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FIXED POINT THEOREMS AND WEAK CONVERGENCE THEOREMS
FOR GENERALIZED HYBRID MAPPINGS IN HILBERT SPACES

Pavel Kocourek, Wataru Takahashi and Jen-Chih Yao*

Abstract. In this paper, we first consider a broad class of nonlinear mappings
containing the classes of nonexpansive mappings, nonspreading mappings, and
hybrid mappings in a Hilbert space. Then, we deal with fixed point theorems
and weak convergence theorems for these nonlinear mappings in a Hilbert
space.

1. INTRODUCTION

Let H be a real Hilbert space and let C' be a nonempty closed convex subset
of H. Then a mapping 7' : C — C' is said to be nonexpansive if | Tz — Ty| <
|z — y|| for all 2,3 € C. The set of fixed points of T is denoted by F(T). From
Baillon [1] we know the following first nonlinear ergodic theorem in a Hilbert space.

Theorem 1.1. Let C' be a nonempty bounded closed convex subset of H and
let T : C' — C be nonexpansive. Then, for any x € C,

1 n—1
Spx = - Z Tk
k=0
converges weakly to an element z € F(T).

An important example of nonexpansive mappings in a Hilbert space is a firmly
nonexpansive mapping. A mapping F' is said to be firmly nonexpansive if

|Fz — Fy|* < (z —y, Fx — Fy)

for all z,y € C; see, for instance, Browder [3] and Goebel and Kirk [5]. It is
known that a firmly nonexpansive mapping F' can be deduced from an equilibrium

Received May 1, 2010.

2000 Mathematics Subject Classification: Primary 47H10; Secondary 47HQ05.

Key words and phrases: Hilbert space, Nonexpansive mapping, Nonspreading mapping, Hybrid map-
ping, Fixed point, Mean convergence.

*Corresponding author.

2497



2498 Pavel Kocourek, Wataru Takahashi and Jen-Chih Yao

problem in a Hilbert space; see, for instance, [2] and [4]. Recently, Kohsaka and
Takahashi [11], and Takahashi [16] introduced the following nonlinear mappings
which are deduced from a firmly nonexpansive mapping in a Hilbert space. A
mapping 7" : C — C'is called nonspreading [11] if

2Tz — Tyl < | Tz — y||* + | Ty — «||?
for all =,y € C. Similarly, a mapping 7' : C — C'is called hybrid [16] if
3|1 Tx — Tyl* < o — yl* + | Tz — y||* + | Ty — «||?

for all x,y € C. They proved fixed point theorems for such mappings; see also
Kohsaka and Takahashi [10] and lemoto and Takahashi [8]. Very recently, Takahashi
and Yao [19] proved the following nonlinear ergodic theorem.

Theorem 1.2. Let H be a Hilbert space, let C be a nonempty closed convex
subset of H and let 7" be a mapping of C' into itself such that F(7") is nonempty.
Suppose that T" satisfies one of the following conditions:

(i) T is nonspreading;
(it) T is hybrid;
(iii) 2|7z — Ty|? < ||z -yl + | T2 — ylI?, Vz,yeC.
Then, for any z € C, )
1 «—
R —— k
'nL - ZT T
k=0
converges weakly to an element z € F(T).

In this paper, motivated by Takahashi and Yao [19], we introduce a broad class
of mappings T : C — C such that for some o, 5 € R,

ol Tz = Ty|* + (1 = a)llz = Ty|* < Bl|Tz — y|* + (1 = B) = — y|®

for all ,y € C. Such a class contains the classes of nonexpansive mappings,
nonspreading mappings, and hybrid mappings in a Hilbert space. Then, we prove
fixed point theorems for such nonlinear mappings in a Hilbert space. Furthermore,
we obtain a nonlinear ergodic theorem of Baillon’s type for this class of mappings
which generalizes Theorems 1.1 and 1.2 in a Hilbert space. Finally, we prove a
weak convergence theorem of Mann’s type [12] for this class of mappings.

