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CATEGORICAL PROPERTIES OF SEQUENTIALLY DENSE
MONOMORPHISMS OF SEMIGROUP ACTS

Mojgan Mahmoudi and Leila Shahbaz

Abstract. Let M be a class of (mono)morphisms in a category A. To study
mathematical notions, such as injectivity, tensor products, flatness, one needs
to have some categorical and algebraic information about the pair (A,M).

In this paper we take A to be the category Act-S of acts over a semigroup
S, and Md to be the class of sequentially dense monomorphisms (of interest
to computer scientists, too) and study the categorical properties, such as limits
and colimits, of the pair (A,M). Injectivity with respect to this class of
monomorphisms have been studied by Giuli, Ebrahimi, and the authors who
used it to obtain information about injectivity relative to monomorphisms.

1. INTRODUCTION AND PRELIMINARIES

LetM be a class of (mono)morphisms of a category A. To study mathematical
notions, such as injectivity and flatness, one needs to have some categorical and
algebraic information about the pair (A,M) (see [1, 3, 14]).

In this paper we take A to be the category Act-S of (right) acts over a semigroup
S and Md to be the class of sequentially dense monomorphisms, to be defined in
Section 2, and study the categorical properties of this pair which are usually related
to the behaviour of Md-injectivity (see [13]).

In the following we first recall some facts about the category Act-S needed in
this paper.

Let S be a semigroup and A be a set. If we have a mapping (called the action
of S on A)

µ : A× S → A

(a, s) �→ as := µ(a, s)
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such that a(st) = (as)t for a ∈ A, s, t ∈ S, we call A a (right) S-act or a (right)
act over S.

If S is a monoid with identity 1, we usually also require that a1 = a for a ∈ A.
A subset A′ of an S-act A is called a subact of A, written as A′ ≤ A, if a′s ∈ A′

for all s ∈ S and a′ ∈ A′.
The semigroup S itself becomes an S-act by taking its operation as its action.

A subact of the S-act S is a right ideal of the semigroup S. A subset K ⊆ S

is called a left ideal of S if SK ⊆ K, and an ideal or a two-sided ideal of S if
SK ⊆ K and KS ⊆ K. Also note that if S does not have an identity, one can
attach an identity 1 to it to get a monoid, or an S-act, S1 = S ∪ {1}.

Also, recall that an element a of an S-act A is said to be a fixed or a zero
element if as = a, for all s ∈ S.

A homomorphism (or an equivariant map, or an S-map) from an S-act A to an
S-act B is a function from A to B such that for each a ∈ A, s ∈ S, f(as) = f(a)s.

Since the identity maps and the composition of two equivariant maps are equiv-
ariant, we have the category Act-S of all right S-acts and S-maps between them.

An S-act B containing (an isomorphic copy of) an S-act A as a subact is called
an extension of A.

As a very interesting example of acts, used in computer science as a convenient
means of algebraic specification of process algebras (see [7], [8]), consider the
monoid (N∞, ·,∞), where N is the set of natural numbers and N

∞ = N ∪ {∞}
with n < ∞, ∀n ∈ N and m · n = min{m, n} for m, n ∈ N∞. Then an N∞-act
is called a projection algebra (see [7, 10, 12]).

Let A be an S-act. An equivalence relation ρ on A is called an S-act congru-
ence, or simply a congruence on A, if aρa′ implies asρa′s for a, a′ ∈ A, s ∈ S.
If ρ is a congruence on A, then the factor set A/ρ = {[a]ρ : a ∈ A} is clearly an
S-act, called the factor act of A by ρ, with the action given by [a]ρs = [as]ρ, for
s ∈ S, a ∈ A.

If H ⊆ A× A then we denote the congruence generated by H by ρ(H); it is
the smallest congruence on A containing H . One can see that xρ(H)y if and only
if either x = y or there exist s1, s2, ..., sn ∈ S1, a1, . . . , an, b1, . . . , bn ∈ A such
that (ai, bi) ∈ H or (bi, ai) ∈ H , and

x = a1s1 b2s2 = a3s3 · · · bnsn = y

b1s1 = a2s2 b3s3 = a4s4 · · ·
Now we give some categorical ingredients of Act-S needed in the sequel (see

also [5, 11]).
The class of S-acts is an equational class, and so the category Act-S is complete

(has all products and equalizers). In fact, limits in this category are computed as in
the category Set of sets and equipped with a natural action. In particular, the terminal
object of Act-S is the singleton {0}, with the obvious S-action. Also, for S-acts
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A, B, their cartesian product A×B with the S-action defined by (a, b)s = (as, bs)
is the product of A and B in Act-S.

