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CONSTRAINED ARRANGEMENTS OF
OBJECTS IN A CYCLE∗

E. N. Gilbert and F. K. Hwang

Abstract. An analysis of connectivity reliability in daisy chain computer
networks led to a combinatorial problem that is most easily described in
terms of necklaces. Basically n beads, some black and some white, are
to be arranged into a necklace. The problem is to find the arrangements
that satisfy some constraints on the separations between black beads.
Thus, no black beads may be allowed to be adjacent and the number of
black beads with s beads between them may be specified. Hwang and
Wright gave a matrix method of counting those necklaces. Here we use
generating functions for similar counts, but with an added condition that
all s separating beads must be white. To reduce the set of arrangements
to more manageable size we also count necklaces when two that differ
only by a rotation are considered the same.

1. Introduction

A number of problems require objects, of d different kinds, to be placed
at n locations that form a closed cycle. Thus, n beads of d colors might be
arranged into a necklace. Or, in the problème des menages [5, 7, 9], d = 2 kinds
of objects (men and women) must be seated at n chairs around a circular table.
In another seating problem with d = 2, each chair is either occupied or left
empty. For the sake of concreteness we will often use the terminology of beads
and necklaces but other applications will be obvious.

The basic problem will be to count arrangements that satisfy given con-
straints. A simple constraint might be that no two black beads can be adjacent
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or, in the case of seating unsociable diners, that no two occupied chairs can
be adjacent. Other constraints might specify how many beads of certain col-
ors are to be used. With those constraints, rotating an allowed arrangement
bodily by 1, 2, . . ., or n places produces only arrangements that still satisfy the
constraints. Other constraints to be considered will all have that property.

For the Problème des Menages, Kaplansky [5] derived the following Lemma:

Lemma 1. The number of ways of selecting k objects with no two adjacent,
from n objects arranged in a cycle, is

g(k, n) =
n

n− k

[
n− k
k

]
.

With k black and n− k white beads replacing the selected and unselected
objects, Lemma 1 counts necklaces with no adjacent black beads.

Lemma 1 has been extended to count necklaces of black and white beads,
having p pairs of adjacent black beads. That extension has interest in the
theory of runs because the number of runs of consecutive black beads is just
k − p.

A second extension of Lemma 1, first studied by Konvalina [7], involves
the notion of separation-s pair, a pair of black beads with s beads between
them. The s beads can have any colors. Two consecutive black beads form
a separation-0 pair. A separation-s pair is also a separation-(n− 2− s) pair.
Hwang [2], also Kirschenhofer and Prodinger [6], used generating functions to
derive the number g(k, n, p, s) of necklaces of k black and n − k white beads
with p separation-s pairs. In a further generalization, Hwang and Wright [3]
counted necklaces with numbers of separation-s pairs prescribed jointly for
several separations s.

Here we are mainly interested in a special kind of separation-s pair, one
with all s separating beads colored white. We call such a configuration an s−
run because a run of s consecutive white beads separates the black beads. In
some problems all separation-s pairs are also s-runs. For example, in necklaces
with no 0-runs, 1-runs, . . ., or a-runs, each black bead lies between two white
runs of length at least a+ 1; a separation-s pair with s < 2a+ 3 is then also
an s-run. In general we seek the number g(k, n, P ) of necklaces with k black
and n− k white beads that satisfy a set P of constraints specifying numbers
of separation-s pairs or s-runs for some given values of s.

There are two kinds of counting problems. They depend on whether two
arrangements, obtained from one another by a rotation around the cycle, are
counted as the same. The results cited above treat the n positions around the
cycle as distinguishable and consider two arrangements the same only if each
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position is occupied alike in both arrangements. However, for necklaces, it may
be more natural to ignore rotations and count the symmetry types (equivalence
classes of arrangements induced by rotations). Because a rotation can carry
an arrangement into itself, the numbers of types and arrangements do not just
differ by a factor n. However, the number g∗(k, n, P ) of types of necklaces
subject to given constraints P will be expressed simply in terms of numbers
g(k, n, P ) of arrangements and we will derive g∗(k, n, P ) for specific cases of
interest. In counting g∗(k, n, P ), reflections can transform arrangements to
others of different type.

2. Transformation

In the next lemma, g(k, n, P ) is the number of arrangements of k black
beads and n− k of other colors. P can be any set of constraints that remain
satisfied as an arrangement is rotated. The lemma relates g(k, n, P ) to the
number g′(k, n, P ) of these arrangements having a black bead in position 1.

