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CANTOR’S THEOREM IN 2-METRIC SPACES AND ITS APPLICATIONS
TO FIXED POINT PROBLEMS

B. K. Lahiri, Pratulananda Das and Lakshmi Kanta Dey

Abstract. 2-metric space is an interesting nonlinear generalization of metric
space which was conceived and studied in details by Gahler. In this paper, for
the first time, we establish Cantor’s intersection theorem and Baire category
theorem in 2-metric spaces. As a departure from normal practice we then
apply Cantor’s theorem to establish some fixed point theorems in such spaces.

1. INTRODUCTION

The concept of a 2-metric space has been initiated by Gähler in a series of papers
[3-5]. This space was shown to have a unique nonlinear structure, quite different
from a metric space and has subsequently been studied by various workers. Gähler
himself and White [20] extended the concept to 2-Banach spaces, where White
established Hahn-Banach theorem in a 2-Banach space. Banach-Steinhaus theorem
is also available [12] now in 2-Banach spaces. As in other spaces, the fixed point
theory of operators has been developed in such spaces also. Perhaps Iseki [7-9]
obtained for the first time basic results on fixed point of operators in 2-metric
spaces and in 2-Banach spaces. After the works of Iseki, several authors extended
and generalized fixed point theorems in 2-metric and 2-Banach spaces for different
types of operators (see [6, 8, 13-18] where many more references can be found)
including operators of contractive type (for detailed information, one is referred to
Iseki [10]).

The concept of subbasis that forms a topological space has also been considered
by Gähler [3]. He showed that by suitably defining the members of the subbasis, a
topology can be considered in a 2-metric space. In this paper we use this information

Received June 29, 2009, accepted July 30, 2009.
Communicated by H. M. Srivastava.
2000 Mathematics Subject Classification: 54H25.
Key words and phrases: 2-Metric spaces, Open ball, Boundedness, Closure, Cantor’s Theorem, Baire’s
Theorem, Contractive mapping, Fixed point.
This work was funded by Council of Scientific and Industrial Research, HRDG, India, when the last
author was an SRF (CSIR).

337



338 B. K. Lahiri, Pratulananda Das and Lakshmi Kanta Dey

and after introducing a new concept δc(A) = sup{σ(a, b, c); a, b ∈ A} where c ∈ X

and A ⊂ X (the quantity δc(A) is not really the diameter of A, unlike metric spaces),
we prove analogues of Cantor’s intersection theorem and Baire category theorem
in 2-metric spaces. As far as our knowledge is concerned, these two important
results were not established before. Further we observe that the intersection theorem
along with the idea of a set Sa (defined below) may be conveniently used to prove
Banach’s fixed point theorem in 2-metric spaces. Later on, some other fixed point
theorems have also been obtained. This approach is entirely different from the usual
sequencial approach and follows the line of [1] and [11].

2. DEFINITIONS AND LEMMAS

We first recall the following definition of 2-metric spaces from [3].

Definition 1. Let X be a non-empty set and let σ(., ., .) be a mapping from
X × X × X to R i.e. σ : X3 → R satisfying the following conditions:

(i) for every pair of distinct points a, b there exists a point c ∈ X such that
σ(a, b, c) �= 0.

(ii) σ(a, b, c) = 0 only if at least two of the three points are same.
(iii) σ(a, b, c) = σ(a, c, b) = σ(b, c, a) for all a, b, c ∈ X .
(iv) σ(a, b, c)≤ σ(a, b, d)+ σ(a, d, c)+ σ(d, b, c) for all a, b, c and d ∈ X .

Then σ is called a 2-metric on X and (X, σ) is called a 2-metric space which
will sometimes be denoted simply by X , when there is no confusion.

It can be easily seen that σ is a non-negative function. We shall assume through-
out that X is an infinite set.

Definition 2. (cf. [3]). Let (X, σ) be a 2-metric space. Let a, b ∈ X and
r > 0. The subset

Br(a, b) = {c ∈ X ; σ(a, b, c) < r}
of X will be called a 2-ball centered at a and b with radius r.