2. PRELIMINARIES

Throughout this paper, we denote by N the set of positive integers and by
R the set of real numbers. Let H be a (real) Hilbert space with inner product
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(-,-) and norm || - ||, respectively. We denote the strong convergence and the weak
convergence of {z,} to z € H by z, — x and z,, — x, respectively. From [15],
we know the following basic equalities. For =, y,u,v € H and A € R, we have

(2.1) Az + (1= N)yl|> = Allz]]> + (1= X lylI> = A1 = ) [|= — y|]%,
and
(2.2) 2(x —yu—v)=[lz—o|*+ ly = ul® = |z —ul* - [ly —v|*.

From (2.2), we also have the following equality.

23) Mz —y+u—v]*=lz -yl + u—v|*+ 2~ y,u—v)
= llz = yl* + lu = ol* + [l = 0> + lly — wl® = llz — ul® = [ly — of|*.

Let C' be a nonempty closed convex subset of H and let 7" be a mapping from
C' into itself. Then, we denote by F'(T') the set of fixed points of 7. A mapping
T :C — C with F(T) # 0 is called quasi-nonexpansive if ||z — Ty|| < ||z — y||
forall z € F(T) and y € C. It is well-known that the set F/(T) of fixed points
of a quasi-nonexpansive mapping 7' is closed and convex; see Ito and Takahashi
[9]. In fact, for proving that F'(T) is closed, take a sequence {z,} C F(T) with
z, — z. Since C' is weakly closed, we have z € C. Furthermore, from

Iz = Tzll < [z = znll + [[2n = T2[| < 2]z = 2n]| = O,

z is a fixed point of 7" and so F'(T") is closed. Let us show that F'(T") is convex.
For z,ye F(T') and a €10, 1], put z=az+(1—a)y. Then, we have from (2.1) that
Iz = Tz|)? = [laz + (1 — a)y — T=||?
= allz = T2[* + (1 = a)lly = Tz|* = a(l = a) |z — y|*
<allz —z[P + (1 - )y - 2* — a(l — a) |z - y|?
= a(l = @)z =yl + (1 - a)o’|lz —y|I* — a(l —a) |z -yl
=a(l-a)(l-a+a—1)z—y|?
= 0.
This implies Tz = z. So, F(T) is convex.

Let [°° be the Banach space of bounded sequences with supremum norm. Let
be an element of ({°°)* (the dual space of [*°). Then, we denote by u(f) the value
of pat f = (x1,x9,23,...) € 1°°. Sometimes, we denote by ,(x,) the value
w(f). A linear functional p on (> is called a mean if u(e) = ||u|| = 1, where
e=(1,1,1,...). Amean p is called a Banach limit on I°° if p, (xn41) = pin(zn).
We know that there exists a Banach limit on (*°. If 4 is a Banach limit on (°°, then
for f = (21,29, 23,...) €1,

liminf z, < upx, < limsupz,.
n—00 n—00
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In particular, if f = (z1,29,23,...) € [* and z, — a € R, then we have
w(f) = pnzn, = a. For a proof of existence of a Banach limit and its other
elementary properties, see [14]. Using Banach limits, Takahashi and Yao [19]
proved the following fixed point theorem.

Theorem 2.1. Let H be a Hilbert space, let C be a nonempty closed convex
subset of H and let 7" be a mapping of C into itself. Suppose that there exists an
element = € C such that {T"z} is bounded and

pn|| T = Ty|* < pa| T — y|?, Wy eC
for some Banach limit ;.. Then, T has a fixed point in C.

Let C be a nonempty closed convex subset of H and = € H. Then, we know
that there exists a unique nearest point z € C' such that ||z — z|| = inf yec ||z — ||
We denote such a correspondence by z = Pox. Po is called the metric projection
of H onto C. It is known that Po is nonexpansive and

(x — Pox, Pox —u) >0

for all z € H and u € C; see [15] for more details.

