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NON-ISOTROPIC FLAG SINGULAR INTEGRALS ON
MULTI-PARAMETER HARDY SPACES

Zhuoping Ruan

Abstract. Recently, Han and Lu [HL] developed a discrete Littlewood-
Paley-Stein analysis and multi-parameter Hardy space theory associated with
isotropic flag singular integral operators initially studied by Muller-Ricci-Stein
[MRS] and Nagel-Ricci-Stein [NRS]. The purpose of this paper is to carry
out the multi-parameter Hardy space theory associated with non-isotropic flag
singular integrals. The boundedness of such flag singular integral operator 7'
from HY. to H}. and from H}. to L? are established in this paper. Discrete
Calderon’s identity and Min-Max principle derived here are the main tools
used to establish the non-isotropic multi-parameter Hardy space theory.

1. INTRODUCTION AND STATEMENT OF RESULTS

In the works of Muller-Ricci-Stein [MRS] and Nagel-Ricci-Stein [NRS], they
established the L? theory of flag singular integrals of both isotropic and non-isotropic
types with applications to analysis on quadratic CR manifolds and Marcinkiewitz
multipliers on the Heisenberg group. In this paper, we extend results in [HL]
on multi-parameter Hardy space associated with isotropic flag singular integrals to
those under a family of non-isotropic dilations with homogeneous norms. Precisely,
we define a dilation by §,(z,y) = (ra,r2y) (r > 0) with the norm |(z,y)| =
(|z|? + \y\)% for all z € R™ and y € R™ and obtain the boundedness of flag
singular integral operator T' by using a similar idea due to Han and Lu. In [HL],
they first establish a discrete Calderén reproducing formula and a Min-Max type
inequality in test function spaces and then develop the implicit multi-parameter
Hardy space theory and finally get the boundedness of 7' on HE and from HE
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to LP. In this paper, we will carry out the corresponding multi-parameter theory
associated to the non-isotropic dilations.

We will use a lifting method to establish test functions on R™ x R™ with the
following convolution construction similar to that in [HL].

Definition 1.1. We define a non-standard convolution x5 by

D, y) = 9D wy () = / oD,y — )@ (2)dz,
R"L

where p(1) € S(R™™), (2 € S(R™), and satisfy
S (277,27 %6) 2 =1, forall (&,6) € R” x R™{(0,0)},
J
and R
S WP )P =1, forall n € R™\{0},
k
and the cancellation conditions

/w(l)(x,y)xo‘yﬂdxdy:(), /w(Q)(z)ZWdz:O, for all multi-indices o, 3, and ~.

Rn+m RmM

Using this convolution, we then define the non-isotropic Littlewood-Paley-Stein
square function.

Definition 1.2. For f € LP,1 < p < oo, we define S(f), the Littlewood-Paley-
Stein square function of f by

(1.1) S()(@,y) = {Zij,k*f(w,yV} :
ik
where functions
Vi, y) = w0 o2 (x, y),
¢§1)($7y) _ 2(n+2m)j,¢(1)(2jx7 22jy) and Tb;(f)(z) _ 2mkw(2)(2kz)_

From the Fourier transform, it is easy to get the following continuous Calderon
reproducing formula

(1.2) Fa,y) = ik xbin* f(x,y), forany f € LP(R" x R™).
7,k
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Following the definition of Nagel-Ricci-Stein [NRS], we have the definitions of
product kernel and flag kernel associated with the non-isotropic dilations below.

Definition 1.3. A distribution K% on R x R™ is said to be a product
kernel on R™*™ x R™ if K% is a C* function away from the coordinate subspaces
{(0,0, 2)|(0,0) € R"*™ > € R™} and {(x,y,0)|(z,y) € R"*™ 0 € R™}, and for
all (z,y,2) € R™ x R™ x R™ with |z| + |y| # 0 and |z| # 0 satisfies

(1) (Differential Inequalities) For any multi-indices @ = (o, -+, ), 0 =
(Bry -+, Bm) and v = (71, -+, )

T Yy Yz

8eaBY K" (., z)‘ < Co o |(, )|~ r2mHal21B]) |4 =m=]1,
(2) (Cancellation Condition)

8?85[(%57 Y, Z)¢1(5z)dz < Ca,ﬂ‘(x, y)‘—(n+2m+|a|+2|g|)

R"L

for all multi-indices «, 3 and every normalized bump function ¢; on R™ and every
0> 0;

/ OVK*(z,y, 2) (6, 52y>dxdy' < Cy |27
Rn+nL

for every multi-index v and every normalized bump function ¢ on R"*™ and every
9 > 0; and

<C

/ Kﬁ(% Y, 2)$3(612, 81y, 802)dadydz
Rn+m+m

for every normalized bump function ¢35 on R**™+™ and every §; > 0 and &5 > 0.

Definition 1.4. A distribution on R™"*™ is said to be a flag kernel on R™ x R™
if K is a C*° function away from the coordinate subspace {(0, y)|0 € R", y € R™},
and for all (z,y) € R™ x R™ with |z| # 0 satisfies

(1) (Differential Inequalities)

020K (2, )| < Caglal ™1 |(, )] 227

for any multi-indices o = (a1, -+, ), 3= (81, , Bm)
(2) (Cancellation Conditions)

[ oK)y < Calel
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for every multi-index o and every normalized bump function ¢; on R™ and every
0> 0;

‘ ayﬂK(xvy)¢2(5x)dx‘ <,y 1A
Rn

for every multi-index 8 and every normalized bump function ¢, on R™ and every
6 > 0; and

‘/ . K(xvy)¢3(51x,52y)dxdy‘ <C
Rn m
for every normalized bump function ¢3 on R™*™ and every 6; > 0 and 65 > 0.