From the definition of a 2-metric, it is clear that Br(a, b) is the same as Br(b, a).
Gähler [3] observed that a topology can be generated in X by taking the collection
of all 2-balls as a subbasis, which we call here the 2-metric topology, to be denoted
by τ . Thus (X, τ) is a 2−metric topological space. Members of τ are called 2-open
sets and their complements, 2-closed sets.

Lemma 1. A subset U of (X, τ) is 2-open if and only if for any x ∈ U
there are finite number of points a 1, a2, ...., an ∈ X, r1, r2, ..., rn > 0 such that
x ∈ Br1(x, a1)

⋂
........

⋂
Brn(x, an) ⊂ U .
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Proof. Since each set of the form Br1(x, a1)
⋂

........
⋂

Brn(x, an) is 2-open
by definition, the sufficiency of the condition follows immediately. Conversely let
U be 2-open and x ∈ U . Then there exists a finite number of 2-balls Bri(ai, bi), i =
1, 2, 3...., m (say) such that

x ∈
m⋂

i=1

Bri(ai, bi) ⊂ U .

Since x ∈ Bri(ai, bi), so σ(x, ai, bi) = si < ri. Choose ti < ri−si
2 . Then

Bti(x, ai)
⋂

Bti(x, bi) ⊂ Bri(ai, bi) and this is true for i = 1, 2, ...,m. So

x ∈ Bt1(x, a1) ∩ Bt1(x, b1) ∩ Bt2(x, a2) ∩ Bt2(x, b2) ∩ .................

∩Btm(x, am) ∩ Btm(x, bm)

⊂
m⋂

i=1

Bri(ai, bi) ⊂ U .

This proves the lemma.

Definition 3. For A ⊂ (X, τ), the 2-closure of A, denoted by Ā is defined to
be the intersection of all 2-closed sets containing A.

Definition 4. x ∈ (X, τ) is called a 2-limit point of A ⊂ X if for any 2-open
set U containing x, A ∩ (U − {x}) �= φ.

As in a topological space, Ā can also be defined by Ā = A ∪ ∂A where ∂A is
the derived set of A that consists of all 2-limit points of A. For any A ⊂ X, Ā is
clearly a 2-closed set.

Lemma 2. A ⊂ (X, τ) is 2-closed if and only if Ā = A.
The proof is omitted.

Lemma 3. (X, τ) is T1.

Proof. Let a, b ∈ X, a �= b. Then there is a point c ∈ X such that σ(a, b, c) =
r (say) > 0. If s = r

2 then Bs(a, c) and Bs(b, c) are two 2-open sets with
a ∈ Bs(a, c), b ∈ Bs(b, c) but a /∈ Bs(b, c), b /∈ Bs(a, c). Hence the lemma.

The definition of convergence of a sequence in (X, σ) is known in the following
form.

Definition 5. (cf. [7]). A sequence {xn} in (X, σ) is said to converge to
x ∈ X if for any a ∈ X, σ(xn, x, a) → 0 as n → ∞.

This fact is written as xn → x as n → ∞ or limn→∞xn = x.

Lemma 4. A sequence {xn} is convergent to x in (X, σ) if and only if for
any 2-open set U containing x there exists a positive integer m such that x n ∈
U ∀ n ≥ m.
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Proof. Assume first the given condition. Let a ∈ X and ε > 0. Since Bε(x, a)
is a 2-open set containing x, there exists m ∈ N such that xn ∈ Bε(x, a) ∀ n ≥ m
i.e. σ(xn, x, a) < ε ∀ n ≥ m which shows that σ(xn, x, a) → 0 as n → ∞. Thus
{xn} converges to x in (X, σ).

Conversely let {xn} be convergent to x in (X, σ). Let U be a 2-open set with
x ∈ U . From lemma 1, we have x ∈ Br1(x, a1) ∩ .....∩ Brk

(x, ak) ⊂ U for some
a1, ......, ak ∈ X and r1, r2, ....., rk > 0. Since σ(xn, x, ai) → 0 as n → ∞, there
exists mi ∈ N such that σ(xn, x, ai) < ri for all n ≥ mi i.e. xn ∈ Bri(x, ai) ∀ n ≥
mi and this is true for each i = 1, 2, ..., k. Taking m = max{m1, ..., mk} we obtain
xn ∈ Br1(x, a1) ∩ .....∩ Brk

(x, ak) ⊂ U, ∀ n ≥ m
and the lemma is proved.