3. Fixep PoINT THEOREMS

In this section, we start with defining a broad class of nonlinear mappings con-
taining the classes of nonexpansive mappings, nonspreading mappings, and hybrid
mappings in a Hilbert space. Let H be a Hilbert space and let C' be a nonempty
closed convex subset of H. Then, a mapping 7' : C — C' is called generalized
hybrid if there are «, 5 € R such that

B4 afTz—Ty|* + (1 - a)|la—Tyl* < Bl|Tz — y|I* + (1 - B) |z — y|?

forall z,y € C. We call such a mapping an («, 3)-generalized hybrid mapping. We
observe that the mapping above covers several well-known mappings. For example,
an («, ()-generalized hybrid mapping is nonexpansive for « = 1 and 5 = 0,
nonspreading for « = 2 and 3 = 1, and hybrid for « = 2 and 3 = 3. We can also
show that if z = T'z, then for any y € C,

allz = Ty + (1 = a) |z = Tyl|* < Bllz — ylI* + (1 = B)ll= - y||?

and hence ||z — Ty| < ||z — y||. This means that an (c, [3)-generalized hybrid
mapping with a fixed point is quasi-nonexpansive. Now, we prove a fixed point
theorem for generalized hybrid mappings in a Hilbert space.

Theorem 3.1. Let C be a nonempty closed convex subset of a Hilbert space H
and let T': C — C' be a generalized hybrid mapping. Then 7" has a fixed point in
C if and only if {7z} is bounded for some z € C.
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Proof. Since T': C' — C'is a generalized hybrid mapping, there are o, § € R
such that

(35)  afTz —Ty|* + (1 - a)lla = Ty|* < Bl|Tz —y|I* + (1 - )|z — y|?
for all x,y € C. If F(T) # 0, then {T"z} = {z} for z € F(T). So, {T"z} is

bounded. We show the reverse. Take z € C' such that {7z} is bounded. Let n be
a Banach limit. Then, for any y € C and n € NU {0}, we have

o| Tz = Ty|* + (1 - a) | Tz — Ty||?
<BIT™ =yl + (1= BTz — g

for any y € C. Since {T™z} is bounded, we can apply a Banach limit x to both
sides of the inequality. Then, we have

pn(a| Tz = Ty|* + (1 — @) || T"z — Ty||?)
< pn(BIT 2 = yl? + (L= BTz = yII*).
So, we obtain
auptn | Tz = Ty||* + (1 = @) || T" 2 — Ty||?
< Bl Tz =yl + (1 = B)pn| T2 — y|?
and hence
apn | T2 = Ty|* + (1 = a)pn[| Tz — Ty|?
< Bunl| Tz = ylI” + (1 = Bl Tz — .

This implies ) )
pnl| Tz = Tyl < pn[| T2 = y|
for all y € C. By Theorem 2.1, we have a fixed point in C. ]
As a direct consequence of Theorem 3.1, we have the following result.

Theorem 3.2. Let C' be nonempty bounded closed convex subset of a Hilbert
space H and let T' be a generalized hybrid mapping from C to itself. Then 7" has
a fixed point.

Using Theorem 3.1, we can also prove the following well-known fixed point
theorems. We first prove a fixed point theorem for nonexpansive mappings in a
Hilbert space.

Theorem 3.3. Let H be a Hilbert space and let C' be a nonempty closed convex
subset of H. Let T': C'— C be a nonexpansive mapping, i.e.,

[Tz =Tyl < [le —yl, Ve,yeC.

Suppose that there exists an element = € C' such that {T' ™z} is bounded. Then, T’
has a fixed point in C.
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Proof. In Theorem 3.1, a (1, 0)-generalized hybrid mapping of C into itself is
nonexpansive. By Theorem 3.1, T" has a fixed point in C. ]

The following is a fixed point theorem for nonspreading mappings in a Hilbert
space.

Theorem 3.4. ([11]). Let H be a Hilbert space and let C' be a nonempty closed
convex subset of H. Let T : C' — C be a nonspreading mapping, i.e.,

2|Te — Ty|* < |Tz —y|* + | Ty — 2|*, Vaz,yeC.

Suppose that there exists an element = € C' such that {7 ™z} is bounded. Then, T
has a fixed point in C.