We give an alternative proof of the fact that flag singular integral operators are
bounded on L? for 1 < p < oo, which was initially proved in [NRS].

Theorem 1.1. Let T(f)(z,y) = K * f(z,y) be a flag singular integral on
R™ x R™, where K is a flag kernel. Then T is bounded on L?(R"™ x R™) for
1 < p < oo, thatis,

IT(H)llp < Cllfllp, for f e LP(R" x R™),
where the constant C is dependent only on p.

In order to define the discrete Littlewood-Paley-Stein square function on a ap-
propriate distribution space, we need to introduce the test functions of order M,
S (R™™ x R™), where M is a positive integer.

Definition 1.5. We say f(z,y,2) € Sy (R™™™ x R™) if f is a Schwartz test
function and satisfies the following conditions:
(i) For[al,|B], |y < M —1,

1 1
(14 |(z, y)|)nr2m+3M+Hal+218] (1 4 |z|)m+M+hl’

|D3 Dy D f(w,y,2)| < C
(i) For [z — /| < (1 + Jal) and |y — y/| < 31+ Jy]),]a] = || = M and
|DSD, DY f(x,y.2) — DDy DI f(x',y/, 2)]

<o l@—2y—y) 1
T (L [ y) A (1 [z
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(iii) For |z — 2/| < L(1+ |2]), |v| = M and |a], |B] < M — 1,

\DSDEDY f(x,y,2) — DEDIDY f(a,y,2)|

1 |z — 2|

= OO TG, M2 (1 [

(iv) For |z —2/| < $(1+ |z]), ly—¥/| < 31+ |y]), |z — /| < (1 + |2|) and
lv| =M,

| DDy D% f(x,y,2) — DyDyD.f(a',y', 2) — DyDyD? f(x,y, 2)
((z—a'y —y)| |z = 7]
(14 [(z, y)[)rr2m+OM (1 4 [2] )20

+D;DyDIf(2',y', 2l C©

(v) For |af,[],[y] < M -1,

/ [y, 2)z*ydedy = | f(x,y,2)2"dz =0.
Rn+nL Rm™

If f € Sy(R™™ x R™), the norm of f in Sy (R™T™ x R™) then is defined
by
£ 1|55 (r+m xmy = inf{C': (i) — (iv)hold}.

It is easy to check that Sy, (R™™ x R™) with this norm is a Banach spaces.

We now define the test function space Sg s on R™ x R™ associated with the
flag structure.

Definition 1.6. A function f(x,y) defined on R™ x R™ is called to be a test
function in Sg s (R™ x R™) if there exists a function f* € Sy, (R™T™ x R™) such
that

(1.3) fe) = [ Flay -z

The norm of f in Sg . (R™ x R™) is defined by
| fll s pr (RPxRm) = inf{HfﬁHsM(anme) . for all representations of f in (1.3)}.
The dual space of Sk is denoted by (S ar)’.

For simplicity, in the following we denote Sp(R™ x R™) by Sg s (R™ x R™)
for a given positive integer M.
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Our main tool to characterize the flag Hardy space is the discrete Littlewood-
Paley-Stein analysis. Thus, we need the following discrete Calderon reproducing
formula to construct another Littlewood-Paley-Stein square function.

Theorem 1.2. If +); ;, are the same as in (1.1). Then

(1.4) Fay) =33 S Ik, v, )+ far, ys)
ik T T

where Jj,k(x, y,xr,y5) € SP(R™ x R™), I ¢ R", J C R™, are dyadic cubes with
side-length £(1) = 2777~ and ¢(J) = 27N + 227N for a fixed large integer
N, z1,yy are any fixed points in I, J, respectively, and the series in (1.4) converges
in the norm of Sp(R™ x R™) and in the dual space (Sp)’.

The discrete Calderon reproducing formula (1.4) provides the following Min-
Max type inequalities.

Theorem 1.3. Suppose (M), (1) € S(R™T™), 2, ) € S(R™) and

P(z,y) = W s v @(z,y), oz, y) = 6 o P (z, ),

and 11, ¢, satisfy the conditions in (1.1). Then for f € (Sp)’ and 0 < p < oo,

{ZZZZ sup ¢j,k*f<u,v>2xf<w>xJ<y>}
j L 7 I uelveJ

(L5)

%

{ZZZZu&“feJ¢j,k*f<u,v>2xf<x>xj<y>}
i k J I ’

p

where 1; ;(x,y) and ¢;x(z,y) are defined as in (1.4), I c R",J C R™, are
dyadic cubes with side-length ¢(7) = 27— and ¢(J) = 27N + 272N for a
fixed large integer N, x; and x s are indicator functions of I and J, respectively.

This Min-Max type inequality ensures that the following non-isotropic flag
Hardy Space HY. is independent of the choice of the function ¢ and thus this
definition is well defined.

Definition 1.7. For 0 < p <1, HL(R" x R™) = {f € (Sp)" : Sa([f) € LP(R™
xR™)} with the norm || f| 2 =~ [|Sa(f)|lp, where Sy is the non-isotropic discrete
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Littlewood-Paley square function defined by

Sa(f)(@,y) = { > %,k*f(xhyJ)QXI(JC)XJ(Z/)} :

7k

where j, k, I, J are the same as in Theorem 1.2.