The pullback of a given diagram

A

f

��
C

g �� B

in Act-S is the subact P = {(c, a) : c ∈ C, a ∈ A, g(c) = f(a)} of C × A, and
pullback maps pC : P → C, pA : P → A are restrictions of the projection maps.
Notice that for the case where g is an inclusion, P can be taken as f−1(C).

All colimits in Act-S exist and are calculated as in Set with the natural action
of S on them. In particular, ∅ with the empty action of S on it, is the initial
object of Act-S. Also, the coproduct of S-acts A, B is their disjoint union A
B =
(A×{1})∪(B×{2}) with the obvious action, and coproduct injections are defined
naturally.

The pushout of a given diagram

A
g ��

f
��

C

B

in Act-S is the factor act Q = (B 
 C)/θ, where θ is the congruence relation
on B 
 C generated by all pairs (uBf(a), uCg(a)), a ∈ A, where uB : B →
B 
 C, uC : C → B 
 C are the coproduct injections. Also, the pushout maps
are given as q1 = γuC : C → (B 
 C)/θ, q2 = γuB : B → (B 
 C)/θ, where
γ : B 
C → (B 
C)/θ is the canonical epimorphism. Multiple pushouts in Act-S
are constructed analogously.

Recall that for a family {Ai : i ∈ I} of S-acts, each with a unique fixed
element 0, the direct sum ⊕i∈IAi is defined to be the subact of the product

∏
i∈I Ai

consisting of all (ai)i∈I such that ai = 0 for all i ∈ I except a finite number of
indices.

Free objects in Act-S exist. In fact X × S1, where S1 is S with an identity
adjoined, with the action (x, t)s = (x, ts) is the free S-act on the set X .

Cofree objects exist in Act-S. In fact XS1
= {f | f : S1 → X is a function}

with the action given by (fs)(t) = f(st) is the cofree S-act on the set X .
A morphism in Act-S is a monomorphism if and only if it is one-one (so

sometimes we consider monomorphisms as inclusion maps), and epimorphisms in
Act-S are exactly onto S-maps. These follow from the existence of free and cofree
S-acts, respectively.
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We also need to mention the construction of general limits and colimits which
will be needed in the sequel.

Let A : I → Act-S be a diagram in Act-S (I is a small category and A is
a functor) determining the acts A(α) = Aα, for α ∈ I = Obj(I), and S-maps
gαβ : Aα → Aβ , for λ : α→ β in Mor(I). Recall that the limit of this diagram is
lim←−αAα :=

⋂
λ∈Mor(I) Eλ, where for λ : α→ β in Mor(I),

Eλ = {a = (aα)α∈I ∈
∏

α

Aα : gαβpα(a) = pβ(a)}

and pα, pβ are the α, βth projection maps of the product. Also, the limit S-maps
are qα =: pα|lim←−αAα : lim←−αAα → Aα.

Also, the colimit of the above diagram is obtained as lim−→αAα =:
∐

α∈I Aα/θ,
where θ is the congruence generated by

H = {(uα(aα), uβgαβ(aα)) : aα ∈ Aα, α→ β ∈Mor(I)}.

The colimit S-maps are gα := γθuα : Aα → lim−→αAα where uα’s are the coproduct
injection maps and γθ is the canonical epimorphism of the quotient.

Recall that a directed system of S-acts and S-maps is a family (Bα)α∈I of S-
acts indexed by an updirected set I endowed by a family (gαβ : Bα → Bβ)α≤β∈I of
S-maps such that given α ≤ β ≤ γ ∈ I we have gβγgαβ = gαγ , and also gαα = id.
Note that the directed colimit (which is usually called the direct limit in literature) of
a directed system ((Bα)α∈I, (gαβ)α≤β∈I) in Act-S is given as lim−→αBα =

∐
α Bα/ρ,

where the congruence ρ is given by (bα, bβ) ∈ ρ if and only if there exists δ ≥ α, β
such that uδgαδ(bα) = uδgβδ(bβ), where uα’s are injection maps of the coproduct.