Note 1. It is known that in a metric space, a set A is closed if and only if every
convergent sequence of points of A converges to a point of A. But the situation
appears to be different in a 2-metric space, because of the non-availability of the
first axiom of countability. If however the 2-metric topology τ is first countable
(for example if X is countable) then an analogous conclusion is true in (X, σ).

Definition 6. (cf. [7]). A sequence {xn}in (X,σ)is said to be a Cauchy sequence
if for any a ∈ X, σ(xm, xn, a) → 0 as m, n → ∞.

Definition 7. ([7, 8]). (X, σ) is said to be complete if every Cauchy sequence
in X converges to a point of X .

Note 2. In a complete 2-metric space, a convergent sequence need not be a
Cauchy sequence {see [15], Example 0.1}.

Definition 8. (X, σ) is said to be compact if every sequence in X has a
convergent subsequence.

Definition 9. A ⊂ X is said to be dense in X if Ā = X .

Definition 10. A ⊂ X is said to be no-where dense if int(Ā) = φ where
interior of a set B is defined to be the union of all 2-open sets contained in B.

Definition 11. A mapping T : (X, σ) → (Y, σ1) where (Y, σ1) is another 2-
metric space, is called continuous at x ∈ X if for any 2-open set V containing f(x)
in Y , there is a 2-open set U containing x in X such that T (U) ⊂ V .

Lemma 5. If T : (X, σ) → (Y, σ1) is continuous at x ∈ X , then xn → x in
(X, σ) implies T (xn) → T (x) in (Y, σ1).

The proof is straight forward and so omitted.
If T is continuous at each point x of (X, σ) then T is said to be a continuous

function.



Cantor’s Theorem in 2-Metric Spaces and Its Applications to Fixed Point Problems 341

3. CANTOR’S AND BAIRE’S THEOREM IN 2-METRIC SPACES

In this section we prove an analogue of Cantor’s intersection theorem for com-
plete 2-metric spaces and use it to show that such a space cannot be expressed as a
countable union of no-where dense sets under some general situations.

For A ⊂ X , we define

δc(A) = sup{σ(a, b, c); a, b ∈ A}
where c ∈ X .
The quantity δc(A) need not be considered as the diameter of A. However if (X, σ)
is bounded in the sense of Iseki [7] (i.e. sup{σ(a, b, c}; a, b, c ∈ X} < ∞) then for
every A ⊂ X, δc(A) is finite ∀ c ∈ X .

The idea of δc(A) is helpful to prove the following theorems.

Theorem 1. Suppose that (X, σ) is a complete 2-metric space. If {Fn} is any
decreasing sequence (i.e. Fn+1 ⊂ Fn ∀ n ∈ N ) of 2-closed sets with δa(Fn) → 0

as n → ∞ ∀ a ∈ X then
∞⋂

n=1

Fn is non-empty and contains at most one point.

Proof. For each positive integer n, let xn be a point of Fn. We show that {xn}
is a Cauchy sequence in X . Since {Fn} is decreasing, xm ∈ Fn ∀ m ≥ n. Now
for any a ∈ X, m ≥ n,

σ(xm, xn, a) ≤ δa(Fn) → 0 as n → ∞.

This shows that {xn} is a Cauchy sequence in X . Since X is complete, xn → x
(say) in X . We claim that x ∈ ⋂

Fn. We may assume that xk �= x from some k

onwards, otherwise there is nothing to prove. Let n ∈ N be fixed. Let U be any
2-open set containing x. By Lemma 4, there is n1 ∈ N such that xk ∈ U ∀ k ≥ n1.
Then xk ∈ [U − {x}] ⋂Fn ∀ k ≥ max{n, n1}. This shows that x ∈ F̄n = Fn,

since Fn is 2-closed. As this is true for all n ∈ N, x ∈
∞⋂

n=1

Fn.

Finally we prove that
∞⋂

n=1

Fn contains at most one point. If possible let us

suppose that it contains two distinct points x and y. Choose z ∈ X, z �= x, y.
From the definition of δz(Fn),

σ(x, y, z) ≤ δz(Fn) ∀ n ∈ N.