Using the discrete Calderon identity and Min-Max principle we can prove the
following

Theorem 1.4. If T is a flag singular integral with the flag kernel K(z,y).
Then for any 0 < p < 1 there exists a constant C' = C(p) such that

1T e, < CNF Nl -

Theorem 1.5. Let 0 < p < 1. If a linear operator 7T is bounded on L?(R"*™)
and H7.(R™ x R™), then T is bounded from H%.(R™ x R™) to LP(R™*™).

2. ProoF oF THEOREMS 1.1

Lemma 2.1. Suppose that ¢(!) € S(R"*™) is supported in the unit ball of
R"+™ and 4(2) € S(R™) is supported in the unit ball of R™, and satisfy

| ) =1 forall (61.6) € R x R {(0,0)

and

/ w?)(sn)\?@ —1, forall 5eR™{0}.
0

We set ¢z s (« y = fom 0 (@, y — )07 (2)dz, where (2, y) = tn—2myp(1)
(t’tQ) and1/1 ( ): —mw(2( ) Then f0r1<p<oo

21) {/ / s F( thds} ~ £y

p
Proof of Lemma 2.1. Define F : R"xR™ — H = L?((0,00), %) by F(z,y) =
I w,ﬁl)(x, y) with the norm

o0 dt
|Flli = /0 17D ()L
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and set

T(F)(x,w:{ [ 1F el ds}

We notice that 7'(F) f f [thr s f(a y)\wt%}%-

By the vector-valued thtlewood-Paley-Steln inequality,

o0 ds %
([ 1raee iz}
0 S
p

and by the standard Littlewood-Paley-Stein inequality,

‘ RISy
0
{//m*fxy)?dtds} <l

p

[o.oNe 9]
To show the estimate || f|l, < C||[{[ [ [¢ss * f(x,y)P%%}%Hp, we first sup-
00

< ClIIEell,

< Clflps
p

thus,

pose that f € L?(R™ x R™) N LP(R™ x R™).
From the Fourier transform, we have

dtds
fla) = [ [ v v flaa) T5 forany fe 12
then for f € L2(R™ x R™) N LP(R" x R™),

0 [0 dt ds
Ifll, = sup </ / wt,s*wt,s*f(wvy)q?g(wvy)>

llgll,r <1
dt ds
= sup / / <o x f(,y), Ve, * g(, y)> ——
llgll,y <1 $

(T |2y
{//wts*fx y)zdtds} |

p

1,1 _
Wherep+p/_1
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Since L2NLP is dense in LP, Lemma 2.1 is completed through limiting argument.m
Following a similar proof as that in the above Lemma, we have

Lemma 2.2. For 1 < p < oo, ||f]lp = [1Sa()lp-

Proof of Theorem 1.1. We may always assume that & is the integrable function
by using a smooth truncation argument. From Lemma 2.1, we also have

‘th ds

(2:2) 1 = 0 [ s s v = )P 23
0 0

Thus,

23) T <l / / V1 bt K ¢ Fag) PE T

For f € ILP,1 < p < oo, we claim that

(2.4) [rs x K f(2,y)] < OM(f)(2,y),

where C is a constant independent of the L! norm of K and M,(f) is the strong
maximal function of f.
If the claim is true, then from (2.1) and Fefferman-Stein vector-valued maximal
theorem, Theorem 1.1 is obtained.

To show the claim, we note that ¢; s *+ K(x,y) = f?ﬂf,s « K2,y — 2, 2)dz,

where ] (2,1, 2) = v{(2,y — 2)9P(2) and K(z,y) = [ K@,y - 2, 2)dz,
K*(x,y, ) is a product kernel.

- A}wKﬁ(x,y,z):Kﬁ(x—u,y—v,z)—Kﬁ(x,y,z),
and
A2 Kz, y, 2) = K¥(z,y —w, 2z —w) — K¥(2,y, 2),
then
Doy (DL EF) (2,9, 2)
= K'(z—u,y—v—w,z—w)— Kz —uy—v,z2)
—K¥z,y —w, 2z —w) + K¥(z,y, 2).
Since

|06 P =1, foral (6,6 € B x R™{(0,0)),
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and - J
/ \w(Q)(sn)\Q?S =1, forall neR™\{0}.
0

We have from the continuity of @ and @

/ D (u, v)dudo = $0(0,0)= 0, and | @ (w)dw = $O(0) = 0,
R xR™ R™

thus,
Wi+ Kz, y, 2)]

= / Kz —u,y—v—w,z— w)wil)(u, 0) 2 (w)dudvdw
R xR™ xR™

- / D DLER) (.. 2, 0)d P (w) dudvdw
R xR™ xR™

Since w,ﬁl), §2) have size conditions and K* satisfies conditions of Definition 1.2,
we have the following estimates

t S

2. ¢ o K? <
(2.5) Wt,s* (xvyvz)‘_C(t+‘(x7y)‘)n+2m+1 (s + [2])mtT”

where the constant C is independent of the L' norm of K.
For f € LP(R™), since the Lebesgue differentiation theorem holds, we have f(z) <

M(f)(z).

Therefore,

[tes % K * f(z,y)]
t S

flx—u,y—v dudvdw
/Ranmem ( )(tH(u,v—w)\)”“m“ (s+[w|)m+

<C

< CMs(f)(x,y). n
3. ProoFs oF THEOREMS 1.2 AND 1.3

In this section, we use the the continuous version of the Calderon reproducing
formula on S and almost orthogonality estimates to derive the discrete Calderon
reproducing formula and the Min-Max type inequalities on Sr.