Proof. In Theorem 3.1, a (2, 1)-generalized hybrid mapping of C into itself is
nonspreading. By Theorem 3.1, T has a fixed point in C. ]

The following is a fixed point theorem for hybrid mappings by Takahashi [16]
in a Hilbert space.

Theorem 3.5. ([16]). Let H be a Hilbert space and let C' be a nonempty closed
convex subset of H. Let T': C' — C be a hybrid mapping, i.e.,

3| Tx — Tyl < ||z — yl® + 1Tz —y|* + | Ty —2l*, Vz,yeC.

Suppose that there exists an element = € C' such that {7 "z} is bounded. Then, T

has a fixed point in C.
Proof. In Theorem 3.1, a % %)-generalized hybrid mapping of C' into itself is
hybrid in the sense of Takahashi [16]. By Theorem 3.1, T has a fixed point inC. m

We can also prove the following fixed point theorem in a Hilbert space.

Theorem 3.6. Let H be a Hilbert space and let C' be a nonempty closed convex
subset of H. Let T': C — C be a mapping such that

2|7z — Ty|* < |l = yl* + | Tz - yl*, Va,yeC.

Suppose that there exists an element = € C' such that {7 "z} is bounded. Then, T
has a fixed point in C.

Proof. In Theorem 3.1, a (1, %)-generalized hybrid mapping of C into itself
is the mapping in our theorem. By Theorem 3.1, T has a fixed point in C. ]

Let C' be a nonempty closed convex subset of a Hilbert space H. A mapping
S : C — C'is called super hybrid if there are «, 8,y € R with v > 0 such that

af|Sz — Sy|I> + (1 — a+7)llz — Sy|?
(3.6) <B+B-a))Sz—yl*+(1-8—(B—a—1))z—y|?

+o = B)yllz — Sz|* + vy — Syl?
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for all x,y € C. We call such a mapping an («, (3, y)-super hybrid mapping. We
notice that an («, G, 0)-super hybrid mapping is («, 3)-generalized hybrid. So, the
class of super hybrid mappings contains the class of generalized hybrid mappings.

Theorem 3.7. Let C be a nonempty closed convex subset of a Hilbert space H
and let o, 3 and ~ be real numbers with v > 0. If a mapping S : C — C'is («, 53,
~)-super hybrid, then the mapping ﬁs + 11—7[ is an («, B)-generalized hybrid
mapping of C into itself.

Proof. Put A = #0and T'= AS+ (1 — X)I. Let us consider

k= —a|Tz —Ty|]* - (1 - a)llz = Tyl + B Tz — y[I* + (1 = B) ||z — y*.
Since T'= A\S + (1 — X\)I, we have

k= —allA\(Sz—Sy)+ (1 =N (z —y)|°~ (1 -a)[|]A(z = Sy) + (1 = X)(z —y)|

+BIASz —y) + (1= N)(@ = y)|I> + (1= )]z - y*.

Applying the identity (2.1), we get

k= —a{AlSz— Sy|? + (1= Nz - ylI* = A1 - N)||Sz — Sy — = +y[*}

— (L= a) {Alz = Sy[* + (1 = M|z —ylI* =21 = My — Sy[*}

+B{ASz =yl + (1 = Nz =yl = AL = N)]le — S|} + (1) |z |

Adding four terms ||z — y||% due to —a — (1 — ) + B+ (1 — 8) = 0 and dividing
by A, we obtain

Ak = —a{]|Sz = SylI* — e — yl* = (1= N)[[Sz— Sy — = +y[*}

~(1=a) {llz = SylI* — [l = yI* = (0 = Mlly — SylI*}
+8 {15z —yl* = o = yI* = (1 = N)llz — Sz[*}.

So, we have
Ak = —a|| Sz~ Sy|? = (1 - a)||z - Syl
+0[|Sz =yl + (1 = B)llz — ylI* = B = A) ||« — Sz||?
+(1 = a) (1= A)lly = Sy|* + a(l = N)||Sz — Sy — = +y*.

