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FIXED POINT THEOREMS ON PRODUCT TOPOLOGICAL
SEMILATTICE SPACES, GENERALIZED ABSTRACT

ECONOMIES AND SYSTEMS OF GENERALIZED
VECTOR QUASI-EQUILIBRIUM PROBLEMS

Suliman Al-Homidan and Qamrul Hasan Ansari

Abstract. In this paper, we establish fixed point theorems for a family of multi-
valued maps defined on the product space of topological semilattice spaces. By
using our fixed point theorems, we derive a result on the nonempty intersection
of sets without convex structure and equilibrium existence theorems for gen-
eralized abstract economies with two constraint correspondences. We present
some special cases of our results which generalize several known results in
the literature. We consider systems of generalized vector quasi-equilibrium
problems and their special cases. As an application of our equilibrium exis-
tence theorems, we establish some existence results for solutions of systems
of generalized vector quasi-equilibrium problems and their special cases. The
results of this paper improve and extend several results in the literature.

1. INTRODUCTION

Browder type fixed point theorems for a family of multivalued maps play a
vital role in proving the existence of solutions of several problems, namely, sys-
tems of variational inequalities, systems of equilibrium problems, systems of quasi-
equilibrium problems, equilibrium existence theorems for abstract economies, Nash
equilibrium problem, etc. and establishing nonempty intersection theorems of sets
with convex sections. Tarafdar [41] established a fixed point theorem for a family
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of multivalued maps defined on the product space of compact convex subsets of
topological vector spaces and gave some applications to mathematical economies,
game theory and problems of social sciences. Ansari and Yao [7], Lan and Webb
[25], Lin et al. [28, 32] and Singh et al. [39] extended and generalized the result
of Tarafdar [41] for noncompact settings. Ding et al. [15, 17] established some
collectively fixed point theorems in the setting of general topological spaces.

In 2004, Ansari et al. [3] introduced the concept of system of vector quasi-
equilibrium problems (in short, (SVQEP)) which is the extension of system of vector
equilibrium problems [5]. They studied the existence of solutions of (SVQEP) and
gave some applications to the system of vector quasi-variational inequalities, system
of vector quasi-optimization problems, vector quasi-saddle point problem and con-
strained Nash equilibrium problem for vector-valued functions with infinite number
of players. Recently, system of generalized vector quasi-equilibrium problems (in
short, (SGVQEP)) is introduced and studied in [4, 15, 20] because of its application
to constrained Nash equilibrium problem for nondifferentiable (in some sense) and
nonconvex vector-valued functions. Later, it is also considered and studied by Ding
and Yao [19] and Lin and Yu [33] in the setting of G-convex spaces. Very recently,
Lin [27] studied (SGVQEP) and gave some of its applications to fixed point theo-
rems for a family of nonexpensive multivalued maps, mathematical programs with
equilibrium constraints, semi-infinite programs and bilevel programming problems.
Very recently, (SGVQEP) for three variables multivalued maps are considered and
studied by Lin et al. [29] and Peng et al. [36]. They studied the existence of solu-
tions of such problems and gave an application to Debreu type equilibrium problem
for vector-valued functions.

In this paper, we establish fixed point theorems for a family of multivalued maps
defined on the product space of topological semilattice spaces. These results extend
and generalize several results in the literature. By using our fixed point theorems,
we derive a result on the nonempty intersection of sets and equilibrium existence
theorems for generalized abstract economies with two constraint correspondences.
We present some special cases of our results which generalize several known re-
sults in the literature. We consider systems of generalized vector quasi-equilibrium
problems for three variables multivalued maps and we also consider their special
cases. As an application of our equilibrium existence theorems, we establish some
existence results for solutions of our systems of generalized vector quasi-equilibrium
problems and their special cases. The results of this paper improve, generalize and
extend several results in the literature.

2. PRELIMINARIES

Throughout the paper, unless otherwise specified, we denote by
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∆� =

{
(a0, . . . , a�) ∈ R

�+1
+ :

�∑
i=0

ai = 1

}

the �-dimensional simplex. For J ⊆ {0, 1, . . . , �}, we denote by ∆J the face of ∆�

spanned by the unit vectors ej for j ∈ J , that is, if J = {i0, . . . , ik} ⊆ {0, 1, . . . , �},

then ∆J =


t ∈ ∆� :

k∑
j=0

tij = 1


. The family of all subsets (respectively, all

nonempty finite subsets) of a set D is denoted by 2D (respectively, 〈D〉). If D is a
subset of a topological space, then D and int D denote the closure and interior of
D, respectively.

A semilattice is a partially ordered set X , with the partial ordering denoted
by ≤, for which every pair (x, x′) of elements has a least upper bound, denoted
by x ∨ x′. It is easy to see that any nonempty finite subset N of X has a least
upper bound, denoted by sup N . In a partially ordered set (X,≤), two arbitrary
elements x and x′ do not have to be comparable. In the case x ≤ x′, the set
[x, x′] = {y ∈ X : x ≤ y ≤ x′} is called an ordered interval. We assume
that (X,≤) is a semilattice and N is a nonempty finite subset of X , then the set
∆(N ) =

⋃
n∈N

[n, supN ] is well defined and it has the following properties:

(a) N ⊆ ∆(N );
(b) If N ⊆ M , then ∆(N ) ⊆ ∆(M).

A subset E of X is called ∆-convex [23] if for any nonempty finite subset N ⊆ E ,
we have ∆(N ) ⊆ E .

Let C be the family of ∆-convex subsets of a semilattice X . If N is an
arbitrary subset of X , then ∆-convex hull of N is defined as CO∆(N ) =

⋂{E ∈
C : N ⊆ E}.

It is easy to see that

(a) N ⊆ CO∆(N ),
(b) if N ⊆ M , then CO∆(N ) ⊆ CO∆(M),
(c) CO∆(CO∆(N )) = CO∆(N ),
(d) CO∆(M ∩ N ) ⊆ CO∆(M) ∩ CO∆(N ),
(e) arbitrary product of ∆-convex sets is ∆-convex.

Furthermore, a subset N of X is ∆-convex if and only if CO∆(N ) = N .
One can also see without difficulty that N is ∆-convex if and only if the

following conditions are satisfied:

(a) If x, x′ ∈ N , then x ∨ x′ ∈ N ;
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(b) If x, x′ ∈ N and x ≤ x′, then [x, x′] ⊆ N .

It can be easily verified that the arbitrary intersection of ∆-convex sets is ∆-convex.
Therefore, CO∆(N ) is the smallest ∆-convex set containing N . We can also easily
prove that for any finite subset M of N , ∆(M) ⊆ CO∆(N ).

A topological semilattice is a topological space X with a partial ordering ≤
for which it is a semilattice with a continuous sup operation (that is, the function
X × X → X, (x, x′) 	→ x ∨ x′ is continuous).

The following result is contained in the proof of Theorem 1 in [23].

