Vol. 14, No. 6, pp. 2291-2305, December 2010

This paper is available online at http://www.tjm.nsysu.edu.tw/

$l^{\infty}(X) - l^{p}(Y)$ SUMMABILITY OF MAPPING MATRICES

Li Ronglu and Zhong Shuhui*

Abstract. For Banach spaces X and Y, $\mathcal{F}_{C,\delta}(X,Y)$ is a large and meaningful extension of the family L(X,Y) of linear operators. For classical Banach sequence spaces $l^{\infty}(X)$ and $l^p(Y)$ $(p \geq 1)$ we find a characterization of the $l^{\infty}(X) - l^p(Y)$ transformation of matrices of mappings in $\mathcal{F}_{C,\delta}(X,Y)$.

0. Introduction

Let X and Y be topological vector spaces and $f_{ij} \in Y^X$, $i, j \in \mathbb{N}$. For sequence families $\lambda(X) \subset X^{\mathbb{N}}$ and $\mu(Y) \subset Y^{\mathbb{N}}$ the matrix $(f_{ij}) \in (\lambda(X), \mu(Y))$ means that $\sum_{j=1}^{\infty} f_{ij}(x_j)$ converges when $(x_j) \in \lambda(X)$, $i \in \mathbb{N}$ and $(\sum_{j=1}^{\infty} f_{ij}(x_j))_{i=1}^{\infty} \in \mu(Y)$ for each $(x_j) \in \lambda(X)$.

We are interested in the sequence families such as

$$\begin{split} c_0(X) &= \{(x_j) \in X^{\mathbb{N}} : x_j \to 0\}, \\ c(X) &= \{(x_j) \in X^{\mathbb{N}} : \lim x_j \text{ exists}\}, \\ l^{\infty}(X) &= \{(x_j) \in X^{\mathbb{N}} : (x_j) \text{ is bounded}\} \text{ and} \\ l^p(X) &= \{(x_j) \in X^{\mathbb{N}} : \sum_{j=1}^{\infty} \|x_j\|^p < \infty\} \text{ when } X \text{ is normed and } p \geq 1. \end{split}$$

There is a nice result for the family $(l^{\infty}(X), c(Y))$ as follows.

Theorem A. ([1; 2]). Let X, Y be topological vector spaces and $f_{ij}: X \to Y$ a mapping such that $f_{ij}(0) = 0, \ \forall i, j \in \mathbb{N}$. If $(f_{ij}) \in (l^{\infty}(X), c(Y))$, then for every bounded $B \subset X$ the series $\sum_{j=1}^{\infty} f_{ij}(x_j)$ converges uniformly with respect to both $i \in \mathbb{N}$ and $\{x_j\} \subset B$, and $\lim_i f_{ij}(x)$ exists for every $x \in X, j \in \mathbb{N}$.

Received January 8, 2009, accepted April 17, 2009.

Communicated by Bor-Luh Lin.

2000 Mathematics Subject Classification: 47H99, 46A45.

Key words and phrases: Dissecting mapping, Equicontinuity, Summability.

*Corresponding author.

If, in addition, Y is sequentially complete, then the converse holds. Especially, if Y is a Banach space, then $(f_{ij}) \in (l^{\infty}(X), c(Y))$ if and only if

- (1) $\lim_{i} f_{ij}(x)$ exists, $\forall x \in X, j \in \mathbb{N}$, and
- (2) for every bounded $B \subset X$, $\lim_n \sup_{i \in \mathbb{N}, m \geq n, \{x_i\} \subset B} \|\sum_{j=n}^m f_{ij}(x_j)\| = 0$.

Note that for the case of Banach spaces X, Y and continuous linear operators $T_{ij}: X \to Y$, I.J. Maddox gave a characterization of $(T_{ij}) \in (l^{\infty}(X), c(Y))$ [3; 4, p.46]. It is easy to see that the Maddox theorem is a special case of Theorem A.

As an immediate consequence of Theorem A, we have

Theorem B. Let X, Y be topological vector spaces and $f_{ij}: X \to Y$ a mapping such that $f_{ij}(0) = 0, \ \forall i, j \in \mathbb{N}$. Then $(f_{ij}) \in (l^{\infty}(X), c_0(Y))$ if and only if for every bounded $B \subset X$, $\sum_{j=1}^{\infty} f_{ij}(x_j)$ converges uniformly with respect to both $i \in \mathbb{N}$ and $\{x_j\} \subset B$, and $\lim_i f_{ij}(x) = 0, \ \forall x \in X, \ j \in \mathbb{N}; (f_{ij}) \in (l^{\infty}(X), l^{\infty}(Y))$ if and only if for every bounded $B \subset X$ and $\{x_j\} \subset B$, and $\{f_{ij}(x)\}_{i=1}^{\infty}$ is bounded, $\forall x \in X, \ j \in \mathbb{N}$.

Since linear operators form a small subfamily of $\{f \in Y^X : f(0) = 0\}$, the most interesting point in Theorem A and B is just that these results were established for matrices of mappings satisfying f(0) = 0 only. However, for Banach spaces X, Y and matrices of mappings in $\{f \in Y^X : f(0) = 0\}$, we have had no any description of the matrix family $(l^\infty(X), l^p(Y))$ $(p \ge 1)$ as yet.

In this paper we would like to consider a very meaningful subfamily $\mathcal{F}_{C,\delta}(X,Y)$ of $\{f \in Y^X : f(0) = 0\}$. This is a large extension of the family of linear operators, and for matrices of mappings in $\mathcal{F}_{C,\delta}(X,Y)$ we will give a clear-cut characterization of the matrix family $(l^{\infty}(X), l^p(Y))$ $(p \ge 1)$.

1. The Family of Dissecting Mappings

Let X, Y be vector spaces over the scalar field \mathbb{K} . Every linear operator $T: X \to Y$ has the absolutely exact dissecting property:

$$T(x+tu) = T(x) + tT(u), \quad \forall x, u \in X, t \in \mathbb{K}.$$

A function $T: \mathbb{R} \to \mathbb{R}$ is linear if and only if $T(x) = \alpha x$ for all $x \in \mathbb{R}$, where $\alpha = T(1)$ is a constant. Therefore, linear operators in $\mathbb{R}^{\mathbb{R}}$ can be used only to describe Newton's First Law of Motion, i.e., we have

Proposition 1. The physical meaning of a linear operator $T : \mathbb{R} \to \mathbb{R}$ is just a motion at constant speed along a straight-line path.

Definition 1.1. ([5; 6; 7]). Let X, Y be normed spaces over \mathbb{K} . A mapping $f: X \to Y$ is said to be dissecting if f(0) = 0 and there exist $C \ge 1$ and $\delta > 0$ such that every $x, u \in X$ and $t \in \mathbb{K}$ with $||u|| \le \delta$ and $|t| \le 1$ determine $r, s \in \mathbb{K}$ for which $|r-1| \le C|t|$, $|s| \le C|t|$ and f(x+tu) = rf(x) + sf(u).