We suppose that o(z, y, 2, u, v, w) for (z,y, 2), (u,v,w) € R™™ x R™ is a
smooth function, satisfying the differential inequalities

\8?1851 o 83285283}2wﬁ(x, Yy 2, U, v, )|



Non-isotropic Flag Singular Integrals on Multi-parameter Hardy Spaces 483

(3'1) < AN,M,m,Oézﬁlﬁz,’h,’Yz(l + ‘(1‘ —u,y— 'U)‘)_N(l + ‘z - w‘)_M

and the cancellation conditions

/+ wﬁ(%yv27U7U,w)$a1yﬂ1dxdy
Rn m

= wﬁ(x,y,z,u,v,w)z“dz
R"L

- / wﬁ(xvyvzvuvv;w)uag’l)ﬂgdud’l)
Rn+m

= wﬁ(x, Y, 2, u, v, w)w’dw = 0,
R"L
and for any fixed 2y € R™,yo € R™, ¢*(x,y, 2, 70, o) € Seo(R™™™ x R™) and
satisfies

‘aglayﬂlazl(bﬁ(x?yvzvxm yO)‘
(3.3) N .
SBN,M,al,ﬂl,'yl,(l‘f"(1'—1'0,2/—:1/0)‘)_ (1—}—‘2‘)_ )

for all positive integers N, M and multi-indices a1, ao, 81, B2, 71, v2 Of nonnegative
integers. Then we have the following almost orthogonality estimate:

Lemma 3.1. For any given positive integers L1, Lo and K1, K5, there exists a
constant C' depending only on Ly, Ly, K1, K5 and the constants in (3.1) and (3.3)
such that for all positive numbers ¢, s,t’, s’

wfvs(x, Yy Z, Uy U, w)¢§, o (u, v, w, xo, yo)dudvdw

Rn+"L+"L
(3.4) < o(E A \E 8 A8 L
- (t’ t) (s’ s)
(tve') K (sV ')k

(VT -+ (2 =0, y—yo) [ (5 o/ + [2]) 0]

Where wg,s(xv Y, z, ’U,,’U,’U)) = t—n—?ms—mwﬁ(%7 t%’ év %7 t%’ %) and

# _ 4—n—=2m _—m 4L Y = Lo Yo
(bt,s(x?y?z?xO?yO)_t " ms m¢(t7t2787 t7t27 .

Proof of Lemma 3.1. Without loss of generality we may assume that ¢ > ¢ and
s’ > s. We first consider the case L1 = Ly = K| = Ko = 1.
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Since
/ (b;tji/ s/ (’U,, ’Uv ’U), xOv yO)d’U'd’U - 07 /wf,s(xv y7 27 ’U,, ’Uu w)dw = 0
R7 xR™ R™
we have
wwg,s(xv Y, z,u,0, w)¢§/ 5/(u7 v, w, X, yO)dudvdw
R7 xR™M xR™
— / A - B dudvdw
R7 xR™M xR™
where
A= wg,s(q’.v Y, z, ’Ll,,’l),’u)) - wg,s(q’.u Y, 2,20, Yo, ’U))
and
B = (b%/’s/(uv v, w, X, yO) - (b%/’s/(uv v, z, X0, yO)
Denote
O ={(u,v,w) € RMT™ x R™ : |(u — x0,v — yo)]
1 1
< S(t+ 1@ =20,y —w)l), w2 < 5(5 +12)},
Qs = {(u,v,w) € R" x R™: |(u — x0,v — o)
1 1
< S+ =20,y —w)l), -2 > 5(s' +]2)},
Q3 = {(u,v,w) € RMT™ x R™ : |(u — x0,v — yo)]
1 1
> S+l =20,y —w)l), lw— 2] < 5(5 +12)},
Qy = {(u,v,w) € RMT™ x R™ : |(u — x0,v — yo)]
1 1
> S (t+ I =20,y —w)l), w— 2] > S(5 +12)},
and then,

wf’s(x,y,z,u,v,w)qﬁg/s/(u,v,w,xo,yo)dudvdw:/+/ +/ +/ )
’ 0 JQe JQs JQu

R7™ xXR™ xR™
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For the first term, we use the smoothness conditions of both v, , and ¢ &,

/ A - B dudvdw
Q

/ {\(u—xo,v—yo)\ t 52
~Ja, Ut+l(z—z0,y—volb+]|(x—z0, y—10))" " (s4|z—w|)™
(t')? lw — 2| s’
(t' + [(u— @0, v — o))" " + [2] (s + |2)" !
S t s'
s (t+ (@ — 0,y — yo) )T (s 4 [

} dudvdw

For the second term , we use the smoothness conditions of ¢ s the size condition
of ¢y & and the fact that |w — z| ~ |w| if |w — 2| > (s’ + |z]),

/ A - Bdudvdw
Qo

/ { |(u—x0,v—y0)| t 52
= Ja, UtH(@=20,y=y0)| (t+](z—z0, y—y0))" " (s+[z—w|)"F?
(t/)2 < 8/ 8/ )}
+ dudvdw
(t'+](u—z0,v—10) )" 2"\ (/+]2)™ (s +]w])™ !
S t s'
t s (t+|(z—zo,y— yo)|)" T (s + 2"

<C

For the third term, we use the size condition of 1, ; and the smooth condition of

¢t/,s/1

/ A - Bdudvdw
Q3

t t
< +
/93 {((H [(u—=z0,v = yo) )"+ (¢ +[(z — o,y — yo)\)”“m“)

82 (t/)2
(s+ |z —w)™? (¢ + |(u—z0,v — o))" "
_ /
‘1/1) d 5 P } dudvdw
'+ 2] (s +]2])
t s t s’