Notice that the family gα = γρuα : Bα → lim−→αBα of S-maps satisfies gβgαβ =
gα for α ≤ β, where γρ :

∐
α Bα → lim−→αBα is the canonical epimorphism.

2. SEQUENTIAL CLOSURE OPERATOR

In this section we introduce and briefly study a closure operator; the dense
monomorphisms resulting from it are the subject of study in this paper. First note
that, denoting the lattice of all subacts of an S-act B by SubB, following [2] for the
general definition of closure operators on a category (which is not a priori assumed
to be idempotent), we get:

Definition 2.1. A family C = (CB)B∈Act−S, with CB : SubB → SubB,
taking the subbact A ≤ B to CB(A), is called a closure operator on Act-S if it
satisfies the following laws:

(c1) (Extension) A ≤ CB(A),
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(c2) (Monotonicity) A1 ≤ A2 implies CB(A1) ≤ CB(A2),
(c3) (Continuity) f(CB(A)) ≤ CC(f(A)), for all morphisms f : B → C.

Now, one has the usual two classes of monomorphisms related to the notion of
a closure operator as follows:

Definition 2.2. Let A ≤ B be in Act-S. We say that A is C-closed in B if
CB(A) = A, and it is C-dense in B if CB(A) = B. Also, an S-map f : A → B
is said to be C-dense (C-closed) if f(A) is a C-dense (C-closed) subact of B.

We takeMc to be the set of all C-closed, and Md to be the set of all C-dense
monomorphisms.

Definition 2.3. A closure operator C is said to be:

(a) Weakly hereditary if for every S-act B and every A ≤ B, A is C-dense in
CB(A).

(b) Hereditary if for every S-act B and A1 ≤ A2 ≤ B,

CA2 (A1) = CB(A1) ∩A2.

(c) Grounded if for every S-act B, CB(∅) = ∅.
(d) Additive if for every S-act B, CB(A1 ∪ A2) = CB(A1) ∪CB(A2).
(e) Productive if for every family of subacts Ai of Bi, taking A =

∏
i Ai and

B =
∏

i Bi, CB(A) =
∏

i CBi(Ai).
(f) Idempotent if CB(CB(A)) = CB(A) for all S-acts B and A ≤ B.
(g) Discrete if CB(A) = A for every A ≤ B.
(h) Trivial if CB(A) = B for every A ≤ B.

Now, we introduce the sequential closure operator on the category of S-acts
and investigate some of its properties (see also [9] and [4]).

Definition 2.4. The sequential closure operator C d = (Cd
B)B∈Act−S on Act-S

is defined as
Cd

B(A) = {b ∈ B : bS ⊆ A}
for any subact A of an S-act B.

Notice that for the case where S is a monoid, every subact A of B is Cd-closed,
and A is Cd-dense in B if and only if A = B. Note that, by Definition 2.2, a
subact A of an S-act B is Cd-dense, which will also be called sequentially dense
or s-dense, in B if bS ⊆ A for each b ∈ B. An S-map f : A → B is said to be
s-dense if f(A) is an s-dense subact of B.
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Remark 2.5. For each subact A of an S-act B, Cd
B(A) is the largest subact T

of B with the property TS ⊆ A.

We now prove some of the properties of this closure operator.

Theorem 2.6. The closure operator Cd is hereditary, weakly hereditary, pro-
ductive, grounded if S �= ∅, discrete if and only if S is a monoid, and also trivial
if and only if S is empty.

Proof. We just prove some parts of this result; the remainder are also straight
forward. For hereditariness, let A1 ≤ A2 ≤ B and a ∈ Cd

A2
(A1). Then aS ⊆

A1, a ∈ A2. Thus aS ⊆ A1, a ∈ B. Hence a ∈ Cd
B(A1) ∩ A2. Conversely, let

a ∈ Cd
B(A1) ∩A2. Then a ∈ A2, aS ⊆ A1. Thus a ∈ Cd

A2
(A1).

For the last part, we see that if S = ∅ then Cd
B(A) = {b ∈ B : bS ⊆ A} = B.

If S �= ∅, let s ∈ S. Then, taking sets A ⊂ B as S-acts with the identity action,
and b ∈ B −A, we have bs = b �∈ A. Thus Cd

B(A) �= B.

Corollary 2.7. If A ≤ B ≤ C then Cd
B(A) ⊆ Cd

C(A).

As the following result shows, Cd is not idempotent in general.

Theorem 2.8. The closure operator Cd is idempotent if and only if S 2 = S.