Let $\mathcal{F}_{C,\delta}(X,Y)$ be the family of dissecting maps related to $C \geq 1$ and $\delta > 0$, and let

 $\mathcal{E}_{C,\delta}(X,Y) = \{ f \in \mathcal{F}_{C,\delta}(X,Y) : \text{ if } x, u \in X \text{ and } t \in \mathbb{K} \text{ for which } ||u|| \le \delta \text{ and } |t| \le 1, \text{ then } f(x+tu) = f(x) + sf(u) \text{ with } |s| \le C|t| \}.$

The family of dissecting maps is a large extension of the family of linear operators. Especially, each nonzero linear operator produces uncountably many of nonlinear dissecting maps (see [5; 6; 7]).

Dissecting maps in $\mathbb{R}^{\mathbb{R}}$ contrast sharply with linear operators in $\mathbb{R}^{\mathbb{R}}$. In fact, since no material object can travel at or beyond the speed of light, it follows from Theorem 1.1 of [7] that every motion in the classical mechanics can be described by a dissecting map in $\mathbb{R}^{\mathbb{R}}$.

Proposition 2. Let (x(t), y(t), z(t)) be the position in \mathbb{R}^3 of a material object at the moment t. Let $a \geq 0$ for which $\dot{x}(a) \neq 0$ and s = t - a for $t \geq a$, f(s) = x(t) - x(a) and f(-s) = -f(s). Then $f \in \mathcal{E}_{C,\delta}(\mathbb{R}, \mathbb{R})$ for some $C \geq 1$ and $\delta > 0$, and similar conclusions hold for y(t) and z(t).

The family of dissecting maps is a very important extension of the family of linear operators. Indeed, we have the following very important result which is an essential improvement of a basic principle of functional analysis.

Recall that for topological vector spaces X and Y a mapping $f: X \to Y$ is bounded if f(B) is bounded when $B \subset X$ is bounded.

Theorem 1.1. ([5; 6; 7]). Let X, Y be normed spaces and X is of second category. Let $C \ge 1$ and $\delta > 0$. If $\Gamma \subset \mathcal{F}_{C,\delta}(X,Y)$ is a pointwise bounded family of bounded dissecting maps, then Γ is equicontinuous on X, i.e., for every $x \in X$ and $\varepsilon > 0$ there is an $\alpha > 0$ such that $||f(z) - f(x)|| < \varepsilon$ for all $f \in \Gamma$ whenever $||z - x|| < \alpha$, and Γ is uniformly bounded on each bounded subset of X, i.e., $\sup_{f \in \Gamma, x \in B} ||f(x)|| < +\infty$ whenever $\sup_{x \in B} ||x|| < +\infty$.

2. Basic Propositions

First, we improve the simple but useful Theorem 1 of [8] which implies that if G is an abelian topological group and $\{x_j\} \subset G$ such that $\sum x_j$ is subseries convergent, then $\{\sum_{j\in\Delta}x_j:\Delta\subseteq\mathbb{N}\}$ is both compact and sequentially compact [8, Corollary 2].

Lemma 2.1. Let G be an abelian topological group. Then for every $\Omega \neq \emptyset$ and $\{f_i\} \subset G^{\Omega}$, the following (α) and (β) are equivalent.

- (a) $\sum_{j=1}^{\infty} f_j(\omega_j)$ converges for each $\{\omega_j\} \subset \Omega$.
- (β) $\sum_{j=1}^{\infty} f_j(\omega_j)$ converges uniformly with respect to $\{\omega_j\} \subset \Omega$.

Proof. If (α) holds but (β) fails, then there exist a neighborhood U of $0 \in G$ and integers $m_1 < n_1 < m_2 < n_2 \cdots$ and $\{\omega_{ij} : m_i \leq j \leq n_i, i \in \mathbb{N}\} \subset \Omega$ such that $\sum_{j=m_i}^{n_i} f_j(\omega_{ij}) \notin U, \ i=1,2,3,\cdots$. Pick an $\omega_0 \in \Omega$ and let

$$\omega_j = \begin{cases} \omega_{ij}, & m_i \le j \le n_i, \ i = 1, 2, 3, \cdots, \\ \omega_0, & \text{otherwise,} \end{cases}$$

then $\sum_{j=1}^{\infty} f_j(\omega_j)$ diverges. This contradicts (α) .

Henceforth, X and Y are Banach spaces and $C \geq 1$. Since $\mathcal{F}_{C,\gamma}(X,Y) \subset \mathcal{F}_{C,\delta}(X,Y)$ for $0 < \delta \leq \gamma$, we always assume that $0 < \delta \leq 1$ in the notion $\mathcal{F}_{C,\delta}(X,Y)$. For $(x_j) \in l^{\infty}(X)$, let $\|(x_j)\|_{\infty} = \sup_{j} \|x_j\|$.

Lemma 2.2. For $f \in \mathcal{F}_{C,\delta}(X,Y)$ the following (1), (2), (3) and (4) are equivalent.

- (1) f is continuous.
- (2) f is bounded, i.e., for every a > 0, $||f||_{(a)} = \sup_{\|x\| \le a} ||f(x)|| < +\infty$.
- (3) If $(u_j) \in c_0(X)$, i.e., $u_j \to 0$ in X, then $\{f(u_j) : j \in \mathbb{N}\}$ is bounded:

$$\sup_{j} ||f(u_j)|| < +\infty.$$

(4) f is continuous at $0 \in X$.

Proof. (1) \Longrightarrow (2). Let $\theta \in (0, \delta)$ for which $\|f(x)\| < 1$ whenever $\|x\| < \theta$, and a > 0. Pick an integer n > 1 for which $\frac{a}{n} < \theta$. Then $\|f(\frac{x}{n})\| < 1$, $\forall \|x\| \le a$. Let $\|x\| \le a$. Since $\|\frac{x}{n}\| < \theta < \delta$, it follows from $f \in \mathcal{F}_{C,\delta}(X,Y)$ that

$$f(x) = f\left(\frac{n-1}{n}x + \frac{x}{n}\right)$$

$$= r_1 f\left(\frac{n-1}{n}x\right) + s_1 f\left(\frac{x}{n}\right)$$

$$= r_1 r_2 f\left(\frac{n-2}{n}x\right) + r_1 s_2 f\left(\frac{x}{n}\right) + s_1 f\left(\frac{x}{n}\right)$$

$$\vdots$$

$$= (r_1 r_2 \cdots r_{n-1} + r_1 r_2 \cdots r_{n-2} s_{n-1} + \cdots + r_1 s_2 + s_1) f\left(\frac{x}{n}\right),$$

where $|r_i| \le 1 + C$, $|s_i| \le C$. Thus, $\sup_{\|x\| \le a} \|f(x)\| \le n(1+C)^{n-1} < +\infty$. (2) \Longrightarrow (3). Obvious.

 $(3) \Longrightarrow (4). \text{ Let } x_j \to 0 \text{ in } X. \text{ May assume that all } x_j \neq 0 \text{ and } \sqrt{\|x_j\|} < \delta, \ \forall \ j \in \mathbb{N}. \text{ Then } x_j = \sqrt{\|x_j\|} \frac{x_j}{\sqrt{\|x_j\|}}, \ \sqrt{\|x_j\|} \to 0 \text{ and } \frac{x_j}{\sqrt{\|x_j\|}} \to 0: \|\frac{x_j}{\sqrt{\|x_j\|}}\| = \sqrt{\|x_j\|} \to 0. \text{ By (3), } \sup_j \|f(\frac{x_j}{\sqrt{\|x_j\|}})\| = M < +\infty \text{ and so}$

$$||f(x_j)|| = ||f(\sqrt{||x_j||} \frac{x_j}{\sqrt{||x_j||}})|| = ||s_j f(\frac{x_j}{\sqrt{||x_j||}})|| \le C\sqrt{||x_j||}M \to 0,$$

i.e., $f(x_i) \to 0 = f(0)$.