Lemma 2.1. Let X be a topological semilattice with path-connected intervals.
Then, for any J ⊆ {0, 1, . . . , �} and any {xj : j ∈ J} ⊆ X , there exists a continu-
ous function f : ∆� → X such that f (∆J) ⊆ ∆ ({xj : j ∈ J}).

A nonempty subset D of a topological space X is said to be compactly open
(respectively, compactly closed) if for every nonempty compact subset C of X ,
D ∩ C is open (respectively, closed) in C. The compact closure and compact
interior of D [12], denoted by ccl D and cint D, are defined as

ccl D = ∩{G : D ⊆ G and G is compactly closed in X},
cint D = ∪{G : G ⊆ D and G is compactly open in X}.

It is easy to see that cint D is a compactly open set in X and for each nonempty
compact subset C of X with D ∩ C �= ∅, we have (cint D) ∩ C = intC(D ∩ C),
where intC(D ∩ C) denotes the interior of D ∩ C in C. It is clear that a subset
D of X is compactly open (respectively, compactly closed in X) if and only if
cint D = D (respectively, ccl D = D).

Definition 2.1. Let X and Y be topological vector spaces. A multivalued map
T : X → 2Y \ {∅} is said to be

(a) closed if its graph is closed in X × Y ;
(b) upper semicontinuous on X if for each x0 ∈ X and for any open set V in Y

containing T (x0) there exists an open neighborhood U of x0 in X such that
T (x) ⊆ V for all x ∈ U ;

(c) lower semicontinuous on X if for all x ∈ X , y ∈ T (x) and for any xn ∈ X

such that xn → x, there exists yn ∈ T (xn) such that yn → y.

It is well known that if X is compact and T : X → 2Y \ {∅} is upper semicon-
tinuous multivalued map with compact values, then T (X) is compact.

Let X and Y be topological spaces. A multivalued map T : X → 2Y is said
to be transfer compactly open valued on X [14] if for every x ∈ X and for any
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compact subset D of Y with T (x) ∩ D �= ∅, y ∈ T (x) ∩ D implies that there
exists a point x̂ ∈ X such that y ∈ intD(T (x̂) ∩ D). T is said to be transfer open
valued on X if for every x ∈ X , y ∈ T (x), there exists a point x̂ ∈ X such that
y ∈ int T (x̂).

T is said to have the compactly local intersection property [13] if for each
nonempty compact subset D of X and for each x ∈ D with T (x) �= ∅, there exists
an open neighborhood N (x) of x such that

⋂
z∈N(x)∩D

T (z) �= ∅.

By using the argument of Lemma 2.1 in [10], we can easily establish the fol-
lowing result.

Lemma 2.2. Let X and Y be two topological spaces and let G : X → 2 Y be
a multivalued map. Then G is transfer compactly open valued if and only if⋃

x∈X

G(x) =
⋃

x∈X

cint G(x).

By applying Lemma 2.2 and following the argument of Proposition 1 [31] and
Lemma 1.1 in [13], we have the following lemma.

Lemma 2.3. Let X and Y be two topological spaces and let G : X → 2 Y be
a multivalued map. Then the following statements are equivalent:

(i) G has the compactly local intersection property.
(ii) G−1 : Y → 2X is transfer compactly open valued and for all x ∈ X , G(x)

is nonempty.
(iii) X =

⋃
y∈Y

cint G−1(y).

3. FIXED POINT THEOREMS ON PRODUCT OF TOPOLOGICAL SEMILATTICE SPACES

Rest of the paper, unless otherwise specified, for each i ∈ I , we assume that Xi

is a topological semilattice space with path-connected intervals. We set X =
∏
i∈I

Xi,

X i =
∏

j∈I, j �=i

Xj and we write X = X i ⊗ Xi. For each fixed i ∈ I and x ∈ X ,

we also write x =
(
xi, xi

)
= (xi)i∈I , where xi and xi denote the projection of x

onto Xi and Xi, respectively.
We present a Browder type fixed point theorem for a family of multivalued maps

defined on product spaces of noncompact topological semilattice spaces.

Theorem 3.1. For each i ∈ I , let Si, Ti : X i → 2Xi be multivalued maps such
that the following conditions are satisfied:
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(i) For all xi ∈ X i, Si(xi) �= ∅, Si(xi) ⊆ Ti(xi) and if yi, zi ∈ Si(xi) then
[yi, yi ∨ zi] ⊆ Si(xi).

(ii) For each compact subset D i ⊆ X i, Di =
⋃

yi∈Xi

(
cint S−1

i (yi) ∩ Di
)
, where

S−1
i (yi) = {xi ∈ X i : yi ∈ Si(xi)}.

(iii) There exists a nonempty subset X 0
i ⊆ Xi such that for all M i ∈ 〈Xi〉,

there exists a compact ∆-convex subset LMi ⊆ Xi containing X 0
i ∪Mi such

that the set K i =
⋂

yi∈X0
i

(
cint S−1

i (yi)
)c is empty or compact in X i, where

(
cint S−1

i (yi)
)c denotes the complement of cint S−1

i (yi) in X i.

Then there exists x̄ = (x̄i, x̄i) ∈ X such that x̄i ∈ Ti(x̄i) for each i ∈ I .

Proof. For each i ∈ I , if Ki = ∅, then clearly

X i =
⋃

yi∈X0
i

cint S−1
i (yi).

For each i ∈ I , if Ki is nonempty and compact, then by condition (ii)

Ki =
⋂

yi∈X0
i

(
cint S−1

i (yi)
)c ⊆ ⋃

yi∈Xi

cint S−1
i (yi).

Since Ki is compact, for each i ∈ I , there exists a finite set Mi = {yi0 , yi1, . . . , yimi
} ∈

〈Xi〉 such that

Ki =
⋂

yi∈X0
i

(
cint S−1

i (yi)
)c ⊆ mi⋃

k=0

cint S−1
i (yik).

Since X i \ Ki =
⋃

yi∈X0
i

cint S−1
i (yi), we have

(3.1) X i =


 ⋃

yi∈X0
i

cint S−1
i (yi)


 ∪

(
mi⋃
k=0

cint S−1
i (yik)

)
.

Therefore, in both the cases, either Ki is empty or nonempty and compact, (3.1)
holds.

By condition (iii), for the finite set Mi, there exists a compact ∆-convex subset
LMi of Xi containing X0

i ∪ Mi. From (3.1), we have

(3.2) X i =
⋃

yi∈LMi

cint S−1
i (yi).
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Let M =
∏

i∈I Mi, LM =
∏

i∈I LMi and Li
M =

∏
j∈I j �=i LMj for each i ∈ I .

Then, for each i ∈ I , Li
M is a compact and ∆-convex subset of Xi. By (3.2), we

have for each i ∈ I ,
Li

M ⊆
⋃

yi∈LMi

cint S−1
i (yi).

Since Li
M is compact, for each i ∈ I , there exists a finite set Ni =

{
yi0, . . . , yimi

}
of LMi such that

Li
M ⊆

mi⋃
k=0

cint S−1
i (yik ) .