Lemma 2. ng′(k, n, P ) = kg(k, n, P ).

Proof. Let g′i(k, n, P ) denote the number, of those arrangements counted
by g(k, n, P ), having a black bead at position i. Write

U =
n∑
i=1

g′i(k, n, P ).

Note g′(k, n, P ) = g′1(k, n, P ). Also, g′(k, n, P ) = g′i(k, n, P ) for every i be-
cause a rotation by i− 1 positions transforms each arrangement with a black
bead at 1 into one with a black bead at i. Thus U = ng′(k, n, P ). But also
U = kg(k, n, P ), because each of the g(k, n, P ) arrangements is counted k
times in the sum U , once for each black bead.

As an illustration, Lemma 2 will count the number of necklaces of black
and white beads having at least s white beads between each two black beads.
Each arrangement contains k blocks of s + 1 beads with colors BWW . . .W ,
inserted among n − k(s + 1) other white beads. If the bead at position 1 is
black, the rest of the arrangement is obtained by choosing the locations of the
k− 1 other blocks from n− ks− 1 possibilities. Then g′(k, n, P ) is a binomial
coefficient and Lemma 2 shows

g(k, n, P ) =
n

k

[
n− ks− 1
k − 1

]
.(1)

With s = 1, (1) reduces to Kaplansky’s formula in Lemma 1.
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3. Symmetry Types

The procedure for counting symmetry types will rely on a form of Pólya’s
theorem [8, 9]. In general, a symmetry group G partitions objects (here ar-
rangements or necklaces) into types or equivalence classes. Two objects are
equivalent if some transformation in G carries one object into the other. Here
G is cyclic with transformations Ri, the rotations of the beads by i positions.
In general, the number of types can be expressed in terms of the numbers I(T )
of objects (arrangements) left invariant by each transformation T ,

Number of types =
∑

I(T )/|G|,(2)

where |G| is the order of G and the sum extends over all transformations T .
Since the identity in G leaves all arrangements invariant, the number of types
is at least 1/|G| times the number of arrangements.

Here G is a group of rotations, the cyclic group of order |G| = n. An ar-
rangement is specified by an n-tuple a = (c1, c2, . . . , cn) with cr the color of the
bead in position r. A rotation T = Ri transforms A into TA = (c′1, c

′
2, . . . , c′n)

with c′r = cr + i and leaves A invariant if cr = cr + i for all r (subscripts
are to be added modulo n). Since cr = cr + n also holds, an invariant A
has cr = cr + d where d = (i, n) is the g. c. d. of i and n. Then A con-
tains the d-tuple Ad = (c1, c2, . . . , cd) of d initial colors repeated n/d times,
A = (Ad, Ad, . . . , Ad). The constraints P impose a set of constraints, called
dP/n, on Ad. Thus, if A has k beads of color c, then dk/n of them belong to
the necklace specified by Ad. Or, if A has p s-runs then Ad has dp/n of them.
If A has p separation-s pairs, then Ad has dp/n of them but the seperatron-s
pairs or Ad must also be considered separation-s pairs if d divides s − s′. Of
course, A will not be invariant unless k and p are divisible by n/d. The number
of symmetry types in (2) is then

g∗(k, n, P ) =
1
n

n∑
i=1

g(dk/n, d, dP/n)

where d = (i, n) and the only non-zero terms are those with integer constraints
dP/n and integer dk/n.

For a given divisor d of n, the number of terms i having (i, n) = d is Euler’s
function φ(n/d). Combining the terms with like values of d produces

g∗(k, n, P ) =
1
n

∑
d/n

φ

(
n

d

)
g(dk/n, d, dP/n).

Or, with d replaced by the divisor n/d, we have
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Theorem. g∗(k, n, P ) =
1
n

∑
d

φ(d)g(k/d, n/d, P/d)

=
1
k

∑
d

φ(d)g′(k/d, n/d, P/d).

The second line of the theorem follows from the first because of Lemma 2.
The only non-zero terms in the sums have values of d that divide n, k, and all
other numbers of beads specified by P .

In a simple example, P might specify, for all i, the number ki of beads of
the ith color. Then the theorem applies with

g(k/d, n/d, P/d) =
(n/d)!

(k1/d)!(k2/d)! . . .
(3)

and n = k1 + k2 + . . . .
In another example, there are two colors and P specifies all numbers pi of

i-runs. Then there are k = p0 +p1 + . . . black beads and n = k+p1 + 2p2 + . . .
beads total. The example is actually related to (3) if each black bead, together
with the run of white beads that follows it, is regarded as one bead of a new
kind of color BWW . . .W . Now the theorem applies as though there were k
beads of the new colors,

g∗(k/d, n/d, P/d) =
1
k

∑
d

φ(d)
(k/d)!