 $(4) \Longrightarrow (1). \text{ Let } x_j \to x \text{ in } X. \text{ May assume that all } x_j \neq x \text{ and } \sqrt{\|x_j - x\|} < \delta, \ \forall j \in \mathbb{N}. \text{ Then } f(x_j) = f(x + x_j - x) = f(x + \sqrt{\|x_j - x\|} \frac{x_j - x}{\sqrt{\|x_j - x\|}}) = r_j f(x) + s_j f(\frac{x_j - x}{\sqrt{\|x_j - x\|}}) \text{ where } |r_j - 1| \leq C \sqrt{\|x_j - x\|} \to 0 \text{ and } |s_j| \leq C \sqrt{\|x_j - x\|} \to 0.$ Since $\|\frac{x_j - x}{\sqrt{\|x_j - x\|}}\| = \sqrt{\|x_j - x\|} \to 0, \ f(\frac{x_j - x}{\sqrt{\|x_j - x\|}}) \to 0 \text{ by } (4), \ f(x_j) = r_j f(x) + s_j f(\frac{x_j - x}{\sqrt{\|x_j - x\|}}) \to f(x).$

Lemma 2.3. Let $k \in \mathbb{N}$ and $f_{ij} \in \mathcal{F}_{C,\delta}(X,Y)$ be bounded, $\forall i, j \in \mathbb{N}$. If $(f_{ij})_{i,j\in\mathbb{N}} \in (l^{\infty}(X), l^{1}(Y))$ and

$$\Phi_k((x_j)) = \Big(\sum_{j=1}^{\infty} f_{1j}(x_j), \sum_{j=1}^{\infty} f_{2j}(x_j), \cdots, \sum_{j=1}^{\infty} f_{kj}(x_j), 0, 0, \cdots\Big), (x_j) \in l^{\infty}(X),$$

then $\Phi_k: l^{\infty}(X) \to l^1(Y)$ is continuous at $0 \in l^{\infty}(X)$, and for every a > 0,

$$\|\Phi_k\|_{(a)} = \sup_{\|(x_j)\|_{\infty} \le a} \sum_{i=1}^k \left\| \sum_{j=1}^\infty f_{ij}(x_j) \right\| < +\infty.$$

Proof. Let a > 0, $\varepsilon > 0$. Since $\sum_{j=1}^{\infty} f_{ij}(x_j)$ converges for each $\{x_j\} \subset \{x \in X : ||x|| \le a\}$ and $i \in \mathbb{N}$, Lemma 2.1 shows that there is an $n_0 \in \mathbb{N}$ for which

$$\left\| \sum_{j=n_0+1}^{\infty} f_{ij}(x_j) \right\| < \varepsilon/2k, \quad \forall \, \|(x_j)\|_{\infty} \le a, \ 1 \le i \le k.$$

By Lemma 2.2, for $i, j \in \mathbb{N}$ there is $\theta_{ij} > 0$ such that $\|f_{ij}(x)\| < \varepsilon/2kn_0$ whenever $\|x\| \le \theta_{ij}$, and let $\theta = \min\{\theta_{ij} : 1 \le i \le k, \ 1 \le j \le n_0\}$. Then $\|f_{ij}(x)\| < \varepsilon/2kn_0$, $\forall \|x\| \le \theta$, $1 \le i \le k, \ 1 \le j \le n_0$. Hence for $\|(x_j)\|_{\infty} \le \min(\theta, a)$ we have that $\|\Phi_k((x_j))\|_1 = \sum_{i=1}^k \|\sum_{j=1}^\infty f_{ij}(x_j)\| \le \sum_{i=1}^k \sum_{j=1}^{n_0} \|f_{ij}(x_j)\| + \sum_{i=1}^k \|\sum_{j=n_0+1}^\infty f_{ij}(x_j)\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.

Thus, Φ_k is continuous at $0 \in l^{\infty}(X)$. Let $||(x_i)||_{\infty} \le a$. It follows from Lemma 2.2 that

$$\sum_{i=1}^{k} \left\| \sum_{j=1}^{\infty} f_{ij}(x_j) \right\| \le \sum_{i=1}^{k} \sum_{j=1}^{n_0} \|f_{ij}(x_j)\| + \sum_{i=1}^{k} \left\| \sum_{j=n_0+1}^{\infty} f_{ij}(x_j) \right\|$$

$$\le \sum_{i=1}^{k} \sum_{j=1}^{n_0} \sup_{\|x\| \le a} \|f_{ij}(x)\| + \frac{\varepsilon}{2}$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{n_0} \|f_{ij}\|_{(a)} + \frac{\varepsilon}{2} < +\infty.$$

Lemma 2.4. Let $f_i \in \mathcal{F}_{C,\delta}(X,Y)$ be bounded, $\forall i \in \mathbb{N}$. If $\sum_{i=1}^{\infty} \|f_i(x)\| < +\infty$ for each $x \in X$, then the function sequence $\{\sum_{i=1}^n \|f_i(\cdot)\| \in \mathbb{R}^X : n \in \mathbb{N}\}$ is equicontinuous at $0 \in X$, i.e., $\forall \varepsilon > 0 \exists \gamma > 0$ such that $\sum_{i=1}^n \|f_i(x)\| \le \varepsilon$ for all $\|x\| < \gamma$ and all $n \in \mathbb{N}$. Thus, $\sum_{i=1}^{\infty} \|f_i(\cdot)\| : X \to \mathbb{R}$ is continuous at $0 \in X$.

Proof. Let $0<\varepsilon<1,\ I=[0,\frac{\varepsilon}{2(1+C)}]$ and $M=\{x\in X:\|x\|\leq\delta,\ \sum_{i=1}^n\|f_i(x)\|\in S_i\}$ I for all $n \in \mathbb{N}$. Then $0 \in M$.

By Lemma 2.2, $\sum_{i=1}^{n} \|f_i(\cdot)\| : X \to \mathbb{R}$ is continuous for all $n \in \mathbb{N}$ and so Mis a nonempty closed set in X.

Let $x \in X$ and $\alpha \in (0,1)$ for which $\|\alpha x\| \leq \delta$, and $\theta = \frac{\varepsilon}{2(1+C)(1+\sum_{i=1}^{\infty}\|f_i(\alpha x)\|)}$ If $0 \le t \le \frac{\theta}{C}$, then

$$\sum_{i=1}^{n} \|f_i(t\alpha x)\| = \sum_{i=1}^{n} \|s_i f_i(\alpha x)\| \qquad (|s_i| \le Ct \le \theta)$$
$$\le \theta \sum_{i=1}^{n} \|f_i(\alpha x)\| < \frac{\varepsilon}{2(1+C)}, \quad \forall n \in \mathbb{N},$$

i.e., $t\alpha x \in M, \ \forall \ 0 \leq t \leq \frac{\theta}{C}.$ Hence, $\frac{1}{n}x = \frac{1}{n\alpha}\alpha x \in M$ whenever $n \geq \frac{C}{\alpha\theta}.$ This shows that $X = \bigcup_{n=1}^{\infty} nM.$ Since X is a Banach space, it follows from Baire category theorem that $\{x \in X : ||x|| < \gamma\} \subset M - M = \{u - v : u, v \in M\}$ for some $\gamma > 0$.