Proof. Let Cd be idempotent. Since

S1 = Cd
S1(S) = Cd

S1 (Cd
S(S2)) ⊆ Cd

S1(Cd
S1(S2)) = Cd

S1(S2)

and S1S ⊆ S2 which means that S ⊆ S2. The converse is obvious.

Lemma 2.9. A (right) ideal I of S is s-dense, that is C d
S(I) = S, if and only

if S2 ⊆ I .

Theorem 2.10. The closure operator Cd is additive if and only if for every
element b in an S-act B, bS is join prime in the lattice Sub(B).

Proof. Let A and D be subacts of an S-act B and b ∈ Cd
B(A ∪ D).

Then, bS ⊆ A ∪ D and hence, bS being ∨-prime, bS ⊆ A or bS ⊆ D. Thus,
b ∈ Cd

B(A) ∪ Cd
B(D). This, using monotonicity of Cd, shows that each Cd

B , and
hence Cd, is additive.

Conversely, let Cd, and hence each Cd
B, be additive. Let b ∈ B and bS ⊆ A∪D,

where A and D are subacts of B. Then, by monotonicity and additivity,

Cd
B(bS) ⊆ Cd

B(A ∪D) = Cd
B(A) ∪ Cd

B(D).

Now, since b ∈ Cd
B(bS), b ∈ Cd

B(A) or b ∈ Cd
B(D). Thus, bS ⊆ A or bS ⊆ D,

proving that bS is join prime in Sub(B).
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Theorem 2.11. If S has a left identity element e, then C d is additive.

Proof. Note that, in this case, for any subact A of an S-act B, b ∈ Cd
B(A) if

and only if be ∈ A. This is because, bs = b(es) = (be)s, for each s ∈ S.
Now, if A and D are subacts of B and bS ⊆ A ∪D, for b ∈ B, then one can

easily see that bS ⊆ A or bS ⊆ D, depending on be ∈ A or be ∈ D, respectively.

3. CATEGORICAL PROPERTIES OF s-DENSE MONOMORPHISMS

In this final section we study some categorical and algebraic properties of the
category Act-S with respect to sequentially dense monomorphisms. We study the
composition, limit, and colimit properties in the following three subsections.

3.1. Composition properties of s-dense monomorphisms

In this subsection we investigate some properties of the class Md, mostly to
do with the composition of dense monomorphisms. These properties and the ones
given in the next two subsections are normally used to study injectivity, and of
course other mathematical notions.

The classMd is clearly isomorphism closed; that is, contains all isomorphisms
and is closed under composition with isomorphisms. But, unfortunatelyMd is not
always closed under composition:

Lemma 3.1. The class Md is closed under composition if and only if the
Cd-closure operator is idempotent.

Proof. If the composition of s-dense monomorphisms is an s-dense monomor-
phism then, since the inclusion maps S 2 ↪→ S and S ↪→ S1 are clearly s-dense, we
get that S2 is s-dense in S1. Hence, S = 1S ⊆ S2 and so, by Theorem 2.8, Cd is
idempotent. For the converse, let A ≤ B and B ≤ D be s-dense subacts. Then,
D = Cd

D(B) = Cd
D(Cd

B(A)) ⊆ Cd
D(Cd

D(A)) = Cd
D(A). Thus D = Cd

D(A).

As the above result shows, the composition of s-dense monomorphisms need not
be s-dense. For example take a semigroup S with S2 �= S and consider the inclusion
maps S2 ↪→ S and S ↪→ S1 given in the above proof (see Theorem 2.8). But the
following useful result shows that the composition of an s-dense monomorphism
with a surjective morphism is s-dense.

Proposition 3.2. The composition of an s-dense morphism with a surjective
morphism is an s-dense morphism.

Proof. Let f : A → B be an s-dense monomorphism and g : B → C be a
surjective S-map. We want to show that for each c ∈ C and s ∈ S, cs ∈ Im(gf).
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Let c ∈ C. Since g is surjective, there exists b ∈ B such that c = g(b). Now,
since f is s-dense, for each s ∈ S, bs = f(a) for some a ∈ A. Thus cs = g(b)s =
g(bs) = g(f(a)) = (gf)(a) ∈ Im(gf). Hence gf is s-dense.