(p0/d)!(p1/d)! . . .
.(4)

For 2-color necklaces with k black and w white beads, and no further restric-
tion, the number of types is

f(k, n) =
1
n

∑
d

φ(d)

[
n/d
k/d

]
,(5)

a result due to Jablonsky [1, 4, 9]. An immediate extension counts 2-color
necklaces with each pair of black beads separated by s or more white beads.
Regard each block BW s of one black bead and s white beads as a single bead
of a new color. The necklace then becomes a 2-color necklace with k beads
of color BW s and n− k − sk remaining white beads. The number of types is
f(k, n−sk). Table I gives numbers of types when s = 1. The types themselves,
for n = 12 and s = 1, appear in Table II as k-tuples (s1, s2, . . . , sk) with sj the
number of white beads that separate the jth and (j+ 1)st black beads. Cyclic
permutations of (s1, s2, . . . , sk) represent the same type. Note that certain
pairs of types, e. g. (1, 2, 6) and (1, 6, 2), would have counted as one if
reflection symmetries had been allowed.
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TABLE I. Numbers of symmetry types of necklaces with k black and n − k
white beads, no black beads adjacent

n k = 1 2 3 4 5 6 7 8 9 10 total

2 1 1
3 1 1
4 1 1 2
5 1 1 2
6 1 2 1 4
7 1 2 1 4
8 1 3 2 1 7
9 1 3 4 1 9

10 1 4 5 3 1 14
11 1 4 7 5 1 18
12 1 5 10 10 3 1 30
13 1 5 12 14 7 1 40
14 1 6 15 22 14 4 1 63
15 1 6 19 30 26 10 1 93
16 1 7 22 43 42 22 4 1 142
17 1 7 26 55 66 42 12 1 210
18 1 8 31 73 99 80 30 5 1 328
19 1 8 35 91 143 132 66 15 1 492
20 1 9 40 116 201 217 132 43 5 1 765

4. Generating Functions

This section counts 2-color necklaces, such as (4) counted but with not
all of p0, p1, p2, . . . specified. Of course, one can always sum (4) over the
unspecified pi but, as (5) illustrated with all pi unspecified, there may be
simpler solutions. Hwang and Wright [3] gave a matrix method to count
arrangements by numbers of separation-i pairs. These pairs were separated
by i beads of either color. Here we count arrangements by i-runs, pairs of
black beads separated by i white beads only. In general we obtain a generating
function for g′(n, k, P ) in which powers of x indicate numbers of white beads
and, for certain specified i, powers of yi indicate numbers of i- runs.

The procedure will be clear from a special case. Allow no 0-runs, 1-runs,
. . ., or a-runs i. e. p0 = p1 = . . . = pa = 0, and specify ps = p for some given
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TABLE II. Symmetry types of 2-color necklaces of 12 beads

k Types

1 (11)
2 (1, 9), (2, 8), (3, 7), (4, 6), (5, 5)
3 (1, 1, 7), (1, 2, 6), (1, 6, 2), (1, 3, 5), (1, 5, 3)

(1, 4, 4), (2, 2, 5), (2, 3, 4), (2, 4, 3), (3, 3, 3)
4 (1, 1, 1, 5), (1, 1, 2, 4), (1, 1, 4, 2), (1, 4, 1, 2), (1, 1, 3, 3)

(1, 3, 1, 3), (1, 2, 2, 3), (1, 3, 2, 2), (1, 2, 3, 2), (2, 2, 2, 2)
5 (1, 1, 1, 1, 3), (1, 1, 1, 2, 2), (1, 1, 2, 1, 2)
6 (1, 1, 1, 1, 1, 1)

s > a. All other pi are left unspecified. The generating function will have two
variables, x and y = ys, and must have g′(k, n, P ) as the coefficient of ypx(n−k).
Imagine the necklace decomposed into k blocks of form BWW . . .W . The
possible contributions from one block are counted by a generating function

ψ(x, y)= xa+1 + xa+2 + · · ·+ yxs + · · ·

= yxs − xs +
xa+1

1− x
.

(6)

Then the generating function for the entire necklace is

g(x, y) = [ψ(x, y)]k.(7)

With ψ given by (6),

g(x, y)=
∑
p

[
k

p

]
ypxsp

[
xa+1

1− x
− xs

]k−p

=
∑
p,q

[
k

p

] [
k − p
q

]
ypxsp

[
xa+1

1− x

]q
(−xs)k−p−q.