Since Li
M is compact, there exists a continuous partition of unity

{
βi0, . . . , βimi

}
subordinated to the open covering

{
cint S−1

i (yik )
}mi

k=0
, that is, for each k =

0, 1 . . . , mi, βik : Li
M → [0, 1] is continuous such that for all xi ∈ Li

M ,
mi∑
k=0

βik(xi) =

1 and for each k = 0, 1, . . . , mi, βik(xi) = 0 for xi /∈ cint S−1
i (yik ). In other

words, βik(xi) �= 0 implies xi ∈ cint S−1
i (yik) ⊆ S−1

i (yik), that is, yik ∈ Si(xi)
for all k = 0, 1, . . . , mi and for each i ∈ I . For each i ∈ I , let ϕi : Li

M → ∆mi be
a map defined as

ϕi(xi) =
mi∑
k=0

βik(xi)eik for all xi ∈ Li
M ,

where {eik : k = 0, 1, . . . , mi} is the set of vertices of the standard mi-dimensional
simplex ∆mi . Then clearly for each i ∈ I , ϕi is continuous.

By Lemma 2.1, for each i ∈ I , there exists a continuous function gi : ∆mi → X i

such that gi (∆J) ⊆ ∆ ({yik : k ∈ J}) for any nonempty subset J ⊆ {0, 1, . . . , mi}.
For all xi ∈ Li

M , let Pi(xi) = {j ∈ {0, 1, . . . , mi} : βij(x
i) �= 0}. Then for all

xi ∈ Li
M , ϕi(xi) =

∑
k∈Pi(xi)

βik(xi)eik ∈ ∆Pi(xi). From the last part of condition

(i), for all xi ∈ Li
M , ∆

({
yik : k ∈ Pi(xi)

}) ⊆ Si(xi). Therefore, for all xi ∈ Li
M ,

(gi ◦ ϕi) (xi) ∈ gi

(
∆Pi(xi)

) ⊆ ∆
({

yik : k ∈ Pi(xi)
}) ⊆ Si(xi) ⊆ Ti(xi).

For each i ∈ I , let Ei be the linear hull of {eik : k = 0, 1, . . . , mi}, then Ei is
a locally convex topological vector space as it is finite dimensional and ∆mi is a
compact convex subset of Ei. Let E =

∏
i∈I Ei, then E is also a locally convex

topological vector space and C =
∏

i∈I ∆mi is a compact convex subset of E .
Define two mappings h : C → LM and Ψ : LM → C by

h(z) =
∏
i∈I

gi (πi(z)) for all z ∈ C



314 Suliman Al-Homidan and Qamrul Hasan Ansari

and
Ψ(x) =

∏
i∈I

ϕi(xi) for all x =
(
xi, xi

) ∈ LM ,

where πi : C → ∆mi is the projection of C onto ∆mi . Since for each i ∈ I , gi and
ϕi are continuous, h and Ψ are also continuous. Therefore, Ψ ◦ h = F : C → C is
a well-defined and continuous function. By Tychonoff’s fixed point theorem [42],
there exists ū ∈ C such that ū = F (ū) = (Ψ ◦ h) (ū). Let x̄ = (x̄i)i∈I = h(ū),
then ū = Ψ(x̄) and

x̄ = h (Ψ(x̄)) = h

(∏
i∈I

ϕi(x̄i)

)
=
∏
i∈I

gi

(
πi

(∏
i∈I

ϕi(x̄i)

))
=
∏
i∈I

(gi ◦ ϕi) (x̄i).

Therefore, x̄i = (gi ◦ ϕi) (x̄i) ∈ Ti(x̄i) for each i ∈ I .

If for each i ∈ I , Xi is replaced by X in Theorem 3.1, then by using the
same argument as in the proof of Theorem 3.1, the following result can be easily
established.

Theorem 3.2. For each i ∈ I , let Si, Ti : X → 2Xi be multivalued maps such
that the following conditions are satisfied:

(i) For all x ∈ X , Si(x) �= ∅, Si(x) ⊆ Ti(x) and if yi, zi ∈ Si(x) then
[yi, yi ∨ zi] ⊆ Si(x).

(ii) For each compact subset D ⊆ X , D =
⋃

yi∈Xi

(
cintS−1

i (yi) ∩ D
)
.

(iii) There exists a nonempty subset X 0
i ⊆ Xi such that for all M i ∈ 〈Xi〉,

there exists a compact ∆-convex subset LMi ⊆ Xi containing X 0
i ∪Mi such

that the set K =
⋂

yi∈X0
i

(
cint S−1

i (yi)
)c is empty or compact in X , where

(
cint S−1

i (yi)
)c denotes the complement of cint S−1

i (yi) in X .

Then there exists x̄ ∈ X such that x̄ i ∈ Ti(x̄) for each i ∈ I .

Remark 3.1. In view of Lemmas 2.2 and 2.3, condition (ii) in Theorems 3.1
and 3.2 can be replaced by any one of the following conditions:

(ii)′ For each i ∈ I , S−1
i is transfer compactly open valued on K.

(ii)′′ For each i ∈ I and for all yi ∈ Ki, S−1
i (yi) is compactly open in K.

(ii)′′′ For each i ∈ I , Si has the compactly local intersection property.

When I is a singleton set, we obtain the following fixed point result as a
consequence of Theorem 3.1.
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Corollary 3.1. Let X be a topological semilattice space with path-connected
intervals. Let S, T : X → 2X be multivalued maps such that the following condi-
tions are satisfied:

(i) For all x ∈ X , S(x) �= ∅, S(x) ⊆ T (x) and if y, z ∈ S(x) then [y, y ∨ z] ⊆
S(x).

(ii) For each compact subset D ⊆ X , D =
⋃

y∈X

(
cint S−1(y) ∩ D

)
.

(iii) There exists a nonempty subset X 0 ⊆ X such that for all M ∈ 〈X〉, there ex-
ists a compact ∆-convex subset LM ⊆ X containing X 0∪M such that the set
K =

⋂
y∈X0

(
cint S−1 (y)

)c is empty or compact in X , where
(
cint S−1 (y)

)c
denotes the complement of cint S−1 (y) in X .

Then there exists x̄ ∈ K such that x̄ ∈ T (x̄).

Remark 3.2. In view of Remark 3.1, Corollary 3.1 generalizes Corollary 1 in
[23] and Theorem 2.4 in [34] to noncompact setting. Corollary 3.1 extends Corollary
1 in [7], Theorem 2 in [16], Theorem 1 in [40], Corollary 3 in [43], Theorem 3.2
in [44] and several other results in the literature to topological semilattice space
setting.

By using the same argument as in the proof of Theorem 3.1, we can easily
establish the following result.

Theorem 3.3. For each i ∈ I , let Xi be a topological semilattice space with
path-connected intervals, K i be a nonempty ∆-convex subset of X i and K =∏

i∈I Ki. For each i ∈ I , let Si, Ti : K → 2Ki be multivalued maps such that the
following conditions are satisfied:

(i) For all x ∈ K, Si(x) �= ∅, CO∆(Si(x)) ⊆ Ti(x).