Since δz(Fn) → 0 as n → ∞, σ(x, y, z) = 0 which is a contradiction. This proves
the theorem.
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To prove the converse of theorem 1, the following lemma is needed.

Lemma 6. For any A ⊂ X and a ∈ X

δa(A) = δa(Ā).

Proof. Since A ⊂ Ā, it follows that δa(A) ≤ δa(Ā). To prove the converse
inclusion, let x, y ∈ Ā. If both x, y belong to A, then clearly σ(x, y, a) ≤ δa(A).
So suppose first that one of them, say, x /∈ A but y ∈ A. Let ε > 0 be arbitrary.
Since x ∈ Ā and Bε(x, y) ∩ Bε(x, a) is a 2-open set containing x, there exists
z ∈ A ∩ [Bε(x, y)∩ Bε(x, a)]. Then

σ(x, y, a) ≤ σ(x, z, a)+ σ(y, z, a)+ σ(x, y, z)

≤ δa(A) + 2ε.

Since this is true for every ε > 0, we conclude that

σ(x, y, a) ≤ δa(A) for y ∈ A and x ∈ Ā.

Finally, if x, y ∈ Ā − A then repeating the same argument we can show that in this
case also σ(x, y, a) ≤ δa(A). Hence

δa(Ā) = sup{σ(x, y, a); x, y ∈ Ā} ≤ δa(A).

and so δa(A) = δa(Ā).
This proves the lemma.

The converse of Theorem 1 is contained in the following theorem.

Theorem 2. If in a 2-metric space (X, σ), for any decreasing sequence of

2-closed sets {Fn} with δa(Fn) → 0 as n → ∞ ∀ a ∈ X,

∞⋂

n=1

Fn consists of a

single point then (X, σ) is complete.

Proof. Let {xn} be a Cauchy sequence in X . Let Fn = {xn, xn+1, ......} for
any n ∈ N . Then Fn ⊃ Fn+1 and so F̄n ⊃ F̄n+1 ∀ n ∈ N. So {F̄n} is a decreasing
sequence of 2-closed sets. For a ∈ X and ε > 0 arbitrary, there is n1 ∈ N such
that

σ(xm, xn, a) < ε ∀ m, n ≥ n1.

This shows that δa(Fn1) ≤ ε and so by Lemma 6 δa(F̄n1) ≤ ε. Since {F̄n} is
decreasing, for n ≥ n1, δa(F̄n) ≤ δa(F̄n1) ≤ ε. Therefore δa(F̄n) → 0 as n → ∞.

Hence by the given condition,
∞⋂

n=1

F̄n = {x0}, say. This gives that for any a ∈ X ,
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σ(xn, x0, a) ≤ δa(F̄n) → 0 as n → ∞
which implies xn → x0 in X and this proves the theorem.

Combining Theorems 1 and 2 we obtain the analogue of Cantor’s intersection
theorem in 2-metric spaces.

Theorem 3. A 2-metric space (X, σ) is complete if and only if for any decreas-

ing sequence of 2-closed sets {Fn} with δa(Fn) → 0 as n → ∞ ∀ a ∈ X,
∞⋂

n=1

Fn

consists of a single point.

The following lemma will be required for the next theorem.

Lemma 7. For any a, b ∈ X and r > 0,

Cr(a, b) = {c ∈ X ; σ(a, b, c)≤ r}
is a 2-closed set.

Proof. We will show that no point outside Cr(a, b) is a 2-limit point of
Cr(a, b). Let d /∈ Cr(a, b). Then σ(a, b, d) > r. If possible, let d be a 2-limit
point of Cr(a, b). Let ε > 0 be given. Since Bε(a, d) ∩ Bε(b, d) is a 2-open set
containing d, there exists e ∈ Cr(a, b)∩ [[Bε(a, d) ∩ Bε(b, d)]− {d}]. Then

σ(a, b, d) ≤ σ(a, b, e) + σ(b, e, d)+ σ(a, e, d)

< r + 2ε.