Dividing by ), we have from \=! = v + 1 that
A2k = —a(y + D[Sz = Sy|? = (1 = ) (v + 1)|J= — Sy|®

+ B+ )8z —y|*+ (v+ 1)(1 = B)||z —y|* — Byl|z — Sz
+ (1 —a)vlly — SylI* + av||Sz — Sy — =+ y||*.
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We know from (2.3) that
ISz = Sy — 2 +y|* = ||Sz — Sy|* - ||« = Sy||* — ||z - y|?
+Ha —yl? + [[Sz —z|* + [|Sy — y[|*.
So, we obtain
A2k = —al| Sz = Syl — {(1 - @) + 7}z - Syl
HO+ (B = a)HSz =yl +{1 = 8= 7(8 - a1}z -y
+a = B)yllz — Sz + ]y — Syll*.
Since A~2k > 0 and A=2 > 0, we obtain k£ > 0. This completes the proof. n

Using Theorem 3.7, we have the following fixed point theorem for super hybrid
mappings in a Hilbert space.

Theorem 3.8. Let C be a nonempty closed convex subset of a Hilbert space
H and let o, 6 and ~ be real numbers with v > 0. Let S : C — C be an (a,
B, v)-super hybrid mapping and suppose that C' is bounded. Then, S has a fixed
point in C'.

Proof. Since S : C — C'is («, B, ~v)-super hybrid, we know from Theorem

3.7 that the mapping 7' = ﬁs + 11—71 : C — Cis («a, ()-generalized hybrid.

Using Theorem 3.2, we have that 7" has a fixed point in C. From F(T') = F(S),
S has a fixed point in C. [ |

4. NONLINEAR ErRGODIC THEOREM

In this section, using the technique developed by Takahashi [13], we prove a
nonlinear ergodic theorem of Baillon’s type [1] for generalized hybrid mappings in
a Hilbert space.

Theorem 4.1. Let H be a Hilbert space and let C' be a closed convex subset
of H. Let T : C — C be a generalized hybrid mapping with F'(T') # () and let P
be the mertic projection of H onto F(T'). Then, for any = € C,

1 n—1
Spr = - Z Tk
k=0
converges weakly to an element p of F(T'), where p = lim,,_,oc PT"z.

Proof. Since T': C' — C'is a generalized hybrid mapping, there are o, § € R
such that

41)  afTz—Ty|* + (1 - a)|la—Tyl* < BTz — y|I* + (1 - B) |z — y|?
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for all z,y € C. Since T is an («, (3)-generalized hybrid mapping, T is quasi-
nonexpansive. So, we have that F'(T") is closed and convex. Let x € C and let P
be the metric projection of H onto F(T'). Then, we have

|PT 2z — T'z|| < |PT" 'z — Tz
< ||PT" 'z — T .
This implies that {||PT™z — T"x||} is nonincreasing. We also know that for any

veCandue F(T),
(v—Pv,Pv—u)>0

and hence
|v — Po||* < (v — Pv,v —u).

So, we get
|Pv —ul|? = ||Pv— v+ v —ul?
= ||Pv —v||? = 2(Pv — v,u — v) + ||v — ul?
< o —ull® = || Pv —v]|*.
Let m,n € N with m > n. Putting v = T™x and v = PT™x, we have
|PT™x — PT"z|* < | T™x — PT"z|* — ||PT™x — T™x||?
<||T"x — PT"z||* — | PT™x — T™x|%.
So, {PT"z} is a Cauchy sequence. Since F(T') is closed, {PT™z} converges
strongly to an element p of F/(T'). Take u € F(T'). Then we obtain, for any n € N,

n—1
1
1Sz —ull < = > 1T —ull < ||z — ul.
k=0
So, {S,x} is bounded and hence there exists a weakly convergent subsequence
{Sp,z} of {Spz}. If S, x — v, then we have v € F(T). In fact, for any y € C
and £ € NU {0}, we have that