<C

ts' (¢4 | =20,y — o))" (s 4 |2

For the fourth term, we use the size conditions of both v, , and ¢ ¢ and the fact
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that |w — z| ~ |w| if jw — z| > %(s’—i— E))

/ A - Bdudvdw
Q4

¢ t
= /94 {<(t+ (2 — xo,y — yo) )" T * (t +|(u — zo,v —yo)\)n+2m+1)
82 (t/)2

8+\z w)™ (' + |(u — 0, v — o))"
3/
+ dudvdw
( (s +\Z\ )" (s 4 \w\)m“)}
s t S
' (t+ |(x — @0,y — yo) )" (s 4 J2)) T

/

<c t
t

For the case max{Li, Lo, K1, K2} > 1, since qbff/ - and wfﬁ satisfy cancelation
conditions, we have

/ ¢E,3($7 Yy,z,u,v, w)¢t/,8/(u7 v, w, Zo, yo)dUd’wa
Rn XR"L XR"L

= / FE - Fdudvdw
R™xR™ xR™

where
E = wf,s(xvyvzvuvvuw) - Z aga’gwgs(xvyvzvxm y07w)
|| +[8]<L1—-1
F= ¢§/’3/(u7v7w7x07 yO) - Z 8171¢§/’5/(u7v727x07 yO)
[v|<L2—1

and then using a similar argument to the first case, we could also obtain (3.4). m
Moreover, the almost orthogonality estimate still holds in Sr. But we need to
use the following relationship.

Lemma 3.2. If 1, ¢ € Sp(R™ x R™), and 1¥, ¢* € Soo (R™T™ x R™) such that

w(%y) = R wﬁ(%y— z,z)dz, (b(xvy) - R ¢ﬁ($7y— z,z)dz

Then
(Y o)(w,y) = /Rm (W * ¢ti> (z,y — 2, 2)dz.

It is quite easy to prove Lemma 3.2, so we omit the proof here.
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Lemma 3.3. For any given positive integers L1, Lo and K1, K5, there exists a
constant C' depending only on L1, Lo, K1, K5 such that if t V¢’ < /s V &, then

‘wt,s * ¢t/,s/(x7 y)‘

LDy (S Sy VD (5 v )
ST e el (s v O

< C(

and if t V' > /s Vs, then

‘wt,s * ¢t/,s/ (1‘, y)‘

t t, s & (t v ) (t v )k
SAS)(S A ) _
t t s/ s (t\/t/+ ‘(I;D(TH-IQ) (t\/t/—f— ‘y‘)(2m+K2)

< O

Proof of Lemma 3.3. Note that for all wfvs, O o € Soo(R™™ x R™),
wt,s * ¢t/,8/ (TII, y) = / ¢E,s * (b%/,s/(xv y—z z)dz,
R"L

and
w?,s * ¢§,’8/(x, y,2) = / wfvs(x — U Y — U,z — w)qﬁg/’s/ (u, v, w)dudvdw,
R"XR"LXR"L

Then by (3.4), for any given positive integers 1;, Lo and K, K5, there exists a
constant C' depending only on Lq, Lo, K1, K5 such that

‘wt,s * ¢t/,s/ ((L‘, y)‘

IAREIY (v (V¥
< C —AN— Ly A Lo / ds.
R e bl IV s | o e N PRVPONR B (e o

R"L

Case 1. Iftvi <+vsVvs and |yl > sV, then

/ (tvi)k (s Vv sk i
(t V4 \(x,y _ z)‘)(n+2m+K1) (3 Vs 4 ‘z‘)(m‘”@)
R"L

= +/ =T+1I
/|z|g§|y|,orz22y Lyl<|z<2]y|

Since if |z| < 3|y|, then |y — z| ~ |y, and if |z| > 2|y], then [y — z| > |y|, we have
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(t vtk
(t vVt +|(z,y)|)(+2mtKD)
(tv ) (vt
(EVE A |]) (KD [y |mt /2
(tv K (sV ')Kb/2
(Vv + o)) KD (s s+ [y])mrES/2

where we have taken K1 = K| + K, > K{,t Vit <+VsVs and |y| > sV s
To estimate the term 11, we have

I <cC

<cC

1< BV / (tv )t i
= (s Vs [yt (EVE+ (2, y — 2)) 2K
$lyl<|z1<2]y|
(s\/s’)K2 (t\/t’)K1
(sV s + [y))mtE2) (¢ v ¢! + |o])(nHED)
(SVS/)Ké/2 (t\/t/)Ki

(sV s + [y LD (et + |2])HRD
where we have used Ko > K//2 and K > K].

Case 2. If tvi < VsV and |yl < sV, then

/ (tv )k (sV s i
AV +|(z,y — 2)]) (2K (5 8+ |2]) (mHER)
R"L

1 / (tvi)K
< dz
~ (svs)m |tV +|(x,y — 2)|)mt2mtE)

R"L
(sV s)Kz (tvt)K
(s Vs + [y)ym+Ee (v i/ + |z])(nHED

Case 3. If t vt/ > VsV s and /|yl <tV Then

/ (tv )k (sV s p
z
AV +|(z,y — 2)]) (2K (57 8+ |2]) (mHER)
R"L
(tvt) K1
< C(t\/t/+|a:|)("+2m+K1)

(tvt)k (tvt)Ke

T VY ) (vt 4yl mt R

by noticing that K, = K + KJ.
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Cased. Iftvit > sV and y/|y| >t V1, then

/ (tv)k (s V&K i
(VY + |(z,y — 2)])(H2mHED) (s v s/ 4 |z])(m+K2)

R"L
= / +/ =I1+1I
|zI<%lyl or |z[>2y| L lyl<|zI<2]y|
and Kk
tv i)k
1| < (tve)
(VT + |(z,y)|)(nt2mtE)
(tvi) (tvt)Es

EVE + a) KD (v e+ /g )BTRS
where we have taken K = K/ + KJ.
Next, we estimate

(tvt)k (sVs)Kz
AV + |z)) (KD (s v s+ [y])(mHE2)
(tvi)K (tVt)2Ke

TV a0 vt 4 /yl) 22K
(t vt (vt

(V|2 (vt /Tyl )

11| < C

where we used K; > K1 and 2K, > K, n

Now we can obtain the following continuous version of the Calder6n reproducing
formula on test function space Sp(R™ x R™) and its dual space (Sr)’.