Since ε > 0 is arbitrary, we have σ(a, b, d) ≤ r which is a contradiction. Thus d
cannot be a 2-limit point of Cr(a, b). Hence Cr(a, b) contains all its 2-limit points
and so Cr(a, b) is 2-closed. This proves the lemma.

In the next theorem, we prove an analogue of Baire Category theorem for 2-
metric spaces.

Theorem 4. A complete 2-metric space (X, σ) satisfying the condition
(A) for every pair of points x, y ∈ X , there exists a sequence of 2-closed balls

{Bn} with centre at x and y with δa(Bn) → 0 as n → ∞ ∀ a ∈ X
cannot be written as a countable union of no-where dense sets.

Proof. If possible, assume that

X =
⋃

n∈N

Xn =
⋃

n∈N

X̄n

where each Xn is no-where dense i.e. X̄n does not contain any non-empty 2-open
set. Let U be any 2-open set. Since X1 is no-where dense, X̄1 cannot contain U . So
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there exists x1 ∈ U such that x1 /∈ X̄1. Since U − X̄1 is 2-open and x1 ∈ U − X̄1,
by Lemma 1, there exist y1, y2, ..., yn and r1, r2, ...., rn all positive such that

x1 ∈ Br1(x1, y1) ∩ ........∩ Brn(x1, yn) = V1 (say) ⊂ U − X̄1.

Without any loss of generality, because of the condition (A), we can choose
Br1(x1, y1) such that δa(Br1(x1, y1)) < 1 ∀ a ∈ X . Then δa(V1) < 1 ∀ a ∈ X .
Choose

U1 = Br1/2(x1, y1) ∩ ........∩ Brn/2(x1, yn).

Then by Lemma 7
Ū1 ⊂ Cr1/2(x1, y1) ∩ ........∩ Crn/2(x1, yn) ⊂ V1

⊂ U − X̄1

and δa(Ū1) ≤ δa(V1) < 1 ∀ a ∈ X.

Again since U1 is 2-open and X2 is no-where dense, U1 − X̄2 �= φ. So there
exists x2 ∈ U1 − X̄2. Proceeding as above we can find a 2-open set U2 such that

x2 ∈ U2 ⊂ Ū2 ⊂ U1 − X̄2

and δa(Ū2) < 1/2 ∀ a ∈ X .
Continuing in this way we obtain a sequence of 2-closed sets {Ūn} such that

¯Un+1 ⊂ Ūn ∀ n ∈ N, δa(Ūn) < 1/n ∀ a ∈ X i.e. δa(Ūn) → 0 as n →
∞, ∀ a ∈ X . By Theorem 1,

∞⋂

n=1

Ūn is non-empty and contains at most one point.

Let
∞⋂

n=1

Ūn = {x0}. Since Ūn ∩ X̄n = φ ∀ n ∈ N, x0 /∈
∞⋂

n=1

X̄n which is a

contradiction.
This proves the theorem.

4. APPLICATION TO FIXED POINT PROBLEMS

In this section, we introduce a set St, which behaves reasonably well in dealing
with some fixed point problems in (X, σ). In metric spaces, such a set contributed
widely in determining the fixed point of operators (see [1, 11]).

Throughout the section we assume that (X, σ) is first countable. Let T : X → X

be a mapping. For t > 0 we define

St = {x ∈ X ; σ(x, Tx, y)≤ t ∀ y ∈ X}.
If T has a fixed point x, then St is not void and contains x. If X is bounded,

then also St is not void for suitable t′s.
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The idea of contractive mapping is available in [2] for metric spaces. If (X, ρ)
is a metric space then T : X → X is said to be contractive if

ρ(Tx, Ty) < ρ(x, y)

for all x, y ∈ X, x �= y. In the 2-metric setting we give the following definition of
contractive mapping.

Definition 12. A mapping T : (X, σ) → (X, σ) is said to be contractive if
σ(Tx, Ty, a) < σ(x, y, a) ∀ x, y, a ∈ X where x �= y �= a, and σ(Tx, Ty, a) = 0
if any two of x, y and a are equal.

The following basic property of the set St will be used.

Theorem 5. Let T : X → X be contractive. Then St is a 2-closed set,
∀ t > 0.