(ii) For each compact subset D ⊆ K, D =
⋃

yi∈Ki

(
cint S−1

i (yi) ∩ D
)
.

(iii) There exists a nonempty subset K 0
i ⊆ Ki such that for all M i ∈ 〈Ki〉, there

exists a compact ∆-convex subset LMi ⊆ Ki containing K 0
i ∪ Mi such that

the set K =
⋂

yi∈K0
i

(
cint S−1

i (yi)
)c is empty or compact in K .

Then there exists x̄ ∈ K such that x̄ i ∈ Ti(x̄) for each i ∈ I .

Remark 3.3. The condition (iii) in Theorem 3.3 can be replaced by the fol-
lowing condition.
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(iii)′ For all Mi ∈ 〈Ki〉, there exist a compact ∆-convex subset LMi ⊆ Ki

containing Mi and a nonempty compact set D of K such that for each
x ∈ K \ D, there exists a ỹi ∈ LMi satisfying x ∈ cint S−1

i (ỹi).

Proof. For each i ∈ I , let K0
i = LMi ⊆ Ki. Then from condition (iii)′, we

have ⋂
yi∈K0

i

(
cint S−1

i (yi)
)c = K \

⋃
yi∈LMi

cint S−1
i (yi) ⊆ D.

If
⋂

yi∈K0
i

(
cint S−1

i (yi)
)c �= ∅, then it is a compactly closed subset of the compact

set D and hence it is compact. Thus, condition (iii) of Theorem 3.3 holds.

Remark 3.4. In view of Remarks 3.1 and 3.3, Theorem 3.3 extends and gen-
eralizes Theorem 1 in [7], Theorem 2.4 in [17], Theorem 2.1 in [25], Theorem 3.1
in [32], Theorem 2.1 [39] and several other results in the literature.

4. A RESULT ON NONEMPTY INTERSECTION OF SETS AND

GENERALIZED ABSTRACT ECONOMIES

We establish the following nonempty intersection theorem of sets with or without
∆-convex sections by using Theorem 3.1.

Theorem 4.1. Let {Ai}i∈I and {Bi}i∈I be two families of subsets of X such
that for each i ∈ I , the following conditions hold:

(i) For all xi ∈ X i, {yi ∈ Xi : (xi, yi) ∈ Ai} ⊆ {yi ∈ Xi : (xi, yi) ∈ Bi} and
if yi, zi ∈ {yi ∈ Xi : (xi, yi) ∈ Ai} then [yi, yi ∨ zi] ⊆ {yi ∈ Xi : (xi, yi) ∈
Ai}.

(ii) For each compact subset D i ⊆ X i,

Di =
⋃

yi∈Xi

(
cint

{
xi ∈ X i : (xi, yi) ∈ Ai

} ∩ Di
)
.

(iii) There exists a nonempty subset X 0
i ⊆ Xi such that for all M i ∈ 〈Xi〉, there

exists a compact ∆-convex subset LMi ⊆ Xi containing X 0
i ∪ Mi such that

the set
⋂

yi∈X0
i

ccl{xi ∈ X i : (xi, yi) /∈ Ai} is empty or compact in X i.

Then
⋂

i∈I Bi �= ∅.

Proof. For each i ∈ I and for all xi ∈ X i, define two multivalued maps
Si, Ti : X i → 2Xi as

Si(xi) = {yi ∈ Xi : (xi, yi) ∈ Ai} and Ti(xi) = {yi ∈ Xi : (xi, yi) ∈ Bi}.
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Under the hypothesis, it is easy to verify that all the conditions of Theorem 3.1
are satisfied. Hence by Theorem 3.1, there exists x̄ = (x̄i, x̄i) ∈ X such that
x̄i ∈ Ti(x̄i) for each i ∈ I , that is, x̄ = (x̄i, x̄i) ∈ Bi for each i ∈ I and thus⋂

i∈I Bi �= ∅.

Remark 4.1.

(a) Condition (i) in Theorem 4.1 can be replaced by the following condition:
(i)′ For all xi∈X i, CO∆

({yi∈Xi : (xi, yi) ∈ Ai}
)⊆{yi ∈ Xi:(xi, yi)∈Bi}.

(b) Theorem 4.1 generalizes and extends Theorem 16 in [21] and Theorem 2 in
[38] to the product space of noncompact topological semilattice spaces.

We define the generalized abstract economies and establish equilibrium existence
results.

Because of the fuzziness of consumers’ behaviour or market situations, in a
real market, any preference of a real agent would be unstable. Therefore, Kim and
Tan [24] and Lin et al. [30, 32] studied generalized abstract economy with fuzzy
constraint correspondences.

Let I be any set of agents (countable or uncountable). For each i ∈ I , let Ki be
a nonempty ∆-convex subset of a topological semilattice space with path-connected
intervals. Such Ki is the set of actions available to the agent i. Let K =

∏
i∈I Ki.

A generalized abstract economy (or generalized game) Γ = (K i, Ai, Bi, Fi, Pi)i∈I

is defined as a family of ordered quadruples (Ki, Ai, Bi, Fi, Pi) where Ai, Bi :
K → 2Ki are constraint correspondences, Fi : K → 2Ki is a fuzzy constraint
correspondence such that Fi(x) is the unstable state for the agent i, and Pi : K ×
X → 2Ki is a preference correspondence such that Pi(x) is the state preference by
the agent i at x. An equilibrium for Γ is a point (x̄, ȳ) ∈ K ×K such that for each
i ∈ I , x̄i ∈ Bi(x̄), ȳi ∈ Fi(x̄) and Pi(x̄, ȳ) ∩ Ai(x̄) = ∅.

For each i ∈ I , if Ai(x) = Bi(x) for all x ∈ K , then above generalized game
is considered and studied in [24, 30, 32] in the setting of topological vector spaces.

If for each i ∈ I and for all x ∈ K , Fi(x) = Ki and the preference corre-
spondence Pi satisfies Pi(x, y) = Pi(x, y′) for all x, y, y′ ∈ K , our definitions of a
generalized abstract economy and an equilibrium coincide with the usual definitions
of an abstract economy and an equilibrium due Ding et al. [16, 18]. Furthermore,
if for each i ∈ I and for all x ∈ K, Ai(x) = Bi(x), then our definitions of a
generalized abstract economy and an equilibrium coincide with the usual definitions
of an abstract economy and an equilibrium due to Shafer and Sonnenschein [37].

As an application of Theorem 3.3, we derive the following general equilibrium
existence result for the generalized abstract economies with infinitely many com-
modities, infinitely many agents and with general preference correspondences in the
setting of topological semilattice spaces.
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Theorem 4.2. For each i∈I , let Ai, Bi : K→2Ki be multivalued maps, Pi :
K × K → 2Ki a preference correspondence and Fi : K → 2Ki a fuzzy constraint
correspondence. For each i ∈ I , assume that the following conditions hold:

(i) For all x ∈ K, CO∆(Ai(x)) ⊆ Bi(x) and Fi(x) is a nonempty ∆-convex
set.