Let $x, u \in M$. Then $||u|| \le \delta$. Since ||y + tz|| = ||y|| + s||z|| with $|s| \le |t|$ for $y, z \in Y$ and $t \in \mathbb{K}$, it follows that $\sum_{i=1}^n ||f_i(x-u)|| = \sum_{i=1}^n ||r_if_i(x) + s_if_i(u)|| = \sum_{i=1}^n (||r_if_i(x)|| + s_i'||f_i(u)||) = \sum_{i=1}^n ||r_i|||f_i(x)|| + \sum_{i=1}^n s_i'||f_i(u)||, \ \forall n \in \mathbb{N}$, where $|r_i - 1| \le C||-1| = C$, $||s_i'|| \le ||s_i|| \le C||-1| = C$. Hence,

$$\sum_{i=1}^{n} \|f_i(x-u)\| \le (1+C) \left(\sum_{i=1}^{n} \|f_i(x)\| + \sum_{i=1}^{n} \|f_i(u)\| \right)$$

$$\leq (1+C)\Big(\frac{\varepsilon}{2(1+C)} + \frac{\varepsilon}{2(1+C)}\Big) = \varepsilon, \quad \forall \, n \in \mathbb{N}.$$

Since $\{x \in X : \|x\| < \gamma\} \subset M - M$, $\sum_{i=1}^{n} \|f_i(x)\| \le \varepsilon$ when $n \in \mathbb{N}$ and $\|x\| < \gamma$.

Lemma 2.5. Let $n \in \mathbb{N}$ and $f_{ij} \in \mathcal{F}_{C,\delta}(X,Y)$ be bounded, $\forall i, j \in \mathbb{N}$. If $(f_{ij})_{i,j\in\mathbb{N}} \in (l^{\infty}(X), l^{1}(Y))$ and

$$F_n((x_j)) = \left(\sum_{j=1}^n f_{ij}(x_j)\right)_{i=1}^{\infty}, (x_j) \in l^{\infty}(X),$$

then $F_n: l^{\infty}(X) \to l^1(Y)$ is continuous at $0 \in l^{\infty}(X)$ and for every a > 0,

$$||F_n||_{(a)} = \sup_{\|(x_j)\|_{\infty} \le a} \sum_{i=1}^{\infty} \left\| \sum_{j=1}^n f_{ij}(x_j) \right\| < +\infty.$$

Proof. Let $\lim_k (x_{kj})_{j=1}^{\infty} = 0$ in $l^{\infty}(X)$, i.e., $\lim_k \sup_j ||x_{kj}|| = 0$.

Since $(f_{ij})_{i,j\in\mathbb{N}}\in(l^\infty(X),l^1(Y))$ and $(0,\cdots,0,\stackrel{(j)}{x},0,0,\cdots)\in l^\infty(X)$ when $x\in X$ and $j\in\mathbb{N}, \ \sum_{i=1}^\infty\|f_{ij}(x)\|\leq +\infty$ for every $x\in X$ and $j\in\mathbb{N}$. By Lemma 2.4, $\lim_k\sum_{i=1}^\infty\|f_{ij}(x_{kj})\|=0$ for each $j\in\mathbb{N}$ and

$$\lim_{k} \|F_n((x_{kj})_{j=1}^{\infty})\|_1 = \lim_{k} \sum_{i=1}^{\infty} \left\| \sum_{j=1}^n f_{ij}(x_{kj}) \right\| \le \lim_{k} \sum_{j=1}^n \sum_{i=1}^{\infty} \|f_{ij}(x_{kj})\| = 0.$$

Thus, $F_n: l^{\infty}(X) \to l^1(Y)$ is continuous at $0 \in l^{\infty}(X)$.

Let a>0. By Lemma 2.4, for each $j\in\mathbb{N}$ there is a $\theta_j\in(0,\delta)$ such that $\sum_{i=1}^{\infty}\|f_{ij}(x)\|<1$ whenever $\|x\|<\theta_j$. Letting $\theta=\min(\theta_1,\theta_2,\cdots,\theta_n)$, $\sum_{i=1}^{\infty}\|f_{ij}(x)\|<1$, $\forall\,\|x\|<\theta$, $1\leq j\leq n$.

 $\sum_{i=1}^{\infty} \|f_{ij}(x)\| < 1, \ \forall \ \|x\| < \theta, \ 1 \leq j \leq n.$ Pick an integer $n_0 > \frac{a}{\theta}$ and let $j \in \{1, 2, \cdots, n\}, \ \|x\| \leq a.$ Then $\|\frac{x}{n_0}\| = \frac{\|x\|}{n_0} < \theta < \delta$ and

$$\sum_{i=1}^{\infty} \|f_{ij}(x)\| = \sum_{i=1}^{\infty} \left\| f_{ij} \left(\frac{n_0 - 1}{n_0} x + \frac{x}{n_0} \right) \right\|$$

$$= \sum_{i=1}^{\infty} \left\| r_{ij1} f_{ij} \left(\frac{n_0 - 1}{n_0} x \right) + s_{ij1} f_{ij} \left(\frac{x}{n_0} \right) \right\|$$

$$= \sum_{i=1}^{\infty} \left\| r_{ij1} r_{ij2} f \left(\frac{n_0 - 2}{n_0} x \right) + r_{ij1} s_{ij2} f_{ij} \left(\frac{x}{n_0} \right) + s_{ij1} f_{ij} \left(\frac{x}{n_0} \right) \right\|$$

$$\vdots$$

$$= \sum_{i=1}^{\infty} \left\| (r_{ij1}r_{ij2} \cdots r_{ij \ n_0-1} + r_{ij1}r_{ij2} \cdots r_{ij \ n_0-2}s_{ij \ n_0-1} + \cdots + r_{ij1}s_{ij2} + s_{ij1}) f_{ij} \left(\frac{x}{n_0}\right) \right\|,$$

where $|r_{ijk} - 1| \le C|1| = C$, $|s_{ijk}| \le C|1| = C$ and so

$$\sum_{i=1}^{\infty} \|f_{ij}(x)\| \le n_0 (1+C)^{n_0-1} \sum_{i=1}^{\infty} \|f_{ij}(\frac{x}{n_0})\|$$

$$\le n_0 (1+C)^{n_0-1}, \quad \forall \|x\| \le a, \ 1 \le j \le n,$$

$$\|F_n\|_{(a)} = \sup_{\|(x_j)\|_{\infty} \le a} \sum_{i=1}^{\infty} \|\sum_{j=1}^{n} f_{ij}(x_j)\|$$

$$\le \sup_{\|(x_j)\|_{\infty} \le a} \sum_{j=1}^{n} \sum_{i=1}^{\infty} \|f_{ij}(x_j)\|$$

$$\le n n_0 (1+C)^{n_0-1} < +\infty.$$

We also need a useful fact in linear algebra.