Now, let g : A → B be a surjective S-map and f : B → C be an s-dense
monomorphism. Take c ∈ C, s ∈ S. Since f is s-dense, there exists b ∈ B such
that f(b) = cs. Since g is surjective, there exists a ∈ A such that g(a) = b. Now,
cs = f(b) = f(g(a)) = (fg)(a) ∈ Im(fg). Hence fg is s-dense.

The following result shows thatMd is right (left) cancellable, in the sense that
for monomorphisms f and g if gf ∈Md then g ∈Md (f ∈Md).

Proposition 3.3. The classMd is right and left cancellable.

Proof. For the right cancellability, let gf be in Md for monomorphisms
f : A → B, g : B → C. Take s ∈ S, c ∈ C. Since gf is s-dense, there exists
a ∈ A such that (gf)(a) = cs. Now, g(f(a)) = cs, cs ∈ Img. Thus g ∈Md. For
the left cancellability, let b ∈ B, s ∈ S, and so g(bs) ∈ C. Since gf is s-dense,
there exists a ∈ A such that gf(a) = g(bs). Now, since g is a monomorphism,
f(a) = bs and hence bs ∈ Imf .

Proposition 3.4. Let f : A→ B ∈Act-S. Then there are unique (always up to
isomorphism) morphisms e, m ∈Act-S such that:

(1) (rightMd-factorization) f =me, where m : C→B∈Md, e : A→ C, and
(2) (diagonalization property) for every commutative diagram

A

e

��

u �� D

g

��

C

w
���������

m

��
B

v �� E

in Act-S with g : D → E ∈ Md, there is a uniquely determined morphism
w : C → D with gw = vm and we = u.

Proof. Take f : A → B, and let C = f(A) ∪ BS. Define e : A → C

by e(a) = f(a) for a ∈ A, and take m : C → B to be the inclusion map. Then
f = me. To see (2), define w : C → D by w(f(a)) = u(a), w(bs) = v(bs) =
v(b)s. Then w is well-defined, for, if bs = b′s′ then v, being well-defined, we get
w(bs) = v(bs) = v(b′s′) = w(b′s′); and if f(a) = f(a′) then gu(a) = vf(a) =
vf(a′) = gu(a′) and so u(a) = u(a′) since g is a monomorphism; and if f(a) = bs

then gwf(a) = gu(a) = vf(a) = v(bs) = gw(bs) which gives wf(a) = w(bs),
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since g is a monomorphism. It is clear, by the definition of w, that gw = vm

and we = u. Also, w is unique by this property, since having w′ : C → D with
gw = vm = gw′, we get that w = w′ because g is a monomorphism.

To show the uniqueness of m and e, let there also exist morphisms m′ : C′ → B
and e′ : A→ C′ satisfying conditions (1) and (2) above. Then, there are w : C →
C′, w′ : C′ → C such that we = e′, m′w = idBm and w′e′ = e, mw′ =
idBm′. Hence mw′w = m, which makes w′w = idC since m is a monomorphism.
Similarly, ww′ = idC . This means that e and e′, also m and m′, are isomorphic.

3.2. Limits of s-dense monomorphisms

In this subsection we will investigate the behaviour of dense monomorphisms
with respect to limits.

Proposition 3.5. The classMd is closed under products.

Proof. Let (fi : Ai→Bi)i∈I be a family of s-dense monomorphisms. Consider
the commutative diagram

∏
i∈I Ai

f ��

pi

��

∏
i∈I Bi

p′i
��

Ai
fi �� Bi

We show that f = (fi)i∈I :
∏

i∈I Ai →
∏

i∈I Bi is an s-dense monomorphism. Let
b = (bi)i∈I ∈

∏
i∈I Bi and s ∈ S. Since each fi is s-dense, bis ∈ Imfi. Now

bs = (bis)i∈I ∈ Imf . Hence f is s-dense. It is obvious that f is a monomorphism.
So f ∈Md.

Proposition 3.6. The classMd is closed underMd-pullbacks.

Proof. Consider the pullback diagram

f−1(C) � � i ��

f=f |f−1(C)

��

A

f

��
C

g �� B

with g, f ∈Md. For simplicity we consider g to be inclusion. We have to show that
Im(gf) is s-dense. Let b ∈ B, s ∈ S. Since g and f are s-dense, there exist c ∈ C
and a ∈ A such that c = bs = f(a). Thus bs = c = g(c) = g(f(a)) ∈ Im(gf).