Lemma 3.4. Assume that 1), ;. is the same as in (1.4). Then

(3.5) Fla,y) =D ik xtbin* f(a,y),
ik

where the series converges in the norm of Sz and in dual space (Sr)".

Proof. If f € S, then there exists f* € Sy, such that f(x,y) = [ f*(z,y—
R"L
2, z)dz. Because of the continuous Calderon reproducing formula of f# on L2, to
show the series in (3.5) converges to Sg, it is sufficient to prove three summations
below

YooD el D D el D D il

l71>N k| <M l7I<N |k|>M li|>N |k|>M
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tend to zero in Sy (R™™ x R™) as N and M go to infinity. We apply the almost
orthogonality estimate in (3.4) by choosing t = 277, s = 27% ¢ = ¢ =1 and
zo = yo = 0 to show it. And by the duality argument we obtaln that the series in
(3.5) converges in dual space. We omit details here. ]

By Lemma 3.4, we can develop the discrete Calderon reproducing formula.

Proof of Theorem 1.2. For f € Sg, we discrete f from (3.5) such that

£ = S [ [ biate =y - w) @i ) w)dudw

»k IJ T

=) { [ [ vsste—u.- w)dudw] (bix* 1) (@1, 9) +R() (@, y)

J

where I and .J are dyadic cubes in R™ and R™ with side length 2=7—" and 27+=~ +
2727—N respectively, and N is large enough.

Following a similar proof as that in [HL],we get that R(f) € Sp(R™ x R™),
and

(3.6) IR spmrxrm)y < Cc27 M| f] | S (RP xR

Then 7! = (I — R)~! exists and

fla,y) = T7T(f)(z.y)

- S RT3
i=0 ik

ZRi //wj,k( —u, — 'u)dud’l)] (z,y) (wj,k * f)(xr,y.).
=0T

Set

ZRZ//%k( — U, - — v)dudv] (x,y) = \I\\J\%,k(%yvﬂﬁb Y7)-
=077

And from (3.6), it is easy to show that Jj,k(x, Y, x1,yy) € Sp.
Theorem 1.2 is concluded. ]

To prove the Min-Max type inequality, we need to get the following lemma first.
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Lemma 3.5. Let I,I' and J,J’ be dyadic cubes in R™ and R™ respectively
such that £(I) = 279N, ¢(J) = 272N 4 27k=N y(1"y = 277N and ¢(J') =

22/'=N 4 9=k =N_Then for any u,u* € I and v, v* € .J, we have when j A j' >
EAK
2 )

Z Q—Ij—j/|L1—Ik—k/|L22—(jAj/)K1—(kAk/)K2u/"J/‘

C ey ’ ‘(ﬁ’/,k‘/*f(xfﬂyj/)‘
.J (2—J/\j + ‘u — xp‘)n—f—lﬁ (Q_k/\k + ‘,U _ yJ/Dm-FKQ J

1
< € 27T 1 g k=KL, {Ms [(ZZ D)k f(xl/vyJ/)‘XJ/XI) ]} (u"v")

7T
and when j A j/ < EAEL

—1i=3"|La=|k=k'|L2 9= (NS ) K1=(GNT ) K2 | 1| J!
2 2 Il

n — oy |G * (@ y)l
I.J (2_j/\j/+‘u—$]/‘)n+K1 <2_j/\j/+\/m‘> 2

< ¢ ol gk {M KZ S oy + Fla, yw\xfxw) ]} (u"")

Jr

where M is the Hardy-Littlewood maximal function on R™ x R™, and My is the
strong maximal function on R™ x R™,

Proof. Since the proof is similar to that in [HL], we omit it here.
Now we are ready to give the

Proof of Theorem 1.3. By the discrete Calderon reproducing formula on Sg,

Fa,y) =Y TN b @,y ya ) (G * (@, v

j/’k./ J/’I/

We have from the almost orthogonality estimates in Lemma 3.3 together with Lemma
3,5 that,

‘wj,k * f(uv ’U)‘

< 03 2 lindln glkWL,
J'k

{Ms [(ZZ [ f(xl/vyJ/)‘XJ/XI/> ] }r (u*,v*)
Jor

forany u,u* € I, zp € I',v,v* € Jand yy € J'.