(ii) For all (x, y) ∈ K × K, xi /∈ CO∆(Pi(x, y)),
(iii) For each compact subsets D̃ and D̂ of K,

D̃ × D̂ =
⋃

(ui,vi)∈Ki×Ki

[
cint

(
P−1

i (ui) ∪ Wi

) ∩ ((A−1
i (ui) × K

)

∩(F−1
i (vi) × K

))] ∩ (D̃ × D̂),

Wi = {(x, y) ∈ K × K : Pi(x, y) ∩ Ai(x) = ∅}.
(iv) There exist nonempty subsets K 0

i , K∗
i ⊆ Ki such that for all M i, Ni ∈ 〈Ki〉,

there exist compact ∆-convex subset LMi , LNi ⊆ Ki containing K 0
i ∪ Mi

and K∗
i ∪ Ni, respectively, such that the set
⋂

(ui,vi)∈K0
i ×K∗

i

[
cint

{(
P−1

i (ui) ∪Wi

)∩((A−1
i (ui)×K

)∩(F−1
i (vi)×K

))}]c

is nonempty or compact.

Then there exists (x̄, ȳ) ∈ K ×K such that for each i ∈ I , x̄ i ∈ Bi(x̄), ȳi ∈ Fi(x̄)
and Pi(x̄, ȳ) ∩ Ai(x̄) = ∅.

Proof. For each i ∈ I , let Vi = {(x, y) ∈ K × K : Pi(x, y) ∩ Ai(x) �= ∅},
that is, Vi = (K × K) \Wi. For each i ∈ I , define Si, Ti : K × K → 2Ki×Ki by

Si(x, y) =

{
[Pi(x, y) ∩ Ai(x)]× Fi(x), if (x, y) ∈ Vi

Ai(x)× Fi(x), if (x, y) ∈ (K × K) \ V = Wi

and

Ti(x, y) =

{
[CO∆Pi(x, y)∩ Bi(x)]× Fi(x), if (x, y) ∈ Vi

Bi(x)× Fi(x), if (x, y) ∈ (K × K) \ V = Wi.

From condition (i), we have CO∆Si(x, y) ⊆ Ti(x, y) for each i ∈ I and for all
(x, y) ∈ K × K. For each i ∈ I and for all (ui, vi) ∈ Ki × Ki, we have

S−1
i (ui, vi) =

[
P−1

i (ui) ∩Wi

] ∩ [(A−1
i (ui) × K) ∩ (F−1

i (vi) × K)
]
.
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From condition (iii), for each nonempty compact subsets D̃ and D̂ of K, we have

D̃ × D̂ =
⋃

(ui,vi)∈Ki×Ki

cint
[(

P−1
i (ui) ∪Wi

) ∩ ((A−1
i (ui)× K

)
∩(F−1

i (vi)× K
))] ∩ (D̃ × D̂).

It follows from condition (iv) that the set⋂
(ui,vi)∈K0

i ×K∗
i

[
cint

{(
P−1

i (ui) ∪Wi

) ∩ ((A−1
i (ui) × K

) ∩ (F−1
i (vi) × K

))}]c

is nonempty or compact. Then by Theorem 3.3, there exists (x̄, ȳ) ∈ K × K such
that (x̄i, ȳi) ∈ Ti(x̄, ȳ) for each i ∈ I . If (x̄, ȳ) ∈ Vi for some i ∈ I , then by the
definition of Vi, we have

(x̄i, ȳi) ∈ [CO∆Pi(x̄, ȳ) ∩ Bi(x̄)] × Fi(x̄)

and hence x̄i ∈ CO∆Pi(x̄, ȳ)∩Bi(x̄) and so x̄i ∈ CO∆Pi(x̄, ȳ) which is a contra-
diction of condition (ii). So, we must have that (x̄, ȳ) ∈ Wi such that x̄i ∈ Bi(x̄)
and ȳi ∈ Fi(x̄) for each i ∈ I . From the definition of Wi, we obtain that for each
i ∈ I , x̄i ∈ Bi(x̄) and ȳi ∈ Fi(x̄) such that Pi(x̄, ȳ) ∩ Ai(x̄) = ∅.

By using Remarks 3.1 and 3.3 and Theorem 3.3, the following result can be
easily proved on the lines of the proof of Theorem 4.2.

Theorem 4.3. For each i ∈ I , let Ai, Bi : K → 2Ki be multivalued maps,
Pi : K × K → 2Ki a preference correspondence and Fi : K → 2Ki a fuzzy
constraint correspondence. For each i ∈ I , assume that the following conditions
hold:

(i) For all x ∈ K, CO∆(Ai(x)) ⊆ Bi(x) and Fi(x) is a nonempty ∆-convex
set.

(ii) For all (x, y) ∈ K × K, xi /∈ CO∆(Pi(x, y)),
(iii) For all ui ∈ Ki, A−1

i (ui), P−1
i (ui) and F−1

i (ui) are compactly open sets.
(iv) The set Wi = {(x, y) ∈ K × K : Pi(x, y)∩ Ai(x) = ∅} is compactly open.
(v) For all Mi, Ni ∈ 〈Ki〉, there exist compact ∆-convex subsets LMi , LNi ⊆ Ki

containing Mi and Ni, respectively, and nonempty compact sets D̃, D̂ of K

such that for each (x, y) ∈ K × K \ D̃ × D̂ and for each i ∈ I , there exists
(ui, vi) ∈ LMi × LNi satisfying ui ∈ Pi(x, y)∩ Ai(x) and vi ∈ Fi(x).

Then there exists (x̄, ȳ) ∈ K ×K such that for each i ∈ I , x̄ i ∈ Bi(x̄), ȳi ∈ Fi(x̄)
and Pi(x̄, ȳ) ∩ Ai(x̄) = ∅.
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From Theorem 4.3, we can easily derive the following equilibrium existence
result for the abstract economies in the setting of topological semilattice spaces.

Corollary 4.1. For each i ∈ I , let Ai : K → 2Ki be a multivalued map and
Pi : K → 2Ki a preference correspondence. For each i ∈ I , assume that the
following conditions hold:

(i) For all x ∈ K, Ai(x) is nonempty and ∆-convex.
(ii) For all yi ∈ Ki, A−1

i (yi) and P−1
i (yi) are compactly open sets.

(iii) For all x ∈ K, xi /∈ CO∆(Pi(x)).
(iv) The set Wi = {x ∈ K : Pi(x) ∩ Ai(x) = ∅} is compactly open.
(v) For all Mi ∈ 〈Ki〉, there exist a compact ∆-convex subset LMi ⊆ Ki

containing Mi and a nonempty compact subset D of K such that for all x ∈
K\D and for each i ∈ I , there exists ỹi ∈ LMi satisfying ỹi ∈ Pi(x)∩Ai(x).

Then there exists x̄ ∈ K such that for each i ∈ I , x̄ i ∈ Ai(x̄) and Pi(x̄)∩Ai(x) = ∅.

Remark 4.2.

(a) Theorems 4.2 and 4.3 extend and improve Theorem 5.1 in [32] and several
other results in the literature to topological semilattice space settings and
several other aspects.