Proposition 3.7. The classMd is stable underMd-pullbacks; in the sense that
pullback of any s-dense monomorphism along any morphism is again s-dense.
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Proof. Consider the pullback diagram given in the proof of the above proposi-
tion with g ∈Md as inclusion, and let f be an arbitrary S-map. We have to show
that i is s-dense. Let a ∈ A, s ∈ S. Since g is s-dense, f(as) = f(a)s ∈ C. Thus
as ∈ f−1(C).

Proposition 3.8. The classMd is closed under limits.

Proof. Let A,B : I→ Act-S be diagrams in Act-S determining the acts Aα,
Bα, for α ∈ I = Obj(I), and S-maps gαβ : Aα → Aβ, g′αβ : Bα → Bβ , for α→ β

in Mor(I). Consider limits of these diagrams with limit maps qα : lim←−Aα → Aα,
q′α : lim←−Bα → Bα. Let {fα : Aα → Bα : α ∈ I} be a family of s-dense
monomorphisms such that g′αβfα = fβgαβ. Let f denote lim←−fα : lim←−Aα → lim←−Bα

which exists by the universal property of limits. We show that f belongs to Md.
Consider the diagram

lim←−Aα

e

��

qα �� Aα

gαβ ��

fα

��

Aβ

fβ

��

M

wα

�����������

m
��

lim←−Bα
q′α �� Bα

g′αβ �� Bβ

where f = me is the rightMd-factorization of f , which exists by Proposition 3.4.
Since each fα ∈ Md, the diagonalization property of the factorization for each α

implies that there exists wα : M → Aα such that fαwα = q′αm, wαe = qα. Then,
the uniqueness of wα’s gives that gαβwα = wβ for each α → β. Now, by the
universal property of limits, there exists j : M → lim←−Aα with qαj = wα for each
α. We show that j is in fact an isomorphism. We have qαje = wαe = qα for each
α, and so, by the universal property of limits, je = idlim←−Aα . Also, considering the
following diagram

lim←−Aα
e ��

e

��

M

m

��

M

j

��
idM

�������������

m
��

lim←−Bα
id �� lim←−Bα

we get that q′αmej = fαwαej = fαqαj = fαwα = q′αm for each α, and hence
mej = m which, by the uniqueness of the diagonalization property, gives ej = idM .
Therefore, j, and hence e, is an isomorphism. But f = me andMd is closed under
composition with isomorphisms, so f belongs to Md.
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3.3. Colimits of s-dense monomorphisms

This subsection is devoted to the study of the behaviour of s-dense monomor-
phisms with respect to colimits.

Proposition 3.9. The classMd is closed under coproducts.

Proof. Consider the diagram

Ai

ui

��

fi �� Bi

u′
i

��∐
i∈I Ai

f ��
∐

i∈I Bi

in which {fi : Ai → Bi : i ∈ I} is a family of s-dense monomorphisms. Let
f :

∐
i∈I Ai →

∐
i∈I Bi be the S-map satisfying f(ui(ai)) = u′ifi(ai), for ai ∈ Ai,

which exists by the universal property of coproducts; in fact, f(ai, i) = (fi(ai), i).
We have to show that f is an s-dense monomorphism. Let b ∈ ∐

i∈I Bi, s ∈ S.
Then there exists i ∈ I , bi ∈ Bi such that b = u′i(bi). Since fi is s-dense, there exists
ai ∈ Ai such that fi(ai) = bis, and hence u′ifi(ai) = u′i(bis) = u′i(bi)s = bs. Now,
bs = u′ifi(ai) = fui(ai) ∈ Imf . Thus f is s-dense. Also, f is a monomorphism,
because u′i and fi, i ∈ I are monomorphisms.

Proposition 3.10. Let {fi : Bi → A : i ∈ I} be a family of s-dense S-maps.
Then f :

∐
i∈I Bi → A is an s-dense S-map.

Proof. Consider the diagram

Bi

ui

��

fi �� A

∐
i∈I Bi

f

�����������

where f :
∐

i∈I Bi → A is the S-map obtained by the universal property of coprod-
ucts. Then, since fui = fi belongs toMd, applying the proof of right cancellability
of Md (Proposition 3.3), we get f ∈Md.

Proposition 3.11. The classMd is closed under direct sums.