492 Zhuoping Ruan

Using the Holder’s inequality and summing over j, k, I, J, we have

2

SY s Wy S0

jk 1,0 WElve

L]

<C Z MS(Z |bjr i * [z yr)IXexa)" ;

j/J{‘./ I/7J/

and since 27 and ;- are arbitrary in I’ and J’ respectively, we could derive Theorem
1.3. by using the Fefferman-Stein vector-valued maximal theorem [FS] with
r<p. [ ]

4. Proors oF THEOREMS 1.4 AND 1.5

In this section, we use non-isotropic discrete Littlewood-Paley square function
and discrete Calderén reproducing formula and Corollary 4.6 to get the boundedness
of the flag singular integral operator 7" in H%.. Together with the stopping time argu-
ment of Chang and R. Fefferman [CF1-2] we then obtain the operator 7" is bounded
from H%. to LP. The HP to LP boundedness for singular integral operators in the
pure product setting was proved by R. Fefferman [F] using atomic decomposition
and Journe’s type covering lemma (see [J1-2], [P]). The method employed by Han
and Lu [HL] avoids the use of Journe type covering lemma. We will adapt ideas
from [HL] in isotropic case to prove our theorems in non-isotropic case.

From Theorem 1.3, we can use the norm of discrete Littlewood-Paley square
function to characterize the space H?.

Lemma 4.1. For 0 < p <1, we have

N

(4.1) 1A = S DD DD g * flanyn) Pxa@)xa () o
j k J I

where j, k, v, x1, XJ, 1,y are the same as in Theorem 1.3.

We define ¢ and ¢(?) to be the same as in Definition 1.1 except that ¢(1) ¢
O (R™™), ¢(2) € C5°(R™), and satisfy the cancellation conditions of finite order

/ oW (z, y)xyPdzdy = 0, for all o, § satisfying 0 < |or| < My, 0 < || < M,
Rnt+m

¢ (2)27dz = 0 for all 0 < || < My,
R"L
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Moreover, we may assume that ¢1) and ¢(2) are radial functions supported in the
unit balls of R™"*™ and R™ respectively.

Lemma 4.2. There are functions %,k and an operator T';' such that

Fay) = 33 S IIGikle = 21,y — y)din * (T (F) (@1, v5)
ik g T

where functions %,k(x —x1,y—yy) satisfy the estimate (3.3) with a1, 81, v1, N, M
depending on Mg, zg = x; and yo = yy. We also have that the series converges
in L2(R™*+™) and moreover T is bounded on L2(R"+™) and HL(R" x R™).

Proof of Lemma 4.2. From the continuous version of Calderon reproducing
formula on L2,

(4.2) flz,y) = ZZ};ZJ;Z //¢j,k(x —u,y — v)dudv

J I 177

(@5 * f) (w1, y7) + R(f) (2, y)-

where I, J, 5,k and R are the same as in Theorem 1.2.
We claim that for 0 < p < 1, if M, is large enough, then there is a con-
stant ' > 0 such that |[R(f)[l2 < C27V|[fll2, and [|R(f)]l sz mn xmemy < C27

1N 22, (e -
Assume the claim for the moment and set that

()= S5 [ biale — ey~ v)dudod) @54 1) (o1,
i ok J 1

Then both Ty and (Ty)~! = > R* are bounded on L?(R™*™) N HY.(R™ x R™),
i=1
Thus,

f(x,y) = TNT]gl(f)(xvy)

= D D HIIesk(x — 2y — yn)éin + (TN (F)) (@1, 1)
i k J I

where ¢ (x—z1,y—ys) = fﬂﬁ [ [ oj(z—axr—(u—z1), y—ys—(v—ys))dudv
J I

satisfies the estimate in (3.3) and the series converges in L2(R"+™). We use Lemma

2.2, discrete Caldersn reproducing formula and almost orthogonality to show the

claim. Since it is similar to that in [HL], we omit the details here. ]
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Because of Lemma 4.2 we have

Lemma 4.3. For 0 < p < 1, if f € L3(R"™™) N HL(R™ x R™), then

A e =~ ([ DD DD e (T () (@r, ya)Pxa(@)x(y)
7 k J I

p

where the constants are independent of the L2 norm of f.

Proof of Lemma 4.3. By Lemma 4.2,

Fa,9) =SS S S 18 — 20,y — y) s + (T3 (F)) (21, )
i ok J I

and T (f) is bounded on L?(R™*™), thus we have from Theorem 1.2 that
gk Ty (F)(u,0)
= Y T bk by (s s yar ) (wav) S+ Tt () (w, )
j/’k/’l/’J/
then following the same proof in Theorem 1.3, we obtain this Corollary. We omit
the details here. =
Lemma 4.4. Sp(R™ x R™) is dense in HL(R™ x R™).
Proof. The proof is almost the same as that in [HL] except that we suppose

dyadic cubes J in R™ with side length 2%~ 4 2-27=N 50 we omit the proof
here. ]

Therefore, we have from Lemma 4.4 that L?(R™*™) is dense in H5(R"™ x R™).

Proof of Theorem 1.4. For f € L2(R"*™) N HL(R™ x R™), 0 < p < 1,
Definition 1.7 and the discrete Calder6n reproducing formula in Lemma 4.2 imply
that

1Tl < CIES S 1650+ K 5 f(,9)Pxr(@)xa (9)} 2| o

3k LJ

= CIO T jn # K # Gyrpe (- = wrr, - = yr) (@, 9) e

(TN @) P (@)X ()2 || o

where the last sum above is over j, k,I,.J, 7K', I',J.
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By a similar argument in (2.5), it is easy to see that
|Gk * K @jr o (- — py - — yy ) (2, 9)]|

A
< CQ—|j—j/|M2—|k—k/|M/ 9—(ins")
R"L (

2-GN) + [(z — 271,y — 2 — yyr) | F2m+M

2—(k/\k/)M
'(2_(/mk/) n ‘z‘)m+Mdz.