Proof. Since (X, σ) is first countable T1 (by Lemma 2), to prove that St is
2-closed, it is sufficient to show that any convergent sequence {xn} in St converges
to a point x ∈ St. Let {xn} be a convergent sequence in St such that xn → x in
X . Let ε > 0 be given. Let y ∈ X . Since Bε(x, Tx) ∩ Bε(x, y) is a 2-open set
containing x, there is a n0 ∈ N such that xn ∈ Bε(x, Tx)∩Bε(x, y) ∀ n ≥ n0 (by
Lemma 4). Using the fact that T is contractive and xn ∈ St for n ∈ N , we obtain
for n ≥ n0

σ(x, Tx, y) ≤ σ(x, xn, y) + σ(Tx, xn, x) + σ(xn, Tx, y)

< 2ε + σ(xn, Txn, y) + σ(Txn, Tx, y) + σ(Txn, Tx, xn)

< 2ε + σ(xn, Txn, y) + σ(xn, x, y)

≤ t + 3ε.

Since this is true for arbitrary ε > 0, we must have σ(x, Tx, y) ≤ t. This is
true for all y ∈ X and so x ∈ St which proves the lemma.

Let {αn} be a decreasing sequence of positive numbers tending to zero and let
T be a self mapping on X . Let

Sn = Sαn = {x ∈ X ; σ(x, Tx, y) ≤ αn ∀ y ∈ X}.
Then Sn+1 ⊂ Sn for each n ∈ N .

Theorem 6. Let T : X → X be continuous. Then in any compact set S in
(X, σ), the sets Sn are empty for all sufficiently large values of n, provided S does
not contain any fixed point of T .

Proof. If possible, suppose the converse. Then there exist positive integers
n1, n2, n3, .... tending to infinity such that none of the sets Sn1, Sn2, ... are empty
in S.
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Let xnr ∈ Snr ∩ S ∀ r ∈ N . Since S is compact, there exists a subsequence
xnt1

, xnt2
, ..... of {xnr} converging to a point x of S. Clearly

σ(xntr
, Txntr

, y) ≤ αntr
∀ y ∈ X.

Consider now the 2-open set Bε(x, y) ∩ Bε(x, Tx) containing x where ε > 0 is
given and y ∈ X . Since xntr

→ x as r → ∞, by Lemma 4, there exists r0 ∈ N
such that

xntr
∈ Bε(x, y)∩ Bε(x, Tx) ∀ r ≥ r0.

Again since T is continuous, Txntr
→ Tx as r → ∞ and so by Lemma 4 there

exists r1 ∈ N such that

Txntr
∈ Bε(Tx, y) ∀ r ≥ r1.

Then for all r > max{r0, r1},
σ(x, Tx, y) ≤ σ(x, xntr

, y) + σ(x, xntr
, Tx) + σ(xntr

, Tx, y)

< ε + ε + σ(xntr
, Tx, y)

≤ 2ε + σ(xntr
, Txntr

, y) + σ(xntr
, Tx, Txntr

) + σ(Txntr
, Tx, y)

< 3ε + 2αntr
.

As αntr
→ 0 as r → ∞, we have

σ(x, Tx, y) ≤ 3ε ∀ y ∈ X.

Since ε > 0 is arbitrary, we must have σ(x, Tx, y) = 0 ∀ y ∈ X and so Tx = x
which contradicts the fact that S does not contain any fixed point of T . This proves
the theorem.

The statement of Theorem 7 is a particular case of Theorem 1 [13], but the
proof presented here is entirely non-traditional, and may be considered as an alter-
native proof of an analogue of Banach’s fixed point theorem, using Theorem 3 and
properties of the set Sn.

Theorem 7. Let (X, σ) be a complete bounded 2-metric space and T : X → X
be a mapping such that
σ(Tx, Ty, a) ≤ ασ(x, y, a), 0 < α < 1, ∀ x, y, a ∈ X

where in the case of strict inequality, x �= y �= a and σ(Tx, Ty, a) = 0 if any two
of x, y, a are equal. Then T has a unique fixed point in X .