0 < BIT" 2 = y|2 + (1 = B)|T"z -y
— || T = Ty|? — (1 - o)|| ¥ — Ty|?
= B{IT e = Tyl + 2 (T 2 = Ty, Ty - y) + | Ty — y|*}
+ (1= B){IT* 2 = Tyl + 2 (T*z — Ty, Ty —y ) + | Ty - y|I*}
— || T = Ty|? — (1 = o)|| ¥ — Ty|?
= |7y =yl +2 (BT 2 + (1 - B)T*a Ty, Ty —y )
+ (8= ) {IT" 1w — Ty - |5 — Ty|*}.
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Summing up these inequalities with respectto £k = 0,1,...,n —1,

n—1
0 SnHTy—yHQ—i—Q<ZTkx+ﬁ(T”x—x)—nTy,Ty—y>
k=0

+(8 = a){|IT"z — Ty|* — |l — Tyl*}-

Deviding this inequality by n, we have

1
0 < ITy—yl? +2 (S0 + (T —a) =Ty Ty~ )
1
(8 = )T~ Tyl — e — Ty},

where S,z = 23777 T*x. Replacing n by n; and letting n; — oo, we obtain
from S, — v that

0< ITy—yl*+2(w—Ty,Ty—y).

Putting y = v, we have 0 < —||Tv — v||? and hence Tv = v. To complete the
proof, it is sufficient to show that if S,,,2 — v, then v = p. We have that

(T*z — PT*z, PT*z —u) >0
for all uw € F(T). Since {||T*z — PT*z||} is nonincreasing, we have

(u—p, TFx — PT*z) < (PT*z — p, T"z — PT"*x)
< ||PT"z —p| - | T2 — PT"z||
<||PT*z —p| - |z — Px|.

Adding these inequalities from & = 0 to £k = n — 1 and dividing n, we have

LN prtgy < le = PRI
<u—p,Snx—EZPTx>§TZHPTx—pH.
k=0 k=0

Since S,z — v and PT*z — p, we have
(u—p,v—p) <0.

We know v € F(T). So, putting v = v, we have (v — p,v — p) < 0 and hence
lv — p||> < 0. So, we obtain v = p. This completes the proof. |

Remark 1. From Theorem 4.1, we can prove Theorems 1.1 and 1.2. We do
not know whether a nonlinear ergodic theorem of Baillon’s type for super hybrid
mappings in a Hilbert space holds or not.
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5. WEaK CONVERGENCE THEOREM OF MANN’S TYPE

In this section, we prove a weak convergence theorem of Mann’s type [12] for
generalized hybrid mappings in a Hilbert space. Before proving the theorem, we
need the following lemma.

Lemma 5.1. Let H be a Hilbert space and let C be a closed convex subset of
H. Let T : C — C be a generalized hybrid mapping. Then, I — T is demiclosed,
ie, z, — zand z, — Tx,, — 0 imply z € F(T).

Proof. Since T': C' — C'is a generalized hybrid mapping, there are o, § € R
such that

61)  allTz—Ty|> + (1 - o)z — Ty|* < BTz — y|I” + (1 = B)l|l= -yl
for all z,y € C. Suppose z,, — z and z,, — Tz, — 0. Let us consider
(5.2) al|Twy —Tz|* + (1 —a)|zy = T2[* < 8| Ty — 2| + (1 = B) |lan — 2||.
From this inequality, we have
a||Tz, — xp + 2 — T2|> + (1 — )|z, — T2|?
< BlITan — 2o + 20 — 2> + (1 = B)|lan — 2|
and hence
(|| Tzn—xp||>+ |20 —T2|*+2(T2n — Tp, 20— T2)) +(1—a) |2, —Tz|?
< B Tan—znl*+l|2n—2[*+2{T2p —2p, 2o —Tz)) + (1~ 5) 2n—2|.
We apply a Banach limit  to both sides of the inequality. Then, we have
bt (| T —n|* 4|l —T2|* +2(T 2 — 2, 20 —T2)) +(1 — @) i 20 —Tz||?
< Brn(ITn— x|+l — 2>+ 2(T 2~ 20, 20 —T2)) + (1= B) in]| 20— 2|
and hence
afin ||n — Tz|1? + (1 — a)pn ||2n — T2|?
< Bpnllzn — 2|1 + (1 = B) |z — 2.

