that under
the condition

1 + mL0 > βK2 and ηK1 < δ,

E∗ exists uniquely. This implies ū = u = u∗. Consequently v̄ = v = v∗, ω̄ = ω =
ω∗. The fact combined with (3.6)implies

lim
t→∞U(x, t) = E∗
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uniformly on Ω̄. The proof is complete.
Next, we prove that if 1+mL0 = βK2 and ηK1 < δ, then E∗ is globally stable.

By Lemma 3.2, for any nonnegative initial function which is not identical to zero
the solution of (1.1) is positive. therefore there exists t∗ > 0,δi > 0, (i = 1, 2, 3)
such that

δi ≤ min{u(t, x), v(t, x), ω(t, x); t∗ ≤ t ≤ t∗ + τ, x ∈ Ω̄},
then (δ1, δ2, δ3) ≤ (u(t, x), v(t, x), ω(t, x))≤ (K1, K2, L0+lK1) on [t1−τ, t1]×Ω̄
where t1 = t∗ + τ. Using (u(t, x), v(t, x), ω(t, x)) as the initial function in the
domain [t1 − τ,∞) × Ω, similar to prove the first part of Theorem 2.1 above,
we construct sequences {ūi},{v̄i}, {ω̄i}, {ui}, {vi}, {ωi} as follows: ū1 = (1 −

δ2
1+m(L0+K1)

)K1, v̄1 = (1 − η
δu1)K2, ω̄1 = L0 + lū1, u1 = (1 − βv̄1

1+mω1
)K1, v1 =

(1− η
δ ū1)K2, ω1 = L0 and for n > 1

(3.12)
v̄n = (1− η

δ
un−1)K2, vn = (1 − η

δ
ūn)K2, ωn = L0 + lun−1,

ω̄n = L0 + lūn, un = (1 − βv̄n

1 + mωn

)K1, ūn = (1 − βvn−1

1 + mω̄n−1
)K1.

Consequently under condition 1 + mL0 = βK2 and ηK1 < δ we have u1 =
(1− βv̄1

1+mω1
)K1 > 0, v1 = (1− η

δ ū1)K2 > 0, ω1 = L0 > 0. By inductive principle,
we can get the sequence {ūi},{v̄i}, {ω̄i}, {ui}, {vi}, {ωi} satisfy (3.6) . Then letting
n → ∞, the following proof is similar to the proof of part one above, we omit it
here. The proof of Theorem 2.1 is complete.

Proof of Theorem 2.2. For any ϕ ∈ L1(Ω), we write ϕ̄ = 1
|Ω|

∫
Ω ϕdx. Let

u, v, ω be any positive classical solution of (1.3). Multiplying the corresponding
differential equation in (1.3) by u− ū, v− v̄, ω− ω̄ respectively, and then integrating
over Ω by part, by the ε− Young’s inequality, we have

d1

∫
Ω
|∇(u− ū)|2dx

=
∫

Ω
{[αu(1 − u

K1
− βv

1 + mω
)]− [αū(1− ū

K1
− βv̄

1 + mω̄
)]}(u− ū)dx

≤
∫

Ω
(α|u − ū|2 + αβK1|u − ū||v − v̄| + αβK1K2|u− ū||ω − ω̄|)dx

≤ (α + ε)
∫

Ω
|u − ū|2dx + C1(ε, Λ)

∫
Ω
|v − v̄|2 + C2(ε, Λ)

∫
Ω
|ω − ω̄|2dx,

d2

∫
Ω
|∇(v − v̄)|2dx



1626 Shihe Xu

=
∫

Ω
{[δv(1− v

K2
− ηu

δ
)]− [δv̄(1− v̄

K2
− ηū

δ
)]}(v − v̄)dx

≤
∫

Ω
(δ|v − v̄|2 + ηK2|u − ū||v − v̄|dx

≤ ε

∫
Ω
|u − ū|2dx + C3(ε, Λ)

∫
Ω
|v − v̄|2dx,

d3

∫
Ω
|∇(ω − ω̄)|2dx

=
∫

Ω
[γω(1− ω

L0 + lu
) − γω̄(1 − ω̄

L0 + lū
)](ω − ω̄)dx

≤
∫

Ω
(γ|ω − ω̄|2 + γ(1 +

l

L0
K1)2)l|u− ū||ω − ω̄|dx

≤ ε

∫
Ω
|u − ū|2dx + C4(ε, Λ)

∫
Ω
|v − v̄|2dx + C5(ε, Λ)

∫
Ω
|ω − ω̄|2dx.

Here, we used Lemma 3.3. Consequently, there exists a sufficient small positive
constant ε which only depends on Λ such that

d1

∫
Ω
|∇(u− ū)|2dx + d2

∫
Ω
|∇(v − v̄)|2dx + d3

∫
Ω
|∇(ω − ω̄)|2dx

≤ (α + ε)
∫

Ω
|u − ū|2dx + C(ε, Λ)

∫
Ω
|v − v̄|2dx + C(ε, Λ)

∫
Ω
|v − v̄|2dx.

It follows from Poincaré inequality that

µ1[
∫

Ω

d1|(u− ū)|2dx +
∫

Ω

d2|(v − v̄)|2dx +
∫

Ω

d3|(ω − ω̄)|2]dx

≤ (α + ε)
∫

Ω
|u − ū|2dx + C(ε, Λ)

∫
Ω
|v − v̄|2dx + C(ε, Λ)

∫
Ω
|v − v̄|2dx.

Since µ1d1 > α we may chose ε > 0 sufficient small, such that µ1d1 > α + ε.
Consequently, by above inequality, we have

µ1[
∫

Ω
d2|(v − v̄)|2dx +

∫
Ω

d3|(ω − ω̄)|2]dx

≤ C(ε, Λ)
∫

Ω

|v − v̄|2dx + C(ε, Λ)
∫

Ω

|v − v̄|2dx.

This implies that v = v̄ = ω = ω̄ =constant, and in turn u = ū =constant, if
d2, d3 > d := C(ε,Λ)

µ1
, which asserts our result (i).

The arguments of (ii)(iii) are rather similar to the ones given in the proof of (i),
and are thus omitted.
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