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[*°(X)—IP(Y) SUMMABILITY OF MAPPING MATRICES

Li Ronglu and Zhong Shuhui*

Abstract. For Banach spaces X and Y, F¢ 5(X,Y) is a large and meaningful
extension of the family L(X,Y) of linear operators. For classical Banach
sequence spaces [°°(X) and IP(Y) (p > 1) we find a characterization of the
[°(X) — IP(Y) transformation of matrices of mappings in F¢ 5(X,Y).

0. INTRODUCTION

Let X and Y be topological vector spaces and f;; € Y, 4, j € N. For sequence
families A(X) ¢ XN and p(Y) € YN the matrix (fi;) € (A(X), u(Y)) means that
3252, fij(;) converges when (z;) € A(X), i € Nand (352, fij(2;))52; € u(Y)
for each (z;) € A(X).

We are interested in the sequence families such as

co(X) = {(zj) € X" :zj — 0},
o(X) = {(z;) € X" : limx; exists},

1°°(X) = {(z;) € X" : (x;) is bounded} and

P(X) = {(x;) € X" : Y |Ja||” < oo} when X is normed and p > 1.
j=1

There is a nice result for the family (1°°(X), ¢(Y)) as follows.

Theorem A. ([1; 2]). Let X, Y be topological vector spaces and f;; : X — Y
a mapping such that f;;(0) = 0, Vi, j € N. If (fi;) € (I*°(X),c(Y)), then for
every bounded B C X the series 3 72, fi;(x;) converges uniformly with respect
to both i € Nand {z,} C B, and lim; f;;(x) exists for every z € X, j € N.
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If, in addition, Y is sequentially complete, then the converse holds. Especially,
if Y is a Banach space, then (f;;) € (I°°(X), c(Y)) if and only if

(1) lim; f;;(x) exists, Vo € X, j € N, and

(2) for every bounded B C X, lim,, SUpjen, m>n, {z;3cB || 2y fij(@5)]| = 0.

Note that for the case of Banach spaces X, Y and continuous linear operators
T;; : X — Y, 1.J. Maddox gave a characterization of (7;;) € (I°°(X),c(Y)) [3; 4,
p.46]. It is easy to see that the Maddox theorem is a special case of Theorem A.
As an immediate consequence of Theorem A, we have

Theorem B. Let X, Y be topological vector spaces and f;; : X — Y a
mapping such that f;;(0) = 0, Vi,j € N. Then (fi;) € (I°°(X),co(Y)) if
and only if for every bounded B C X, > 7%, fij(z;) converges uniformly with
respect to both ¢ € N and {z;} C B, and lim; f;j(z) = 0, Vo € X, j €
N; (fij) € (I°°(X),°°(Y)) if and only if for every bounded B C X and (s;) € co,
> ;=1 sifij(x;) converges uniformly with respect to both i € N and {z ;} C B, and
{fij(x)}22, is bounded, V2 € X, j € N.

Since linear operators form a small subfamily of {f € YX : f(0) = 0}, the
most interesting point in Theorem A and B is just that these results were established
for matrices of mappings satisfying f(0) = 0 only. However, for Banach spaces
X, Y and matrices of mappings in {f € YX : f£(0) = 0}, we have had no any
description of the matrix family (I°°(X),P(Y")) (p > 1) as yet.

In this paper we would like to consider a very meaningful subfamily 7 5(X,Y")
of {f € YX : f£(0) = 0}. This is a large extension of the family of linear operators,
and for matrices of mappings in F¢ s(X,Y") we will give a clear-cut characterization
of the matrix family (I1°°(X),P(Y)) (p > 1).

1. THE FAMILY OF DISSECTING MAPPINGS

Let X, Y be vector spaces over the scalar field K. Every linear operator
T : X — Y has the absolutely exact dissecting property:

T(x+tu) =T(x) +tT(u), Vz,ue X, tek

A function T : R — R is linear if and only if 7'(z) = o for all z € R, where
o = T(1) is a constant. Therefore, linear operators in R® can be used only to
describe Newton’s First Law of Motion, i.e., we have

Proposition 1. The physical meaning of a linear operator T': R — R is just a
motion at constant speed along a straight-line path.
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Definition 1.1. ([5; 6; 7]). Let X, Y be normed spaces over K. A mapping
f+ X — Y is said to be dissecting if f(0) = 0 and there exist C > 1and § > 0
such that every z, u € X and ¢t € K with |Ju|| < § and |¢t| < 1 determine r, s € K
for which |r — 1| < CJt|, |s| < C|t| and f(z + tu) = rf(x) + sf(u).

Let Fc5(X,Y) be the family of dissecting maps related to C' > 1 and 6 > 0,
and let

Ecs(X,Y) ={f € Fos(X,Y): ifz,u € X and ¢t € K for which [ul| <
6 and [t <1, then f(x + tu) = f(x) + sf(u) with |s] < C|t]}.

The family of dissecting maps is a large extension of the family of linear op-
erators. Especially, each nonzero linear operator produces uncountably many of
nonlinear dissecting maps (see [5; 6; 7]).

Dissecting maps in R® contrast sharply with linear operators in R¥. In fact,
since no material object can travel at or beyond the speed of light, it follows from
Theorem 1.1 of [7] that every motion in the classical mechanics can be described
by a dissecting map in RE,

Proposition 2. Let (x(t), y(t), z(t)) be the position in R? of a material object
at the moment ¢. Let a > 0 for which #(a) # 0 and s = ¢t — a for t > a,
f(s) = z(t) — z(a) and f(—s) = —f(s). Then f € Ec5(R,R) for some C' > 1
and 6 > 0, and similar conclusions hold for y(¢) and z(t).