Lemma 2.6. ([9, Lemma 3.2]). Let E be a vector space and V a convex set in E, $0 \in V$. If $x_1, x_2, \dots, x_n \in E$ and M > 0 such that

$$M \sum_{j \in \Delta} x_j \in V, \ \forall \Delta \subseteq \{1, 2, \dots, n\}, \ \Delta \neq \emptyset,$$

then $\sum_{j=1}^{n} s_j x_j \in V$, $\forall 0 \le s_j \le M$, $j = 1, 2, \dots, n$.

3. A Characterization of the Matrix Family $(l^\infty(X), l^p(Y))$

Let $X,\ Y$ be real Banach spaces and $C\geq 1,\ \delta>0.$ Let Y' be the dual space of Y.

Theorem 3.1. Let $f_{ij} \in \mathcal{F}_{C,\delta}(X,Y)$ be bounded, $\forall i, j \in \mathbb{N}$. If $(f_{ij})_{i,j\in\mathbb{N}} \in (l^{\infty}(X), l^{1}(Y))$ and

$$[f_{ij}]((x_j)) = \Big(\sum_{i=1}^{\infty} f_{ij}(x_j)\Big)_{i=1}^{\infty}, (x_j) \in l^{\infty}(X),$$

then for every $a \geq 0$,

$$||[f_{ij}]||_{(a)} = \sup_{\|(x_j)\|_{\infty} \le a} \sum_{i=1}^{\infty} \left\| \sum_{j=1}^{\infty} f_{ij}(x_j) \right\| < +\infty.$$

Proof. Suppose that a > 0 and $\|[f_{ij}]\|_{(a)} = +\infty$. Pick $(x_{1j}) \in l^{\infty}(X)$ for which $\|(x_{1j})\|_{\infty} \leq a$ and $\sum_{i=1}^{\infty} \|\sum_{j=1}^{\infty} f_{ij}(x_{1j})\| > 1$. Then $\sum_{i=1}^{i_1} \|\sum_{j=1}^{\infty} f_{ij}(x_{1j})\| > 1$ for some $i_1 > 1$ and so $\sum_{i=1}^{i_1} \|\sum_{j=1}^{n_1} f_{ij}(x_{1j})\| > 1$ for some $n_1 > 1$.

For each $i \in \{1, 2, \dots, i_1\}$ pick $y_i' \in Y'$ with $||y_i'|| = 1$ and $||\sum_{j=1}^{n_1} f_{ij}(x_{1j})|| = y_i'(\sum_{j=1}^{n_1} f_{ij}(x_{1j}))$. Then $\sum_{i=1}^{i_1} y_i'(\sum_{j=1}^{n_1} f_{ij}(x_{1j})) > 1$.

Let $\Phi_{i_1}((x_j)) = (\sum_{j=1}^{\infty} f_{1j}(x_j), \cdots, \sum_{j=1}^{\infty} f_{i_1j}(x_j), 0, 0, \cdots)$ and $F_{n_1}((x_j)) = (\sum_{j=1}^{n_1} f_{ij}(x_j))_{i=1}^{\infty}, \ \forall (x_j) \in l^{\infty}(X)$. By Lemma 2.3 and 2.5,

$$\|\Phi_{i_1}\|_{(a)} = \sup_{\|(x_j)\|_{\infty} \le a} \sum_{i=1}^{i_1} \left\| \sum_{j=1}^{\infty} f_{ij}(x_j) \right\| < +\infty,$$

$$\|F_{n_1}\|_{(a)} = \sup_{\|(x_j)\|_{\infty} \le a} \sum_{i=1}^{\infty} \left\| \sum_{j=1}^{n_1} f_{ij}(x_j) \right\| < +\infty.$$

Since $\|[f_{ij}]\|_{(a)} = +\infty$, there is $(x_{2j}) \in l^{\infty}(X)$ with $\|(x_{2j})\|_{\infty} \leq a$ such that $\sum_{i=1}^{\infty} \|\sum_{j=1}^{\infty} f_{ij}(x_{2j})\| > 1 + \|\Phi_{i_1}\|_{(a)} + \|F_{n_1}\|_{(a)}$. Then $\sum_{i=1}^{i_2} \|\sum_{j=1}^{n_2} f_{ij}(x_{2j})\| > 1 + \|\Phi_{i_1}\|_{(a)} + \|F_{n_1}\|_{(a)}$ for some $i_2 > i_1$ and $n_2 > n_1$, and it follows from $\|\Phi_{i_1}\|_{(a)} \geq \sum_{i=1}^{i_1} \|\sum_{j=1}^{n_2} f_{ij}(x_{2j}) + \sum_{j=n_2+1}^{\infty} f_{ij}(0)\| = \sum_{i=1}^{i_1} \|\sum_{j=1}^{n_2} f_{ij}(x_{2j})\|$ and $\|F_{n_1}\|_{(a)} \geq \sum_{i=1}^{\infty} \|\sum_{j=1}^{n_1} f_{ij}(x_{2j})\|$ that

$$\sum_{i=1}^{n_2} \left\| \sum_{j=1}^{n_2} f_{ij}(x_{2j}) \right\| > 1 + \sum_{i=1}^{n_1} \left\| \sum_{j=1}^{n_2} f_{ij}(x_{2j}) \right\| + \sum_{i=1}^{\infty} \left\| \sum_{j=1}^{n_1} f_{ij}(x_{2j}) \right\|$$

$$\geq 1 + \sum_{i=1}^{n_1} \left\| \sum_{j=1}^{n_2} f_{ij}(x_{2j}) \right\| + \sum_{i=i_1+1}^{n_2} \left\| \sum_{j=1}^{n_1} f_{ij}(x_{2j}) \right\|,$$

i.e.,
$$\sum_{i=i_1+1}^{i_2} \| \sum_{j=1}^{n_2} f_{ij}(x_{2j}) \| > 1 + \sum_{i=i_1+1}^{i_2} \| \sum_{j=1}^{n_1} f_{ij}(x_{2j}) \| \text{ and }$$

$$\sum_{i=i_1+1}^{i_2} \| \sum_{j=n_1+1}^{n_2} f_{ij}(x_{2j}) \| = \sum_{i=i_1+1}^{i_2} \| \sum_{j=1}^{n_2} f_{ij}(x_{2j}) - \sum_{j=1}^{n_1} f_{ij}(x_{2j}) \|$$

$$\geq \sum_{i=i_1+1}^{i_2} \left(\| \sum_{j=1}^{n_2} f_{ij}(x_{2j}) \| - \| \sum_{j=1}^{n_1} f_{ij}(x_{2j}) \| \right)$$

$$= \sum_{i=i_1+1}^{i_2} \| \sum_{j=1}^{n_2} f_{ij}(x_{2j}) \| - \sum_{i=i_1+1}^{i_2} \| \sum_{j=1}^{n_1} f_{ij}(x_{2j}) \| > 1.$$

Now for each $i \in \{i_1+1,i_1+2,\cdots,i_2\}$ pick $y_i' \in Y'$ with $\|y_i'\|=1$ and $\|\sum_{j=n_1+1}^{n_2}f_{ij}(x_{2j})\|=y_i'(\sum_{j=n_1+1}^{n_2}f_{ij}(x_{2j}))$. Then

$$\sum_{i=i_1+1}^{i_2} y_i'(\sum_{j=n_1+1}^{n_2} f_{ij}(x_{2j})) > 1$$

.