Then following a similar proof in Theorem 1.3 together with Lemma 4.3,

1

ITflle < C {ZZ {Ms (ZZ s nr (TN () ($1'7yJ')|XJ'X1'> }T (30711)}

ik J’ooI

P

=

IN

‘ {ZZZZ by * (T (£)) (xp,ny>|2xJ,<y>xﬂ<x>}

ik J I

P

A

< COllfll,

Since L2(R™*™) N HL.(R™ x R™) is dense in HL(R™ x R™), using a limiting
argument, we could complete Theorem 1.4. [ |

Lemma 4.5. Let f € L*(R"™™) N HL(R" x R™),0 < p < 1, then f €
LP(R™™) and there exists a constant C}, > 0 independent of the L? norm of f
such that

(4.3) 1Fllp < Cll N -

Proof of Lemma 4.5.

=

Denote S(f)(x,y) = {3 % ; ; |6 % (Tn' (1)) (@1, 90)Pxa (@) x ()} 2.
J
For f € L2(R"™™) N HL(R™ x R™) we have from Corollary 4.6 that

IS Lo@nm) < ClIf I b Rrscrm)-

In the following, we use the stopping time argument. Suppose f € L?(R"™™) N
HY.(R™ x R™) and set

Qi = {(z,y) € R" x R™ : S(f)(z,y) > 2'}.
Define

1 1
By = {1, ) [T X 7) 0] > ST 1| % ) 0 Q] < 51T % |},
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where I, J are dyadic cubes in R, R™ with side length 27N 2=k=N 4 9-2j-N
respectively. It is worthwhile to point out that each (j, k, I, J) belongs to precisely
one B;.

Applying the discrete Calderon reproducing formula in Lemma 4.3,

Fay) =Y 333" bkl — 2,y —y)bsx * (T () (21, y5)
A
=" 3 giw(z — 2y — yn)dink + (T () (z1.99),

i (j,k,1,J)EB;

where the series converges in the L? norm, and it thus also converges almost ev-
erywhere.

We Claim.
p
S Gk — zr oy — ya)bin = (TN (@rys)| < C27(Qy],
(j,k‘,],J)EBi »

Assuming this claim for the moment, then for 0 < p < 1

IAB< Y0 > IS = 21y —yn)dsn * (Ty' (5) (er,wa)llp

7 (j,k‘,],J)EBi
< CY 270
%

=C Z 21(P=1) ;|27

< O fy°p W {(x,y) € R" x R} : S(f)(x,y) > A}| dA
= C IS < C N1
Now we prove the claim. For (j, k,I,J) € B;, if (z,y) € IxJ, then M,(xqo,)(x,y)

> % Notice that ¢! and ¢(®) are radial functions supported in unit balls, thus if
(4, k,I,J); € By, then ¢ ,(x — zy,y — ys) are supported in

0 = () - My(x,) (@) > 7).

Note that

\ﬁz\ <C 10| xq, | (1 + l0g+(10\XQiD)n_1 dzxdy < C|€]
RnxR™
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By Holder’s inequality,

p
S ke — zry — yn)bin * (TN (F)) (@r,ys)
(j,k‘,[,J)EBi »
<R YT ke — zry — yn) bk = (TN () (@, yn)lIb.
(j,k‘,[,J)EBi

For all g € L? with |g||2 < 1,

< N MGk — 2y — ys)dink + (T () (z1.95), 9 >

(4,k,1,J)EB;

= Z TN Gjk * g(zr, y0) b0 * (TN (1, 47)

(4,k,1,J)EB;

C( > IJ@,M(TNl(f))(wnw)Q)

(4,k,1,J)€B;

=

IN

[SIE

( Z IJ<$j,k*g(w1,yJ)2)

(4,k,1,J)EB;

While,

2

1171165 % g (. yJ)2)

(jkIJEB

( 11171 (M, (3 %) <x,y>xf<x>xj<y>)2)
C

[SIE

IN

(4,k,I,J)EB;

(Z/n/m Griva) @ y)dxdy)

B (/ / (Zm) gsn>2dfdn)
/ e 2dfdn) = Clgll»

where qﬁj,k and g are Fourier transforms of qu,k and g respectively.

(Sl

IN

1
2
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In addition,

C2%]0,| > / 32(f)(, y)dudy

@\Qi-u

> > i (TNH) (o) P % J) 0 QA\Qi
(j,k‘,I,J)EBi

1 _

> D b (T3'() (e w)P
(j,k‘,I,J)EBi

where in the last inequality we use the fact that |(1 x J) N Q:\Qiy1] > I x J|
when (4, k, I, J) € B;. By the duality argument, we get Lemma 4.5. [ ]

As a consequence of Lemma 4.5, we have the following result
Corollary 4.6. HL(R" x R™) is a subspace of L}(R™ x R™).

Proof. Suppose f € HL(R™™), since L?(R"™™) is a dense subspace of
HEL(R™™), there exists a sequence { f,} C L*(R"™™) N Hx(R"™™) such that f,,
converges to f in the norm of H:(R™*™). By Lemma 4.5, {f,} is a Cauchy se-
guence in L' (R™*™), thus there exists some g € L'(R"*™) such that f,, converges
to g in L'(R™*™). By taking subsequences which converge almost everywhere, we
get that f = g and then f € L}(R"*t™). n

Proof of Theorem 1.5. Since T is bounded on L? and on HZ, it follows that
T(f) € HpnL? for f € HE.NL? so by Lemma 45, |T(f)lle < C|IT(f)| ae,
for f € HL. N L?. Then we have from Theorem 1.4, ||T(f)|lr» < Cll |z, for
f € HLNL2 Since HL. N L? is dense in HY, Theorem 1.5 is obtained. m
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