(b) Corollary 4.1 extends and generalizes Theorem 2 in [7], Theorem 3.3 in [17],
Corollary 5.1 in [32] Theorem 3.1 in [41] and several other results in the
literature.

5. SYSTEMS OF GENERALIZED VECTOR QUASI-EQUILIBRIUM PROBLEMS

For each i ∈ I , let Xi be a topological semilattice space with path-connected
intervals, Ki be a nonempty ∆-convex subset of Xi, Yi be a topological vector
space and let K =

∏
i∈I Ki. For each i ∈ I , let Ai, Bi : K → 2Ki , Fi : K → 2Ki

be multivalued maps with nonempty values and Ci : K×K → 2Yi be a multivalued
map such that for all (x, y) ∈ K ×K , Ci(x, y) is a proper closed convex cone with
int Ci(x, y) �= ∅. For each i ∈ I , let Φi : K×K ×Ki → 2Yi be a multivalued map
with nonempty values. We consider the following systems of generalized vector
quasi-equilibrium problems (in short, (SGVQEPs)).

(SGVQEP)(I)




Find (x̄, ȳ) ∈ K × K such that for each i ∈ I,

x̄i ∈ Bi(x̄), ȳi ∈ Fi(x̄) and

Φi(x̄, ȳ, ui) ⊆ Ci(x̄, ȳ) for all ui ∈ Ai(x̄).
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(SGVQEP)(II)




Find (x̄, ȳ) ∈ K × K such that for each i ∈ I,

x̄i ∈ Bi(x̄), ȳi ∈ Fi(x̄) and

Φi(x̄, ȳ, ui) ∩ Ci(x̄, ȳ) �= ∅ for all ui ∈ Ai(x̄).

(SGVQEP)(III)




Find (x̄, ȳ) ∈ K × K such that for each i ∈ I,

x̄i ∈ Bi(x̄), ȳi ∈ Fi(x̄) and

Φi(x̄, ȳ, ui) ∩ (−int Ci(x̄, ȳ)) = ∅ for all ui ∈ Ai(x̄).

(SGVQEP)(IV)




Find (x̄, ȳ) ∈ K × K such that for each i ∈ I,

x̄i ∈ Bi(x̄), ȳi ∈ Fi(x̄) and

Φi(x̄, ȳ, ui) �⊆ −int Ci(x̄, ȳ) for all ui ∈ Ai(x̄).

It is clear that every solution of (SGVQEP)(I) (respectively, (SGVQEP)(III)) is
a solution of (SGVQEP)(II) (respectively, (SGVQEP)(IV)) but converse assertion
does not hold.

When Ai(x) = Bi(x) for all x ∈ K for each i ∈ I , then above problems are
considered and studied in [29, 36] in the setting of topological vector spaces.

A problem similar to (SGVQEP)(I) and some other types of systems of general-
ized vector quasi-equilibrium problems are studied in [20] in the setting of locally
G-convex uniform spaces.

If for each i ∈ I and for all x, y ∈ K, Bi(x) = Ai(x), Fi(x) = Ki, Ci(x, y) =
Ci(x) and Φi(x, y, ui) is independent of the variable y, that is, Φi(x, y, ui) is a
multivalued map of two variables x and ui, then (SGVQEP)(IV) is introduced and
studied by Ansari and Khan [4]. They established the existence results for a solution
of such problem. As an application of their problem, they derived existence results
for a solution of (Debreu VEP)(II) (see below) for nonconvex and nondifferentiable
(in some sense) vector-valued functions. Furthermore, if for each i ∈ I and for
all x ∈ K, Fi(x) = Ai(x) = Bi(x) = K, then (SGVQEP)(IV) is considered
and studied by Ansari et al. [6]. Some existence results for solutions of such
problem are established in [6] with applications to Nash equilibrium problem [35]
for vector-valued functions.

For each i ∈ I , if Φi is a single valued map, then (SGVQEP)(I) and (SGVQEP)(II),
and (SGVQEP)(III) and (SGVQEP)(IV), respectively, reduce to the following sys-
tems of vector quasi-equilibrium problems (for short, (SVQEPs)).

(SVQEP)(I)




Find (x̄, ȳ) ∈ K × K such that for each i ∈ I,

x̄i ∈ Bi(x̄), ȳi ∈ Fi(x̄) and

Φi(x̄, ȳ, ui) ∈ Ci(x̄, ȳ) for all ui ∈ Ai(x̄).
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(SVQEP)(II)




Find (x̄, ȳ) ∈ K × K such that for each i ∈ I,

x̄i ∈ Bi(x̄), ȳi ∈ Fi(x̄) and

Φi(x̄, ȳ, ui) /∈ −int Ci(x̄, ȳ) for all ui ∈ Ai(x̄).

Of course, (SVQEP)(I) is more general than (SVQEP)(II) as every solution of
(SVQEP)(I) is a solution of (SVQEP)(II) but converse assertion is not true.

For each i ∈ I , if Ai(x) = Bi(x) for all x ∈ K and Ci(x, y) is independent
of y, that is, Ci(x, y) is a single variable multivalued map, then (SVQEP)(II) is
considered and studied in [1]. Furthermore, if Fi(x) = K for all x ∈ K, then
(SVQEP)(II) is considered and studied in [2].

If for each i ∈ I and for all x, y ∈ K , Bi(x) = Ai(x), Fi(x) = Ki, Ci(x, y) =
Ci(x) and Φi(x, y, ui) is independent of the variable y, that is, Φi(x, y, ui) is a
single valued map of two variables x and ui, then the existence of solutions of
(SVQEP)(II) is studied in [3] with application to (Debreu VEP)(II).

Furthermore, if for each i ∈ I and for all x ∈ K, Fi(x) = Ai(x) = Ki. Then
(SVQEP)(II) is studied in [5, 22].

For each i ∈ I , let ϕi : K → Yi be a vector-valued map, Fi(x) = K for all
x ∈ K and Φi(x, y, ui) = ϕi(xi, ui)−ϕi(x) for all (x, y, ui) ∈ K ×K ×Ki, then
(SVQEP)(I) and (II) reduce to the following two classes of Debreu type equilibrium
problems [11] for vector-valued maps.

(Debreu VEP)(I)

{
Find x̄ ∈ K such that for each i ∈ I, x̄i ∈ Bi(x̄) and

ϕi(x̄i, ui) − ϕi(x̄) ∈ Ci(x̄) for all ui ∈ Ai(x̄).

(Debreu VEP)(II)

{
Find x̄ ∈ K such that for each i ∈ I, x̄i ∈ Bi(x̄) and

ϕi(x̄i, ui) − ϕi(x̄) /∈ −int Ci(x̄) for all ui ∈ Ai(x̄).

From the above special cases, it is clear that our (SGVQEPs) are more general
and unifying models of several problems studied in the literature.