Continuing this construction inductively gives integer sequences $0=i_0< i_1< i_2< i_3< \cdots,\ 0=n_0< n_1< n_2< n_3< \cdots \text{ and } \{y_i'\}\subset Y' \text{ with } \|y_i'\|=1 \text{ and } \{x_{kj}:n_{k-1}+1\leq j\leq n_k,k\in\mathbb{N}\}\subset \{x\in X:\|x\|\leq a\} \text{ such that }$

$$y_i'\left(\sum_{j=n_{k-1}+1}^{n_k} f_{ij}(x_{kj})\right) = \left\|\sum_{j=n_{k-1}+1}^{n_k} f_{ij}(x_{kj})\right\|, \ i_{k-1}+1 \le i \le i_k, \ k=1,2,3,\cdots,$$

(*)
$$\sum_{i=i_{k-1}+1}^{i_k} y_i' \Big(\sum_{j=n_{k-1}+1}^{n_k} f_{ij}(x_{kj}) \Big) > 1, \quad k = 1, 2, 3, \cdots.$$

Consider the matrix $[\sum_{i=i_{k-1}+1}^{i_k}y_i'(\sum_{j=n_{p-1}+1}^{n_p}f_{ij}(x_{pj}))]_{k,p\in\mathbb{N}}$. Fix $p\in\mathbb{N}$ and let

$$z_j = \begin{cases} x_{pj}, & n_{p-1} + 1 \le j \le n_p, \\ 0, & \text{otherwise.} \end{cases}$$

Then $(z_j) \in l^{\infty}(X)$ and $\sum_{i=1}^{\infty} \|\sum_{j=n_{p-1}+1}^{n_p} f_{ij}(x_{pj})\| = \sum_{i=1}^{\infty} \|\sum_{j=1}^{\infty} f_{ij}(z_j)\| < +\infty$ and so

$$0 \le \lim_{k} \Big| \sum_{i=i_{k-1}+1}^{i_{k}} y_{i}' \Big(\sum_{j=n_{p-1}+1}^{n_{p}} f_{ij}(x_{pj}) \Big) \Big|$$

$$\le \lim_{k} \sum_{i=i_{k-1}+1}^{i_{k}} \Big| y_{i}' \Big(\sum_{j=n_{p-1}+1}^{n_{p}} f_{ij}(x_{pj}) \Big) \Big|$$

$$\le \lim_{k} \sum_{i=i_{k-1}+1}^{i_{k}} \|y_{i}'\| \left\| \sum_{j=n_{p-1}+1}^{n_{p}} f_{ij}(x_{pj}) \right\|$$

$$= \lim_{k} \sum_{i=i_{k-1}+1}^{i_{k}} \left\| \sum_{j=n_{p-1}+1}^{n_{p}} f_{ij}(x_{pj}) \right\| = 0,$$

i.e., $\lim_k \sum_{i=i_{k-1}+1}^{i_k} y_i'(\sum_{j=n_{p-1}+1}^{n_p} f_{ij}(x_{pj})) = 0, \ \forall p \in \mathbb{N}.$

$$\operatorname{Let} p_1 < p_2 < \cdots \text{ in } \mathbb{N} \text{ and } u_j = \begin{cases} x_{p_{\nu}j}, & n_{p_{\nu}-1}+1 \leq j \leq n_{p_{\nu}}, \ \nu=1,2,3,\cdots, \\ 0, & \text{otherwise.} \end{cases}$$

Then $(u_j) \in l^{\infty}(X)$ and $\sum_{i=1}^{\infty} \|\sum_{j=1}^{\infty} f_{ij}(u_j)\| < +\infty$. Hence,

$$0 = \lim_{k} \sum_{i=i_{k-1}+1}^{i_k} \left\| \sum_{j=1}^{\infty} f_{ij}(u_j) \right\|$$

$$\geq \lim_{k} \sum_{i=i_{k-1}+1}^{i_{k}} \left| y_{i}' \left(\sum_{j=1}^{\infty} f_{ij}(u_{j}) \right) \right|$$

$$\geq \lim_{k} \left| \sum_{i=i_{k-1}+1}^{i_{k}} y_{i}' \left(\sum_{j=1}^{\infty} f_{ij}(u_{j}) \right) \right|$$

$$= \lim_{k} \left| \sum_{i=i_{k-1}+1}^{i_{k}} \sum_{j=1}^{\infty} y_{i}' (f_{ij}(u_{j})) \right|$$

$$= \lim_{k} \left| \sum_{i=i_{k-1}+1}^{i_{k}} \sum_{\nu=1}^{\infty} \sum_{j=n_{p_{\nu}-1}+1}^{n_{p_{\nu}}} y_{i}' (f_{ij}(x_{p_{\nu}j})) \right|$$

$$= \lim_{k} \left| \sum_{\nu=1}^{\infty} \sum_{i=i_{k-1}+1}^{i_{k}} y_{i}' \left(\sum_{j=n_{p_{\nu}-1}+1}^{n_{p_{\nu}}} f_{ij}(x_{p_{\nu}j}) \right) \right| \geq 0,$$

i.e., $\lim_k \sum_{\nu=1}^\infty \sum_{i=i_{k-1}+1}^{i_k} y_i'(\sum_{j=n_{p_v-1}+1}^{n_{p_v}} f_{ij}(x_{p_vj})) = 0.$ Then $\lim_k \sum_{i=i_{k-1}+1}^{i_k} y_i'(\sum_{j=n_{k-1}+1}^{n_k} f_{ij}(x_{kj})) = 0$ by Antosik-Mikusinski matrix theorem [10; 11; 2]. This contradicts (*) and so $\|[f_{ij}]\|_{(a)} < +\infty$.

Lemma 3.1. p, p' > 1, $\frac{1}{p} + \frac{1}{p'} = 1$ and $f_{ij} \in Y^X$ for $i, j \in \mathbb{N}$. Then $(f_{ij})_{i,j\in\mathbb{N}} \in (l^{\infty}(X), l^p(Y))$ if and only if $(s_i f_{ij})_{i,j\in\mathbb{N}} \in (l^{\infty}(X), l^1(Y))$ for each $(s_i) \in l^{p'}$.

Proof. If $\sum_{i=1}^{\infty} \|\sum_{j=1}^{\infty} f_{ij}(x_j)\|^p < +\infty$ and $(s_i) \in l^{p'}$, then

$$\sum_{i=1}^{\infty} \left\| \sum_{j=1}^{\infty} s_i f_{ij}(x_j) \right\| = \sum_{i=1}^{\infty} |s_i| \left\| \sum_{j=1}^{\infty} f_{ij}(x_j) \right\|$$

$$\leq \left(\sum_{i=1}^{\infty} |s_i|^{p'} \right)^{1/p'} \left(\sum_{i=1}^{\infty} \left\| \sum_{j=1}^{\infty} f_{ij}(x_j) \right\|^p \right)^{1/p} < +\infty.$$

Conversely, if $\sum_{i=1}^{\infty} |s_i| \| \sum_{j=1}^{\infty} f_{ij}(x_j) \| = \sum_{i=1}^{\infty} \| \sum_{j=1}^{\infty} s_i f_{ij}(x_j) \| < +\infty$, $\forall (s_i) \in l^{p'}$, then $\sum_{i=1}^{\infty} \| \sum_{j=1}^{\infty} f_{ij}(x_j) \|^p < +\infty$.