Proof. Since X is bounded,

sup{σ(a, b, c); a, b, c ∈ X} = M (say) < ∞.
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Let x ∈ X . Consider the sequence {T nx} of iterates of x by T . Then

σ(T nx, Tn+1x, a) ≤ ασ(T n−1x, Tnx, a)

≤ α2σ(T n−2x, Tn−1x, a)

...

≤ αnσ(x, Tx, a)

≤ αn.M ∀ a ∈ X.

Since 0 < α < 1, it immediately follows that no set Sn = Stn = {z ∈
X ; σ(z, T z, a) ≤ tn ∀ a ∈ X} is empty where {tn} is a decreasing sequence
converging to zero. Evidently T is also contractive and so by Theorem 5, each Sn

is 2-closed. Also Sn+1 ⊂ Sn ∀ n ∈ N .
Note that for any x, y ∈ Sn and a ∈ X ,

σ(x, y, a) ≤ σ(x, Tx, a)+ σ(Tx, y, a) + σ(x, Tx, y)

≤ 2tn + σ(Tx, Ty, a)+ σ(y, Ty, a) + σ(Tx, Ty, y)

≤ 3tn + ασ(x, y, a)+ ασ(x, y, y)

which implies

σ(x, y, a) ≤ 3tn
1 − α

.

This shows that δa(Sn) ≤ 3tn
1−α which tends to zero as n → ∞. By Theorem 3,

∞⋂

n=1

Sn contains exactly one point. Let
∞⋂

n=1

Sn = {x0}. Then

σ(x0, Tx0, a) ≤ tn ∀ n ∈ N and ∀ a ∈ X.

So σ(x0, Tx0, a) = 0 ∀ a ∈ X and thus Tx0 = x0.
If u and v are two distinct fixed points of T then for a point a ∈ X, a �=u or v,

σ(u, v, a) = σ(Tu, Tv, a)

≤ ασ(u, v, a)

< σ(u, v, a)

which is a contradiction. Hence T has a unique fixed point.
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5. SOME FURTHER FIXED POINT THEOREMS

In Theorem 8 we omit the completeness of the space (X, σ) and instead of,
assume the convergence of a subsequence of a sequence of iterates. We observe
that the proof is conveniently accomplished with the sets Sn.

Theorem 8. Let (X, σ) be bounded and T : (X, σ) → (X, σ) be a mapping
such that

σ(Tx, Ty, a)≤ ασ(x, y, a), 0 < α < 1 ∀ x, y, a ∈ X.

Let there be a point x ∈ X such that the sequence of iterates {T nx} contains a
subsequence {T nrx} that converges to x0 ∈ X . Then x0 is a unique fixed point of
T .

Proof. As in Theorem 7

sup{σ(a, b, c); a, b, c ∈ X} = M (say) < ∞.

Let

Sn = Stn = {z ∈ X ; σ(z, T z, a) ≤ tn ∀ a ∈ X}

where {tn} is a decreasing sequence tending to zero. Now we have

σ(T nrx, Tnr+1x, a) ≤ α.σ(T nr−1x, Tnrx, a)

≤ α2.σ(T nr−2x, Tnr−1x, a)

...

≤ αnr .σ(x, Tx, a)

≤ αnr .M ∀ a ∈ X.

Since 0 < α < 1, no Sn is empty. In fact Sn contains T nrx for all sufficiently
large values of r.

Let n ∈ N and a ∈ X . Let ε > 0 be given. Since Bε(x0, Tx0) ∩ Bε(x0, a) is
a 2-open set containing x0 and T nrx → x0, by Lemma 4 we can find a positive
integer r0 such that

T nrx ∈ Bε(x0, Tx0) ∩ Bε(x0, a) ∀ r ≥ r0.
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Let n be fixed and choose r ≥ r0 such that αnr .M < tn. Then

σ(x0, Tx0, a) ≤ σ(x0, T
nrx, a) + σ(x0, T

nrx, Tx0) + σ(T nrx, Tx0, a)

< 2ε + σ(T nrx, Tx0, a)

≤ 2ε + σ(T nrx, Tnr+1x, a) + σ(T nrx, Tnr+1x, Tx)

+σ(T nr+1x, Tx0, a)

≤ 2ε + αnr .σ(x, Tx, a)+ αnr .σ(x, Tx, Tx0)

+α.σ(T nrx, x0, a)

≤ 2ε + tn + αnr .α.σ(x, x, x0) + α.ε

= tn + (2 + α)ε.