Definition 5.1. Let W be a topological semilattice space with path-connected
intervals, Z be a topological vector space and M be a nonempty ∆-convex subset of
W . Let P : M×M → 2Z be a multivalued map such that for each (x, y) ∈ M×M ,
P (x, y) is a proper closed, convex cone. For all (x, y) ∈ M × M , a multivalued
map Ψ : M × M × M → 2Z \ {∅} is called

(a) P (x, y)-∆-quasiconvex (in short, P (x, y)-∆-QC) if for any finite subset N =
{u1, . . . , um} ⊆ M and for all u ∈ ∆(N ), there exists j ∈ {1, . . . , m} such
that Ψ(x, y, uj) ⊆ Ψ(x, y, u) + P (x, y);

(b) P (x, y)-∆-quasiconvex-like (in short, P (x, y)-∆-QCL) if for any finite subset
N = {u1, . . . , um} ⊆ M and for all u ∈ ∆(N ), there exists j ∈ {1, . . . , m}
such that Ψ(x, y, uj) ⊆ Ψ(x, y, u)− P (x, y);
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Rest of the paper, unless otherwise specified, for each i ∈ I , Yi is a topological
vector space, Bi : K → 2Ki is a multivalued map and Ai : K → 2Ki is a
lower semicontinuous multivalued map with nonempty values. For each i ∈ I , let
Fi : K → 2Ki be a multivalued map with nonempty ∆-convex values such that for
all ui ∈ Ki, F−1

i (ui) is compactly open in K .
We present the existence results for solutions of (SGVQEP) in the setting of

topological semilattice spaces.

Theorem 5.1. For each i ∈ I , let Φi : K×K×Ki → 2Yi be a lower semicon-
tinuous multivalued map with nonempty values such that the following conditions
are satisfied:

(i) For all x ∈ K, CO∆(Ai(x)) ⊆ Bi(x).
(ii) For all (x, y) ∈ K × K, Φi(x, y, xi) ⊆ Ci(x, y), where xi is the ith compo-

nent of x.
(iii) For all (x, y) ∈ K × K, the set {ui ∈ Ki : Φi(x, y, ui) �⊆ Ci(x, y)} is

∆-convex.
(iv) For each i ∈ I , Ci : K × K → 2Yi is an upper semicontinuous multivalued

map such that for all (x, y) ∈ K × K , C i(x, y) is a proper closed convex
cone.

(v) For all Mi, Ni ∈ 〈Ki〉, there exist compact ∆-convex subsets LMi , LNi ⊆ Ki

containing Mi and Ni, respectively, and nonempty compact subsets D̃ and
D̂ of K such that for all (x, y) ∈ K ×K \ D̃ × D̂ and for each i ∈ I , there
exists (ũi, ṽi) ∈ LMi × LNi satisfying ũi ∈ Ai(x), Φi(x, y, ũi) �⊆ Ci(x, y)
and ṽi ∈ Fi(x).

Then (SGVQEP)(I) has a solution.

Proof. For each i ∈ I and for all (x, y) ∈ K × K , define a multivalued map
Pi : K × K → 2Ki by

Pi(x, y) = {ui ∈ Ki : Φi(x, y, ui) �⊆ Ci(x, y)}.

By condition (iii), for each i ∈ I and for all (x, y) ∈ K × K , Pi(x, y) is ∆-
convex. Therefore, condition (ii) implies that xi /∈ Pi(x, y) = CO∆(Pi(x, y)) for
all (x, y) ∈ K×K and for each i ∈ I . Following the same argument as in the proof
of Theorem 3.2.1 in [29], for each i ∈ I , Pi has an open graph in K × K × Ki.
Therefore, for each i ∈ I , the set P−1

i (ui) = {(x, y) ∈ K × K : Fi(x, y, ui) �⊆
Ci(x, y)} is open and hence compactly open in K for all ui ∈ Ki. Since for each
i ∈ I , Ai : K → 2Ki is lower semicontinuous and Pi : K × K → 2Ki has open
graph, we have Pi ∩Ai : K ×K → 2Ki is lower semicontinuous [[9], pp. 59–61].
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Then it is easy to verify that the set {(x, y) ∈ K × K : Pi(x, y) ∩ Ai(x) = ∅} is
open and hence compactly open.

Condition (v) of Theorem 3.3 is followed from condition (v). Hence by Theorem
3.3, there exists (x̄, x̄) ∈ K × K such that for each i ∈ I , x̄i ∈ Bi(x̄), ȳi ∈ Fi(x̄)
and Pi(x, y) ∩ Ai(x) = ∅, that is, Φi(x̄, ȳ, ui) ⊆ Ci(x̄, ȳ) for all ui ∈ Ai(x̄).

Theorem 5.2. For each i ∈ I , let Xi be a metrizable topological semilattice
with path-connected intervals. For each i ∈ I , let Φ i : K × K × Ki → 2Yi be
a upper semicontinuous multivalued map with nonempty compact values such that
the following conditions are satisfied:

(i) For all x ∈ K, CO∆(Ai(x)) ⊆ Bi(x).
(ii) For all (x, y) ∈ K × K, Φi(x, y, xi) ∩ Ci(x, y) �= ∅, where xi is the ith

component of x.
(iii) For all (x, y) ∈ K × K, the set {ui ∈ Ki : Φi(x, y, ui) ∩ Ci(x, y) = ∅} is

∆-convex.
(iv) For each i ∈ I , Ci : K × K → 2Yi is an upper semicontinuous multivalued

map such that for all (x, y) ∈ K × K, C i(x, y) is a proper, closed convex
cone.

(v) For all Mi, Ni ∈ 〈Ki〉, there exist compact ∆-convex subsets LMi , LNi ⊆ Ki

containing Mi and Ni, respectively, and nonempty compact subsets D̃ and
D̂ of K such that for all (x, y) ∈ K × K \ D̃ × D̂ and for each i ∈ I , there
exists (ũi, ṽi) ∈ LMi ×LNi satisfying ũi ∈ Ai(x), Φi(x, y, ũi)∩Ci(x, y) = ∅
and ṽi ∈ Fi(x).

Then (SGVQEP)(II) has a solution.

Proof. For each i ∈ I and for all (x, y) ∈ K × K, define a multivalued map
Pi : K × K → 2Ki by

Pi(x, y) = {yi ∈ Ki : Φi(x, y, ui) ∩ Ci(x, y) = ∅}.

Since each Φi is upper semicontinuous with nonempty compact values and each Ci

is also upper semicontinuous, by using the same argument as in [8], we obtain that
the graph of Pi is open. Then by following the same argument as in the proof of
Theorem 5.1, we get the conclusion.

Theorem 5.3. For each i ∈ I , let Ci : K × K → 2Yi be a multivalued
map such that for all (x, y) ∈ K × K , C i(x, y) is a proper, closed convex cone
with nonempty interior. For each i ∈ I , let Φ i : K × K × Ki → 2Yi be a
lower semicontinuous multivalued map with nonempty values such that the following
conditions are satisfied:

(i) For all x ∈ K, CO∆(Ai(x)) ⊆ Bi(x).
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(ii) For all (x, y) ∈ K × K, Φi(x, y, xi) ∩ (−int Ci(x, y)) = ∅, where xi is the
ith component of x.