Next, expand [
1

1− x

]q
=
∑
r

[
q + r − 1

r

]
xr.

Caution is needed here when q = 0. To make the expansion hold at q = 0

one must interpret
[ r − 1
−1

]
to mean 1 if r = 0, and 0 otherwise. With that
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convention,

g(x, y) =
∑
p,q,r

[
k

p

] [
k − p
q

] [
q + r − 1
q − 1

]
(−1)k+p+qypxsk+(a+1−s)q+r.

Now g′(k, n, P ) is the coefficient of ypxn−k in g(x, y),

g′(k, n, P ) = (−1)k+p
[
k

p

]∑
q

(−1)q
[
k − p
q

] [
n− (s+ 1)k + (s− a)q − 1

q − 1

]
.(8)

The generating function simplifies if s = a+ 1. For, (6) becomes

ψ(x, y) = {y + x/(1− x)}x(a+1).

The derivation of g(x, y) now needs only two binomial expansions; the coeffi-
cient of ypx(n−k) in g(x, y) becomes

g′(k, n, P ) =
[
k

p

] [
n− ak − 2k − 1

k − p− 1

]
.(9)

One can also count arrangements with specified numbers of s-runs for more
than one given s by introducing extra variables like y into the generating
function. The result will be a formula like (8) but summed over more indices.

Hwang and Wright [3] counted arrangements with given numbers of
separation-s pairs. Their Tables 1 and 2 gave numbers g(k, n, P ) of necklaces
with no black beads adjacent, counted by separation-2 pairs. As Section 1
explained, these separation-2 pairs are also 2-runs. Indeed, one may obtain
the same numbers from (8) with the aid of Lemma 2.

The numbers g′(k, n, P ) in (8) or (9) can be used in the second form of the
Theorem to count symmetry types. Table III gives data on the calculation for
15-bead necklaces with no adjacent black beads (a = 0), counted by numbers
p of 2-runs (or separation-2 pairs). Numbers of types are in parentheses. The
other numbers are numbers g(k, n, P ) of arrangements calculated from (8)
and Lemma 2; these agree with numbers tabulated in [3]. The numbers of
types are conveniently smaller than the numbers of arrangements. Thus, the
155 arrangements with k = 3 black beads and p = 0 2-runs fall into only 11
types. These may be exhibited in the notation of Table II as (1, 1, 10), (1, 3, 8),
(1, 8, 3), (1, 4, 7), (1, 7, 4), (1, 5, 6), (1, 6, 5), (3, 3, 6), (3, 4, 5), (3, 5, 4), (4, 4, 4).
In the Theorem, d must divide p as well as n and k. Often, the only such
divisor is d = 1 and then g∗(k, n, P ) reduces to g(k, n, P )/n. The calculation
requires numbers of arrangements of 3 or 5 beads, also tabulated. Note, with
3 beads, that one black bead forms a 2-run with itself.



Constrained Arrangements of Objects 369

TABLE III. Numbers of arrangements and types (in parentheses) of necklaces
with p 2-runs (or separation-2 pairs) and no adjacent black beads.

n k p = 0 1 2 3 4 5

3 1 3 (1)
5 1 5 (1)

2 5 (1)
15 1 15 (1)

2 75 (5) 15 (1)
3 155 (11) 105 (7) 15 (1)
4 150 (10) 195 (13) 90 (6) 15 (1)
5 75 (5) 150 (10) 90 (6) 60 (4) 3 (1)
6 15 (1) 75 (5) 50 (4)
7 15 (1)

The number of types could have been reduced by allowing reflection as well
as rotation symmetries as equivalences. In (2), G would be the dihedral group
of order |G| = 2n. Reflections applied to the necklaces of same rotational
type usually produce necklaces of a different rotational type. The union of the
two types is a dihedral type. Other rotational types contain necklaces that
have a reflection symmetry; these types are already dihedral types. Thus,
of the 11 rotational types in Table 3 with n = 15, k = 3, a = 0, s = 2,
(1, 1, 10), (3, 3, 6), and (4, 4, 4) contain necklaces with reflection symmetries
and are already dihedral types. The remaining 8 rotational types pair off
into 4 dihedral types; then there are 7 dihedral types total. Necklaces having
reflection symmetries can also be counted by generating functions but the
result is more complicated than (8); using a dihedral group would reduce the
number of types by a factor 2 at most.
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