So, we have p,||z, — Tz||? < pnllz, — 2|2 From |z, — 2z + 2 — Tz||*> <
pnllzn — 2]|%, we also have

pnlln = 21° + pnllz = Tz|* + 20 (20 — 2,2 = T2) < pg |0 — 2||>.
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So, we obtain ||z — Tz||> < 0 and hence ||z — Tz||> < 0. Then, Tz = 2. This
implies that 7 — 7" is demiclosed. |

Using Lemma 5.1 and Ibaraki and Takahashi [6], we can prove the following
theorem. The proof is due to the technique developed by Ibaraki and Takahashi [6]
and [7].

Theorem 5.2. Let H be a Hilbert space and let C' be a closed convex subset
of H. Let T : C — C be a generalized hybrid mapping with F'(T') # () and let P
be the mertic projection of H onto F(T'). Let {«,} be a sequence of real numbers
such that 0 < «,, < 1 and liminf,, . a,(1 — ay,) > 0. Suppose {z,} is the
sequence generated by z; = 2 € C and

Tnt1 = anZp + (1 —ap)Txy, n=12,....

Then, the sequence {z,} converges weakly to an element v of F'(T"), where v =
lim, .o Pz,.

Proof. Let z € F(T). Since T is quasi-nonexpansive, we have

|Zn+1 — ZHQ = lanzn + (1 — o) T, — ZHQ
< apllen — ZHQ + (1 = ap) || T — ZHQ
< apllen — ZHQ + (1 — an)l|zn — ZHQ
= [lzn — 2|12
for all n € N. Hence, lim,, ... ||z, — 2||? exists. So, we have that {x,,} is bounded.
We also have from (2.1) that
|Zn+1 — ZHQ = lanwn + (1 — )Ty — ZHQ
= apllrn — ZHQ + (1 = an) || Ton - ZHQ —ap (1 — ap) || Tr, — anQ
< apllen — ZHQ + (1 —an)l|zn — ZHQ — (1 — ap)|| Tz, — anQ

= ||lzn — ZHQ —an(l — ap)|| Tz, — anQ
So, we have
an(1 = )| Ty — 2n|? < fl2n = 2I° = 201 — 2]

Since lim,, oo ||, — 2||? exists and lim inf,, oo o, (1 — oy, ) > 0, we have || Tz, —
x,|* — 0. Since {x,} is bounded, there exists a subsequence {z,} of {x,} such
that z,,, — v. By Lemma 5.1, we obtain v € F(T'). Let {x,,} and {z,,} be two
subsequences of {z,} such that x,,, — v1 and x,,; — vo. To complete the proof,
we show vy = vy. We know vy, vy € F(T) and hence lim,, oo ||z, — v1]/? and
limy, o [|Zn — v2||? exist. Put
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a = lim (||lz, —vi]|? = zn — v2]?).
n—oo
Note that forn =1,2,...,
0 = vill? = lln —val|* = 2(zn, v —v1) + o1 ||* — [Joz]| .

From x,, — vi and x,,; — v, We have

(5.3) a = 2(vi, vy —v1) + [Jo1]|* — [|vz?
and
(5.4) a = 2(vy, vy — v1) + [Jor]|* = [Jva|*.

Combining (5.3) and (5.4), we obtain 0 = 2(vy—vy, v2—v1) and hence ||ve—v1||? =
0. So, we obtain v, = v;. This implies that {z,,} converges weakly to an element
v of F(T). Since ||zpt1 — 2|| < ||z, — 2|| for all z € F(T) and n € N, we obtain
from Takahashi and Toyoda [18] that { Pz,,} converges strongly to an element p of
F(T). On the other hand, we have from the property of P that

(xy, — Py, Pxy,, —u) >0
for all w € F(T) and n € N. Since z,, — v and Pz,, — p, we obtain
<’U —pP,p— ’LL> Z 0

for all w € F(T). Putting u = v, we obtain p = v. This means v = lim,,_,~ Pzy,.
This completes the proof. ]
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