Theorem 3.2. Let $p \geq 1$ and $f_{ij} \in \mathcal{F}_{C,\delta}(X,Y)$ be bounded, $\forall i, j \in \mathbb{N}$. If $(f_{ij})_{i,j\in\mathbb{N}}\in(l^{\infty}(X),l^{p}(Y))$ and

$$[f_{ij}]((x_j)) = \Big(\sum_{j=1}^{\infty} f_{ij}(x_j)\Big)_{i=1}^{\infty}, (x_j) \in l^{\infty}(X),$$

then for every a > 0,

$$\sup_{\|(x_j)\|_{\infty} \le a} \left(\sum_{i=1}^{\infty} \left\| \sum_{j=1}^{\infty} f_{ij}(x_j) \right\|^p \right)^{1/p} < +\infty.$$

Proof. By Theorem 3.1, the conclusion holds when p=1. Let p>1, $\frac{1}{p'}+\frac{1}{p}=1$ and a>0. By Lemma 3.1 and Theorem 3.1,

$$\sup_{\|(x_j)\|_{\infty} \le a} \Big| \sum_{i=1}^{\infty} s_i \Big\| \sum_{j=1}^{\infty} f_{ij}(x_j) \Big\| \Big| \le \sup_{\|(x_j)\|_{\infty} \le a} \sum_{i=1}^{\infty} \Big\| \sum_{j=1}^{\infty} s_i f_{ij}(x_j) \Big\| < +\infty, \ \forall (s_i) \in l^{p'}.$$

Hence $\{(\|\sum_{j=1}^{\infty} f_{ij}(x_j)\|)_{i=1}^{\infty} : \|(x_j)\|_{\infty} \leq a\}$ is a pointwise bounded subfamily of $l^p = (l^{p'})'$. Then the resonance theorem shows that

$$\sup_{\|(x_j)\|_{\infty} \le a} \left(\sum_{i=1}^{\infty} \left\| \sum_{j=1}^{\infty} f_{ij}(x_j) \right\|^p \right)^{1/p} < +\infty.$$

Now for $f_{ij} \in \mathcal{F}_{C,\delta}(X,Y)$ $(i, j \in \mathbb{N})$ and $i \in \mathbb{N}$ let

$$||(f_{in}, f_{in+1}, f_{in+2}, \cdots)|| = \sup_{k \ge n, ||(x_j)||_{\infty} \le 1} \left\| \sum_{j=n}^{k} f_{ij}(x_j) \right\|,$$

the group norm of $(f_{ij})_{j\geq n}$ [4, p.5] which is the key object in the Maddox results of [3; 4]. Moreover, for $p\geq 1$ and a>0 let

$$||[f_{ij}]||_{p,a} = \sup_{m,n \ge 1, ||(x_j)||_{\infty} \le a} \left(\sum_{i=1}^m \left\| \sum_{j=1}^n f_{ij}(x_j) \right\|^p \right)^{1/p}.$$

Theorem 3.3. Let $p \ge 1$ and $f_{ij} \in \mathcal{F}_{C,\delta}(X,Y)$ be bounded, $\forall i, j \in \mathbb{N}$. If $(f_{ij})_{i,j\in\mathbb{N}} \in (l^{\infty}(X), l^p(Y))$, then for every a > 0,

$$||[f_{ij}]||_{p,a} = \sup_{\|(x_j)\|_{\infty} \le a} \Big(\sum_{i=1}^{\infty} \Big\| \sum_{j=1}^{\infty} f_{ij}(x_j) \Big\|^p \Big)^{1/p} < +\infty.$$

Proof. Let a>0. If $\|(x_j)\|_{\infty}\leq a$, then $\|(x_1,x_2,\cdots,x_n,0,0,\cdots)\|_{\infty}\leq a$ for all n and so $(\sum_{i=1}^{\infty}\|\sum_{j=1}^nf_{ij}(x_j)\|^p)^{1/p}\leq\sup_{\|(z_j)\|_{\infty}\leq a}(\sum_{i=1}^{\infty}\|\sum_{j=1}^{\infty}f_{ij}(z_j)\|^p)^{1/p}$, $\forall\,n\in\mathbb{N}$. By Theorem 3.2,

$$||[f_{ij}]||_{p,a} = \sup_{m,n\geq 1, ||(x_j)||_{\infty}\leq a} \left(\sum_{i=1}^{m} \left\|\sum_{j=1}^{n} f_{ij}(x_j)\right\|^{p}\right)^{1/p}$$

$$= \sup_{n\geq 1, ||(x_j)||_{\infty}\leq a} \left(\sum_{i=1}^{\infty} \left\|\sum_{j=1}^{n} f_{ij}(x_j)\right\|^{p}\right)^{1/p}$$

$$\leq \sup_{||(z_j)||_{\infty}\leq a} \left(\sum_{i=1}^{\infty} \left\|\sum_{j=1}^{\infty} f_{ij}(z_j)\right\|^{p}\right)^{1/p} < +\infty.$$

Let a > 0 and $||(x_j)||_{\infty} \le a$. Then

$$\left(\sum_{i=1}^{\infty} \left\|\sum_{j=1}^{\infty} f_{ij}(x_{j})\right\|^{p}\right)^{1/p} = \sup_{m \geq 1} \left(\sum_{i=1}^{m} \left\|\sum_{j=1}^{\infty} f_{ij}(x_{j})\right\|^{p}\right)^{1/p}$$

$$\leq \sup_{m \geq 1, \|(z_{j})\|_{\infty} \leq a} \left(\sum_{i=1}^{m} \left\|\sum_{j=1}^{\infty} f_{ij}(z_{j})\right\|^{p}\right)^{1/p}$$

$$= \sup_{m \geq 1, \|(z_{j})\|_{\infty} \leq a} \lim_{n} \left(\sum_{i=1}^{m} \left\|\sum_{j=1}^{n} f_{ij}(z_{j})\right\|^{p}\right)^{1/p}$$

$$\leq \sup_{m \geq 1, \|(z_{j})\|_{\infty} \leq a} \sup_{n \geq 1} \left(\sum_{i=1}^{m} \left\|\sum_{j=1}^{n} f_{ij}(z_{j})\right\|^{p}\right)^{1/p}$$

$$= \sup_{m,n \geq 1, \|(z_{j})\|_{\infty} \leq a} \left(\sum_{i=1}^{m} \left\|\sum_{j=1}^{n} f_{ij}(z_{j})\right\|^{p}\right)^{1/p}$$

$$= \|[f_{ij}]\|_{p,a}.$$

Recall that $0 < \delta \le 1$ and $C \ge 1$ in the notation $\mathcal{F}_{C,\delta}(X,Y)$.