(iii) For all (x, y) ∈ K×K, the set {ui ∈ Ki : Φi(x, y, ui)∩(−int Ci(x, y)) �= ∅}
is ∆-convex.

(iv) For each i ∈ I , Wi : K × K → 2Yi is an upper semicontinuous multivalued
map defined as Wi(x, y) = Yi \ (−int Ci(x, y)) for all (x, y) ∈ K × K .

(v) For all Mi, Ni ∈ 〈Ki〉, there exist compact ∆-convex subsets LMi , LNi ⊆ Ki

containing Mi and Ni, respectively, and nonempty compact subsets D̃ and D̂

of K such that for all (x, y) ∈ K×K \ D̃×D̂ and for each i ∈ I , there exists
(ũi, ṽi) ∈ LMi×LNi satisfying ũi ∈ Ai(x), Φi(x, y, ũi)∩(−int Ci(x, y)) �= ∅
and ṽi ∈ Fi(x).

Then (SGVQEP)(III) has a solution.
Proof. For each i ∈ I and for all (x, y) ∈ K × K , define a multivalued map

Pi : K × K → 2Ki by

Pi(x, y) = {ui ∈ Ki : Φi(x, y, ui) ∩ (−int Ci(x, y)) �= ∅}.
Since each Φi is lower semicontinuous and Wi is upper semicontinuous, by using
the argument same as in the proof of Theorem 5.2, that the graph of Pi is open.
Then by following the same argument as in the proof of Theorem 5.1, we get the
conclusion.

Theorem 5.4. For each i ∈ I , let Xi be a metrizable topological semilattice
with path-connected intervals and C i : K × K → 2Yi be a multivalued map such
that for all (x, y) ∈ K×K, Ci(x, y) is a proper, closed convex cone with nonempty
interior. . For each i ∈ I , let Φi : K × K × Ki → 2Yi be a upper semicontinuous
multivalued map with nonempty compact values such that the following conditions
are satisfied:

(i) For all x ∈ K, CO∆(Ai(x)) ⊆ Bi(x).
(ii) For all (x, y) ∈ K × K, Φi(x, y, xi) �⊆ −int Ci(x, y), where xi is the ith

component of x.
(iii) For all (x, y) ∈ K × K, the set {ui ∈ Ki : Φi(x, y, ui) ⊆ −int Ci(x, y)} is

∆-convex.
(iv) For each i ∈ I , Wi : K × K → 2Yi is an upper semicontinuous multivalued

map defined as Wi(x, y) = Yi \ (−int Ci(x, y)) for all (x, y) ∈ K × K .
(v) For all Mi, Ni ∈ 〈Ki〉, there exist compact ∆-convex subsets LMi , LNi ⊆ Ki

containing Mi and Ni, respectively, and nonempty compact subsets D̃ and D̂
of K such that for all (x, y) ∈ K×K \ D̃×D̂ and for each i ∈ I , there exists
(ũi, ṽi) ∈ LMi × LMi satisfying ũi ∈ Ai(x), Φi(x, y, ũi) ⊆ −int Ci(x, y)
and ṽi ∈ Fi(x).
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Then (SGVQEP)(IV) has a solution.

Proof. For each i ∈ I and for all (x, y) ∈ K × K, define a multivalued map
Pi : K × K → 2Ki by

Pi(x, y) = {ui ∈ Ki : Φi(x, y, ui) ⊆ −int Ci(x, y)}.
Following the same argument as in the proof of Theorems 5.1-5.3, we get the
conclusion.

Remark 5.1.
(a) If for each i ∈ I and for all (x, y) ∈ K × K, Φi is Ci(x, y)-∆-QC, then the

set Ki = {ui ∈ Ki : Φi(x, y, ui) �⊆ Ci(x, y)} is ∆-convex, that is, condition
(iii) of Theorem 5.1 is satisfied.
Indeed, let Ni = {ui1, . . . , uim} be any finite subset of Ki. Then we show
that ∆(Ni) ⊆ Ki which implies that Ki is ∆-convex. Suppose contrary that
∆(Ni) �⊆ Ki. Then for some ũi ∈ ∆(Ni), ũi /∈ Ki, that is, Φi(x, y, ũi) ⊆
Ci(x, y). Since each Φi is Ci(x, y)-∆-QC, for all zi ∈ ∆(Ni), there exists
j ∈ {1, . . . , m} such that

Φi(x, y, uij) ⊆ Φi(x, y, zi) + Ci(x, y)

and so

Φi(x, y, uij) ⊆ Φi(x, y, ũi) + Ci(x, y) ⊆ Ci(x, y) + Ci(x, y) ⊆ Ci(x, y).

Therefore, uij /∈ Ki for j ∈ {1, . . . , m} which contradicts to our assumption
that each uij ∈ Ki for all j ∈ {1, . . . , m}. Hence Ki is ∆-convex.

(b) If for each i ∈ I and for all (x, y) ∈ K × K , Φi is Ci(x, y)-∆-QCL, then
the set Ki = {ui ∈ Ki : Φi(x, y, ui) ∩ Ci(x, y) = ∅} is ∆-convex, that is,
condition (iii) of Theorem 5.2 is satisfied.
Indeed, let Ni = {ui1, . . . , uim} be any finite subset of Ki. Then we show
that ∆(Ni) ⊆ Ki which implies that Ki is ∆-convex. Since uij ∈ Ki for
all j = 1, . . . , m, we have Φi(x, y, uij) ∩ Ci(x, y) = ∅. Since each Φi is
Ci(x, y)-∆-QCL, for any ũi ∈ ∆(Ni), there exists j ∈ {1, . . . , m} such that

Φi(x, y, ũi) ⊆ Φi(x, y, uij) − Ci(x, y)

and so

Φi(x, y, ũi) ∩ Ci(x, y) ⊆ (Φi(x, y, uij) − Ci(x, y)
) ∩ Ci(x, y) = ∅.

Therefore, Φi(x, y, ũi) ∩ Ci(x, x) = ∅ and thus ũi ∈ Ki. Hence Ki is ∆-
convex.
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(c) By using the same argument as in (a) and (b), we can easily show that for
each i ∈ I and for all (x, y) ∈ K × K , the set {ui ∈ Ki : Φi(x, y, ui) ∩
(−int Ci(x, y)) = ∅} and {ui ∈ Ki : Φi(x, y, ui) ⊆ −int Ci(x, y)} are
∆-convex, that is, condition (iii) of Theorems 5.3 and 5.4 is satisfied if Φi is
Ci(x, y)-∆-QC and Ci(x, y)-∆-QCL, respectively.

Remark 5.2. If for each i ∈ I , Φi : K ×K ×Ki → Yi is a single-valued map,
then from Theorems 5.1–5.4 we can easily derive the existence results for solutions
of (SVQEP) considered in previous section.

Remark 5.3. Theorems 5.1–5.4 extend Theorems 3.2.1–3.2.4 in [29] and The-
orems 3.1–3.4 with Remarks 3.2 and 3.5 in [36] to topological semilattice spaces.
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