Proof. Let {fi : Ai → Bi : i ∈ I} be a family of s-dense monomorphisms.
Then, using Proposition 3.5, we get that f = ⊕i∈Ifi =

∏
i∈I fi : ⊕i∈IAi → ⊕i∈IBi

is an s-dense monomorphism. More precisely, if (bi)i∈I ∈ ⊕i∈IBi and s ∈ S then,
by Proposition 3.5, there exists (ai)i∈I ∈

∏
i∈I Ai with f((ai)i∈I) = (bi)i∈Is. But,
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(ai)i∈I ∈ ⊕i∈IAi, because for all i with bi = 0 we have 0 = bis = f(ai) = fi(ai)
and so ai = 0, since fi is a monomorphism.

We recall the following lemma from [6]. First recall that it is said that pushouts
transfer monomorphisms in a category if for a pushout diagram

A

f
��

g �� C

h
��

B
k �� D

if g is a monomorphism then so is k.

Lemma 3.12. Pushouts transfer monomorphisms in Act-S.

Proposition 3.13. In Act-S, pushouts transfer s-dense monomorphisms.

Proof. Consider the pushout diagram

A

f

��

g �� C

h
��

B
k�� (B 
C)/θ

where g ∈ Md, h = γuC : C → (B 
 C)/θ, k = γuB : B → (B 
 C)/θ,
γ : B 
 C → (B 
 C)/θ is the natural epimorphism, and uB : B → B 
 C, uC :
C → B 
 C are coproduct injections, and θ is the congruence relation on B 
 C
generated by all pairs H = {(uBf(a), uCg(a)) : a ∈ A}. We show that k belongs
to Md. Notice that by the above lemma, k is a monomorphism, so it is enough
to show that k is s-dense. Let [x]θ ∈ (B 
 C)/θ and s ∈ S be arbitrary. Then,
x = uB(b) for some b ∈ B, or x = uC(c) for some c ∈ C. In the former case, we
have [x]θs = k(b)s = k(bs) ∈ Im(k). In the latter case, using that g is s-dense,
we get a ∈ A with g(a) = cs and hence [x]θs = [uC(c)]θs = h(c)s = h(cs) =
hg(a) = kf(a) ∈ Im(k).

Proposition 3.14. The pushout of s-dense monomorphisms belongs to M d.

Proof. Applying the notations of the above proposition, with a similar argu-
ment to its proof, one gets that when f and g in the pushout diagram are s-dense
monomorphisms, then so is kf = hg.

Note that if the composition of s-dense monomorphisms were s-dense, the above
result would have been just a direct corollary of the last proposition.
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Proposition 3.15. The multiple pushout of s-dense monomorphisms is an s-
dense monomorphism. Also, multiple pushouts transfer s-dense monomorphisms.

Proof. Let {di : A → Bi : i ∈ I} be a family of s-dense monomorphisms.
Recall that the multiple pushout of this family is

∐
i∈I Bi/θ, where θ is the congru-

ence on
∐

i∈I Bi generated by all pairs H = {(uidi(a), ujdj(a)) : i, j ∈ I, a ∈ A},
where for each i ∈ I , ui : Bi →

∐
i∈I Bi is the ith coproduct injection map. Also,

the multiple pushout maps are d ′i = γui : Bi →
∐

i∈I Bi/θ where γ :
∐

i∈I Bi →∐
i∈I Bi/θ is the natural epimorphism.

First, we see that for each i ∈ I , d′i is a monomorphism. Let for bi, b
′
i ∈

Bi, d′i(bi) = d′i(b
′
i). Then (ui(bi), ui(b′i)) ∈ θ and thus either bi = b′i or there

exist elements a1, a2, . . . , an ∈ A, k1 . . . kn+2 ∈ I such that ui(bi) = uk1dk1(a1),
uk2dk2(a1) = uk3dk3(a2), · · · , ukn+2dkn+2(an) = ui(b′i). Therefore, k1 = i,
k2 = k3, k4 = k5, . . ., kn+2 = i, and hence, since each dk is a monomorphism,
bi = di(a1), a1 = a2 = a3 = a4 = a5 = ... = an−1 = an, di(an) = b′i. Thus
bi = di(a1) = di(a2) = di(a3) = ... = di(an) = b′i.

To show that each d′idi (and hence each d′i) is dense, let b ∈ ∐
i∈I Bi/θ and

s ∈ S. Then, there exist j ∈ I and bj ∈ Bj such that b = [uj(bj)]θ. Since
dj is s-dense, there exists an element a ∈ A such that dj(a) = bjs. Now, bs =
[uj(bj)]θs = [uj(bjs)]θ = d′j(bjs) = d′jdj(a) = d′idi(a) ∈ Im(d′idi).