Theorem 3.4. Let $p \geq 1$ and $f_{ij} \in \mathcal{F}_{C,\delta}(X,Y)$ be bounded, $\forall i, j \in \mathbb{N}$. Then $(f_{ij})_{i,j\in\mathbb{N}} \in (l^{\infty}(X), l^p(Y))$ if and only if

- (I) for each $i \in \mathbb{N}$, $\lim_n \|(f_{in}, f_{i n+1}, f_{i n+2}, \cdots)\| = 0$, and
- (II) $||[f_{ij}]||_{p,a} < +\infty, \ \forall a > 0.$

Proof. \Longrightarrow By Theorem 3.3, (II) holds. Let $i \in \mathbb{N}$. Then $\sum_{j=1}^{\infty} f_{ij}(x_j)$ converges for each $(x_j) \in l^{\infty}(X)$. By Lemma 2.1, $\sum_{j=1}^{\infty} f_{ij}(x_j)$ converges uniformly with respect to $\|(x_j)\|_{\infty} \leq 1$ and so (I) holds.

 \Leftarrow If $\|(x_j)\|_{\infty} \leq 1$, then (I) shows that $\{\sum_{j=1}^k f_{ij}(x_j)\}_{k=1}^{\infty}$ is Cauchy and so $\sum_{j=1}^{\infty} f_{ij}(x_j)$ converges for all $i \in \mathbb{N}$.

Let $(x_j) \in l^{\infty}(X)$ with $\|(x_j)\|_{\infty} > 1$ and $\varepsilon > 0$. Pick an $m \in \mathbb{N}$ such that $\frac{\|(x_j)\|_{\infty}}{m} \leq \delta \leq 1$ and let $i \in \mathbb{N}$, $M = m(1+C)^{m-1}$. By (I) there is an $n_0 \in \mathbb{N}$

such that $\sup_{k\geq n,\,\|(z_j)\|_\infty\leq 1}\|\sum_{j=n}^k f_{ij}(z_j)\|<\frac{\varepsilon}{2M}$ for all $n>n_0$. If $\Delta\subset\mathbb{N}$ is finite and $z_j=\begin{cases} x_j/m, & j\in\Delta,\\ 0, & j\not\in\Delta, \end{cases}$ then $\|(z_j)\|_\infty\leq 1$ and, observing $f_{ij}(0)=0$, we have that

$$\left\| M \sum_{i \in \Delta} f_{ij} \left(\frac{x_j}{m} \right) \right\| < \frac{\varepsilon}{2}, \quad \forall k \ge n > n_0, \ \Delta \subseteq \{n, n+1, \dots, k\}, \ \Delta \ne \phi.$$

For convenience, we say that $\sum_{j\in\Delta}y_j=0$ when Δ is empty. As in the proof of Lemma 2.2, $f_{ij}(x_j)=f_{ij}(m\frac{x_j}{m})=s_jf_{ij}(\frac{x_j}{m})$ where $s_j\in[-M,M]$. For $k\geq n>n_0$ and $\Delta_1=\{j\in\mathbb{N}:n\leq j\leq k,s_j\geq 0\},$ $\Delta_2=\{j\in\mathbb{N}:n\leq j\leq k,s_j< 0\},$ it follows from Lemma 2.6 that

$$\left\| \sum_{j=n}^{k} f_{ij}(x_{j}) \right\| = \left\| \sum_{j=n}^{k} s_{j} f_{ij} \left(\frac{x_{j}}{m} \right) \right\|$$

$$\leq \left\| \sum_{j \in \Delta_{1}} s_{j} f_{ij} \left(\frac{x_{j}}{m} \right) \right\| + \left\| \sum_{j \in \Delta_{2}} s_{j} f_{ij} \left(\frac{x_{j}}{m} \right) \right\|$$

$$= \left\| \sum_{j \in \Delta_{1}} s_{j} f_{ij} \left(\frac{x_{j}}{m} \right) \right\| + \left\| \sum_{j \in \Delta_{2}} (-s_{j}) f_{ij} \left(\frac{x_{j}}{m} \right) \right\|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

This shows that $\{\sum_{j=1}^k f_{ij}(x_j)\}_{k=1}^\infty$ is Cauchy and so $\sum_{j=1}^\infty f_{ij}(x_j)$ converges. Now let $(x_j) \in l^\infty(X)$ and $a=1+\|(x_j)\|_\infty$. Since $\sum_{j=1}^\infty f_{ij}(x_j)$ converges for all $i \in \mathbb{N}$, it follows from (II) that

$$\left(\sum_{i=1}^{\infty} \left\|\sum_{j=1}^{\infty} f_{ij}(x_{j})\right\|^{p}\right)^{1/p} = \sup_{m \ge 1} \left(\sum_{i=1}^{m} \left\|\sum_{j=1}^{\infty} f_{ij}(x_{j})\right\|^{p}\right)^{1/p}$$

$$\leq \sup_{m \ge 1, \|(z_{j})\|_{\infty} \le a} \left(\sum_{i=1}^{m} \left\|\sum_{j=1}^{\infty} f_{ij}(z_{j})\right\|^{p}\right)^{1/p}$$

$$= \sup_{m \ge 1, \|(z_{j})\|_{\infty} \le a} \lim_{n} \left(\sum_{i=1}^{m} \left\|\sum_{j=1}^{n} f_{ij}(z_{j})\right\|^{p}\right)^{1/p}$$

$$\leq \sup_{m,n \ge 1, \|(z_{j})\|_{\infty} \le a} \left(\sum_{i=1}^{m} \left\|\sum_{j=1}^{n} f_{ij}(z_{j})\right\|^{p}\right)^{1/p}$$

$$= \|[f_{ij}]\|_{p,a} < +\infty.$$

REFERENCES

- 1. Li Ronglu, Shin Min Kang and C. Swartz, Operator matrices on topological vector spaces, *J. Math. Anal. Appl.*, **274** (2002), 645-658.
- 2. Li Ronglu and C. Swartz, A nonlinear Schur theorem, *Acta Sci. Math.*, **58** (1993), 497-508.
- 3. I. J. Maddox, Schur's theorem for operators, *Bull. Soc. Math. Grèce*, **16** (1975), 18-21.
- 4. I. J. Maddox, *Infinite Matrices of Operators*, Lecture Notes in Math., Vol. 786, Springer-Verlag, 1980.
- 5. Li Ronglu, Wang Fubin and Zhong Shuhui, The strongest intrinsic meaning of sequential evaluation convergence, *Topology Appl.*, **154** (2007), 1195-1205.
- 6. Li Ronglu, Zhong Shuhui and Cui Chengri, New basic principles of functional analysis, *J. Yanbian Univ.*, **30** (2004), 157-160.
- 7. Li Ronglu, Zhong Shuhui and Wen Songlong, Pan-Linear distributions I, *J. Yanbian Univ.*, **33** (2007), 157-159.
- 8. Li Ronglu and Bu Qingying, Locally convex spaces containing no copy of φ, *J. Math. Anal. Appl.*, **172** (1993), 205-211.
- 9. Li Ronglu and Wang Junming, Invariants in abstract mapping pairs, *J. Aust. Math. Soc.*, **76** (2004), 369-381.
- 10. P. Antosik and C. Swartz, *Matrix Methods in Analysis*, Lecture Notes in Math., Vol. 1113, Springer-Verlag, 1985.
- 11. C. Swartz, Infinite Matrices and the Gliding Hump, World Scientific, 1996.

Li Ronglu
Department of Mathematics,
Harbin Institute of Technology,
Harbin 150001,
P. R. China
E-mail: rongluli@yahoo.com.cn

Zhong Shuhui Department of Mathematics, Tianjin University, Tianjin 300072, P. R. China

E-mail: zhshuhui@yahoo.com.cn