Since ε > 0 is arbitrary, we have

σ(x0, Tx0, a) ≤ tn ∀ a ∈ X

and this is true for all positive integers n. Letting n → ∞, we obtain σ(x0, Tx0, a) =
0 ∀ a ∈ X which implies Tx0 = x0, i.e. x0 is a fixed point of T . The proof of the
uniqueness is omitted. This completes the proof.

Edelstein [2] proved a fixed point theorem for contractive type mappings in
metric spaces for which a simple proof is available in [19]. We prove an analogue
of Edelstein’s theorem in 2-metric settings.

Theorem 9. Suppose T : X → X is contractive and X is uncountable. If
there exists a point x ∈ X such that the sequence of iterates {T nx} contains a
subsequence {T nix} converging to x0∈X , then x0 is the unique fixed point of T .

Proof. In the sequence {T nx} if T rx = T r+1x for some r then x0 = T rx is
a fixed point of T .

So let T rx �= T r+1x for all r ∈ N . Also let Tx0 �= x0, for otherwise x0 is a
fixed point of T . Choose an element a ∈ X distinct from x0, Tx0 and T rx, r =
1, 2, ... . Then we have

(1) σ(Tx0, T
2x0, a) < σ(x0, Tx0, a).

Consider the set of non-negative real numbers {σ(Tnx, Tn+1x, a)}∞n=0. We
first show that σ(x0, Tx0, a) is a limit point of this set. For this, let ε > 0 be given.
Since Bε/3(x0, Tx0)∩Bε/3(x0, a) is a 2-open set containing x0 and T nix → x0 as
i → ∞, using Lemma 4 we have k ∈ N such that

T nix ∈ Bε/3(x0, Tx0) ∩ Bε/3(x0, a) ∀ i ≥ k.
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Choose an i > k. Then

(2)

σ(x0, Tx0, a) ≤ σ(x0, T
nix, a) + σ(x0, T

nix, Tx0) + σ(Tx0, T
nix, a)

<
2ε

3
+ σ(Tx0, T

ni+1x, a) + σ(T ni+1x, Tnix, a)

+σ(Tx0, T
ni+1x, Tnix)

≤ 2ε

3
+ σ(x0, T

nix, a) + σ(T ni+1x, Tnix, a)

< ε + σ(T nix, Tni+1x, a).

Similarly one can show that for all large i

(3) σ(T nix, Tni+1x, a) < σ(x0, Tx0, a) + ε.

From (2) and (3) it follows that for all large i

|σ(x0, Tx0, a)− σ(T nix, Tni+1x, a)| < ε.

This proves our assertion.
We now note that for a fixed ni we have

σ(T nx, Tn+1x, a) < σ(T ni+1x, Tni+2x, a) ∀ n > ni + 1.

Therefore the limit point σ(x0, Tx0, a) satisfies the condition

σ(x0, Tx0, a) ≤ σ(T ni+1x, Tni+2x, a)

and this is true for all i ∈ N . We obtain for i > k

σ(T ni+1x, Tni+2x, a) ≤ σ(T ni+1x, Tx0, T
ni+2x) + σ(T ni+1x, Tx0, a)

+σ(Tx0, T
ni+2x, a)

< σ(T nix, x0, a)+σ(Tx0, T
2x0, a)+σ(T 2x0, T

ni+2x, a)

+σ(Tx0, T
2x0, T

ni+2x)

< σ(Tx0, T
2x0, a) + σ(T nix, x0, a) + σ(T nix, x0, a)

< σ(Tx0, T
2x0, a) + ε/3 + ε/3

< σ(Tx0, T
2x0, a) + ε.

Thus from above we have

σ(x0, Tx0, a) < σ(Tx0, T
2x0, a) + ε



Cantor’s Theorem in 2-Metric Spaces and Its Applications to Fixed Point Problems 351

and so

σ(x0, Tx0, a) ≤ σ(Tx0, T
2x0, a)

which contradicts (1). Hence Tx0 = x0 or T r+1x = T rx for some r and the proof
is complete.
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