Definition 3.16. We say that a category A has M-bounds if for every set
indexed family {mi : A→ Ai : i ∈ I} of M-morphisms there is an M-morphism
m : A → B which factors over all mi’s; that is there are di : Ai → B with
dimi = m.

Proposition 3.17. The category Act-S has Md-bounds.

Proof. Let {hα : A → Bα : α ∈ I} be a set indexed family in Md and
h : A → B =

∐
α Bα/θ be the multiple pushout of hα’s. Then h factors over all

hα’s, and is an s-dense monomorphism, by Proposition 3.15.

Definition 3.18. We say that a category A hasM-amalgamation property, if the
morphism m in the definition ofM-bounds factors over all mi’s through members
of M; that is di’s belong toM.

Proposition 3.19. The category Act-S has Md-amalgamation property.

Proof. Since, by Proposition 3.15, multiple pushout transfers s-dense monomor-
phisms, we are done.

Proposition 3.20. The category Act-S has Md-directed colimits.
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Proof. Let ((Bα)α∈I, (gαβ)α≤β∈I) be a directed system of S-acts and S-
maps, and gα : Bα → lim−→αBα are the colimit maps. Take s-dense monomorphisms
hα : A → Bα, α ∈ I , with gαβhα = hβ for α ≤ β ∈ I . Let h : A → lim−→αBα be
the directed colimit of hαs. That is, h = lim−→αhα = gγhγ = gαhα = gβhβ = . . ..
Then since each hα is a monomorphism, h is a monomorphism. Also, h is s-dense
because for b ∈ lim−→αBα and s ∈ S, since b ∈ lim−→αBα, there exists xσ ∈ Bσ

such that b = [xσ]ρ and since hσ is s-dense, there exists an element as ∈ A with
hσ(as) = xσs. Then bs = [xσ]ρs = gσ(xσ)s = gσ(xσs) = gσhσ(as) = h(as) ∈
Im(h).

Definition 3.21. We say that a category A fulfills theM-chain condition if for
every directed system ((Aα)α∈I, (fαβ)α≤β∈I) whose index set I is a well-ordered
chain with the least element 0, and f0α ∈M for all α, there is a (so called “upper
bound”) family (gα : Aα → A)α∈I with g0 ∈M and gβfαβ = gα.

Proposition 3.22. The category Act-S fulfills theMd-chain condition.

Proof. Take A = lim−→αAα and let gα : Aα → A be the colimit maps. Then,
applying Proposition 3.20, we get the result.

Theorem 3.23. The classMd is closed under colimits.

Proof. Let A,B : I → Act-S be diagrams in Act-S determining the acts
Aα, Bα for α ∈ I = Obj(I), and the S-maps gαβ : Aα → Aβ , g′αβ : Bα →
Bβ , for α → β in Mor(I). Consider the colimits of these diagrams with the
colimit maps gα = γθuα : Aα → lim−→αAα =

∐
α∈I Aα/θ, g′α = γθ′u

′
α : Bα →

lim−→αBα =
∐

α∈I Bα/θ′, and assume that {fα : Aα → Bα : α ∈ I} is a family of
s-dense monomorphisms such that g′αβfα = fβgαβ. We show that f =: lim−→αfα

is an s-dense monomorphism. Recall that θ is the congruence generated by H =
{(uα(aα), uβgαβ(aα)) : aα ∈ Aα, α → β ∈ Mor(I)}, and θ′ is the congruence
generated by H′ = {(u′α(bα), u′βg′αβ(bα)) : bα ∈ Bα, α → β ∈ Mor(I)}, and
notice that f [uα(aα)]θ = [u′αfα(aα)]θ′ . Since each fα is a monomorphism, it is
not hard to check that f is a monomorphism. To see that f is s-dense, let s ∈ S,
x = [u′α(bα)]θ′ ∈ lim−→αBα for some α ∈ I . Since fα is s-dense, there exists
aα ∈ Aα with fα(aα) = bαs. Then, gα(aα) = [uα(aα)]θ ∈ lim−→αAα and we have
xs = [u′α(bαs)]θ′ = g′α(bαs) = g′αfα(aα) = fgα(aα) ∈ Im(f).
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