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ON THE MINIMUM AREA OF CONVEX LATTICE
POLYGONS∗

Tian-Xin Cai†

Abstract. A convex polygon is a polygon whose vertices are points on
the integer lattice with interior angles all convex. Let a(v) be the least
possible area of a convex lattice polygon with v vertices. It is known
that cv2.5 ≤ a(v) ≤ (15/784)v3 + o(v3). In this paper, we prove that
a(v) ≥ (1/1152)v3 +O(v2).

A convex lattice polygon is a polygon whose vertices are points on the
integer lattice with interior angles strictly less than π radians. A convex
lattice polygon with v vertices is called a v-gon. The least possible area of a
v-gon is denoted by a(v). The function a(v) has been studied by Arkinstall
[1], Rabinowitz [4], Simpson [5], Colbourn and Simpson [3]. The values of
a(v) are known for v ≤ 10 and v ∈ {12, 13, 14, 16, 18, 20, 22}. For example,
a(3) = 1/2, a(4) = 1, a(5) = 5/4, a(6) = 3, . . .. For general v, only bounds
are known. Rabinowitz [4] proved that a(2n) ≤ (n3 ) − n + 1. Simpson [5]
established that a(2n) ≥ (n2 ), and that

[{a(2n+ 2) + a(2n)}/2] +
1
2
≤ a(2n+ 1) ≤ a(2n+ 2)− 1

2
.(1)

These together imply that for all v,

(1/8)v2 + o(v2) ≤ a(vc) ≤ (1/48)v3 + o(v3).

In 1992, Colbourn and Simpson [3] proved that

cv2.5 ≤ a(v) ≤ (15/784)v3 + o(v3)
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for some positive constant c. Moreover, they conjecture that a(v) = c0v
3 +

o(v3) for a constant c0.
In this paper, we improve the lower bound on a(v), by proving the following

theorem (I announced in [2]).

Theorem. The minimum area of a convex lattice v-gon, a(v), satisfies

a(v) ≥ (1/1152)v3 +O(v2).

From (1) we need only to treat the cases with v even; therefore, we write
v = 2n. Now, define an admissible n-sequence V to be a sequence of ordered
pairs {vi = (xi, yi), 1 ≤ i ≤ n} satisfying

yixj − xiyj > 0 for 1 ≤ i < j ≤ n,
gcd(xi − yi) = 1 for 1 ≤ i ≤ n,
yi ≥ xi > 0 for 1 ≤ i ≤ n.

We need the following characterization of a(2n) in determining new lower
bound.

Lemma. [5] One has

a(2n) = min
n∑
i=1

n∑
j=i+1

(yixj − xiyj)(2)

where the minimum is taken over all admissible n-sequences.

Proof of Theorem. Suppose that {v1, v2, . . . , vn} is an admissible n-sequence.
Consider the contribution to equation (2) arising from pairs containing v1 =
(x1, y1), let Li be the set of vectors vj whose contribution is i, i.e., y1xj−x1yj =
i, and li = |Li| be the number of the elements in Li. Then

∞∑
i=1

li = n− 1.(3)

Consider the contribution to (2) arising from pairs between v1 and the vectors
in Li, this is i li. Furthermore, let (x0, y0) be the least pair of positive integers
satisfying y1x0−x1y0 = i. Then all the vectors in Li are in the form (xi, yj) =
(x0+x1tj , y0+y1tj), with tj ≥ 0, 1 ≤ j ≤ li. If li ≥ 2, consider the contribution
to (2) arising from pairs among the vectors in Li, this is i

∑
tj>t′j

(tj−tj′). It is
easy to see that the above summation is minimized when tj = 1, 2, . . . , li, 1 ≤
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j ≤ li, i.e.,

i {1(li − 1) + 2(li − 2) + . . . + (li − 1)1}

= i {li(1 + 2 + . . . + (li − 1))− (12 + 22 + . . . + (li − 1)2)}

= i li (l2i − 1)/6,

which means that the total contribution to (2) arising from pairs among v1
and the vectors in Li is

si ≥ ili(l2i + 5)/6.(4)

Using (3) we have ∑
li≥1

1√
i
≤ 2
√
n.

This together with (3), (4) and Hölder’s inequality gives us

n− 1 =
∞∑
i=1

li =
∑
li≥1

(i−
1
3 , i

1
3 li)

≤

∑
li≥1

i−
1
2

 2
3 ( ∞∑

i=1

il3i

) 1
3

≤ 2
2
3n

1
3

(
6
∞∑
i=1

si

) 1
3

.

Therefore

S1 =
∞∑
i=1

si ≥ (1/24)n2
(

1− 1
n

)3
= (1/24)n2 +O(n).

Similarly, we consider the contribution to (2) arising from pairs containing
vk = (xk, yk), k ≥ 2 and vj = (xi, yj), k < j ≤ n. Since {vk, vk+1, . . . , vn} is
also an admissible n− k + 1-sequence, the total contribution to (2), Sk, is

Sk ≥ (1/24)(n− k + 1)2 +O(n− k + 1).(5)

Let Lki be the set of vectors vj(j > k) whose contribution with vk are i, i.e.,
ykxj − xkyj = i. Then

|Lkj ∩ Lk
′
j′ | ≤ 1.(6)

In fact, if there are 1 ≤ k < k′ < a < b ≤ n such that
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{
xayk − xkya = j,
xbyk − xkyb = j,

(7)

{
xay

′
k − x′kya = j′,

xby
′
k − x′kyb = j′,

(8)

from (7) and (8), we obtain, respectively,

xa − xb
ya − yb

=
xk
yk
,
xa − xb
ya − yb

=
x′k
y′k
,

which means that
xk
yk

=
x′k
y′k
.

This is impossible. From (6) we conclude that in the preceding way the con-
tribution to (2) arising from any two fixed pairs is at most twice in S1 + S2 +
· · ·+ Sn−1. Summing (5) over 1 ≤ k ≤ n− 1, one has

n∑
i=1

n∑
j=i+1

(yixj − xiyj) ≥
1
2

n−1∑
k=1

Sk

≥ 1
48

n−1∑
k=1

(n− k + 1)2 +O

(
n−1∑
k=1

n− k + 1

)

=
(

1
144

)
n3 +O(n2).

By the Lemma, we complete the proof of the Theorem.
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