The family of dissecting maps is a very important extension of the family of
linear operators. Indeed, we have the following very important result which is an
essential improvement of a basic principle of functional analysis.

Recall that for topological vector spaces X and Y a mapping f : X — Y is
bounded if f(B) is bounded when B C X is bounded.

Theorem 1.1. ([5; 6; 7]). Let X, Y be normed spaces and X is of second
category. Let C' > 1and 6 > 0. IfI' C Fcs(X,Y) is a pointwise bounded family
of bounded dissecting maps, then T" is equicontinuous on X, i.e., for every x € X
and ¢ > 0 there is an a > 0 such that || f(z) — f(z)|| < e for all f € T" whenever
|z — z|| < «, and T is uniformly bounded on each bounded subset of X, i.e.,
supfer zep || f ()] < 400 whenever sup,¢ g ||z < 4o0.

2. Basic PROPOSITIONS

First, we improve the simple but useful Theorem 1 of [8] which implies that
if G is an abelian topological group and {z;} C G such that )z, is subseries
convergent, then {> . A z; : A C N} is both compact and sequentially compact
[8, Corollary 2].
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Lemma 2.1. Let G be an abelian topological group. Then for every Q # ()
and {f;} ¢ G*, the following () and (3) are equivalent.

(o) 3272, fj(w;) converges for each {w;} C .
B) Z;";l fj(w;) converges uniformly with respect to {w;} C Q.

Proof. If () holds but () fails, then there exist a neighborhood U of 0 € G
and integers m; < n; < mg < ng--- and {w;; : m; < j < n;,i € N} C Q such
that ?’:ml fj(wij) ¢ U, i=1,2,3,---. Pick an wy € © and let

i — wij, mZSJSnZ, ’i=1,2,3,---,
7 lwo, otherwise,

then > 72, fj(w;) diverges. This contradicts (). [ |

Henceforth, X and Y are Banach spaces and C' > 1. Since F¢,(X,Y) C
Fes(X,Y) for 0 < § < v, we always assume that 0 < ¢ < 1 in the notion
Fes(X,Y). For (z;) € I°°(X), let ||(z))|loc = sup; |l

Lemma 2.2. For f € Fc5(X,Y) the following (1), (2), (3) and (4) are equiv-
alent.

(1) f is continuous.

(2) £ is bounded, i.e., for every a > 0, || f[(a) = Sup|jzj<a lf(2)[| < +oc.

(3) If (uj) € co(X), ie., uj — 0in X, then {f(u;) : j € N} is bounded:

sup [|.f (u;)]| < +o0.
J

(4) f is continuous at 0 € X.

Proof. (1)==(2). Let 6 € (0,0) for which || f(z)|| < 1 whenever ||z| < 6,
and a > 0. Pick an integer n > 1 for which & < 0. Then || f(£)|| < 1, V|z| < a.
Let ||| < a. Since ||| < 6 < 0, it follows from f € Fcs(X,Y) that

n—1

x
1‘4—5)
L) 4 ()

Qx) + rlsgf(%) + slf(%)

=rif(
= riraf(

n
n —

x
= (rirg- - rp_1+rire- - rp_28,—1 + -+ 1152+ 31)f(5)7
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where |r;| <1+ C, [si| < C. Thus, supj, <, |1f(2)]| < n(1 + )"l < oo
(2) = (3). Obvious.
B) = (4). Letz; — 0 in X May assume that all xj 7é 0 and Vil <
9, ¥V j € N. Then \/ \/ — 0 and =
y V] zj = /llz;ll \/H— |25 — \/|— Hl \/—H

Vsl — 0. By (3), sup; || f( Hﬂf»‘jII)H = M < o0 and so

I£(5)] Hf \/W\/— H H Hw H—C {1 M =0,

(4) = (1). Letz; — « in X. May assume that all z; # x and \/ij —z| <

9, VjeN. Then f(z;) = f(z+z;—x) = f(x++/|lzj — H\/T‘]l) if(x)+

Jf(\/—mH) where |r; — 1| < Cy/||z; — z|| — 0 and |s;| < Cy/||z; — z| — 0.
Since |2 = /Ty =2l — 0. (A=) — 0 by (@), Flay) = 1/ (2) +
sif(o=) = f(x). m

llzj—||

Lemma 2.3. Let k € N and f;; € Fcs5(X,Y) be bounded, Vi, j € N. If
(fij)ijen € (I%(X),1(Y)) and

((z5)) = (Zflj ;) Zf2j 5), kaj 5), ")v (z;) € 17°(X),

then @, : 1°°(X) — [}(Y) is continuous at 0 € [>°(X), and for every a > 0,

1Pkl @) = sup ZHZJ%] x; H < +00.

I(@j)llo<aimy " j=1

Proof. Leta >0, ¢ > 0. Since >°°2, fi;(z;) converges for each {z;} C {z €
X :||z|| <a}and i € N, Lemma 2.1 shows that there is an ny € N for which

| S fote|<erzh, Vialo<a 1<k
Jj=no+1

By Lemma 2.2, for ¢, j € N thereis 6;; > 0 such that || f;;(z)|| < e/2kno whenever
HxH < Hz‘j, and let § = min{@zj 1 <i <k 1 <3< no}. Then Hfzj(x)H <
e/2kng, Y|zl <0, 1 <i <k, 1<j<ng Hence for [[(z;)|lcc < min(b,a)
k 00 k n
we have that [|[©x((2;))llr = 2icy 122520 fis(ea) |l < 32 22520 i ()|l +
k 00
izt 1 2521 fij(@) <5+ 5 =€



2296 Li Ronglu and Zhong Shuhui

Thus, @y, is continuous at 0 € [*°(X).
Let [|(z)]|cc < a. It follows from Lemma 2.2 that

ZHwa " H<ZZufU 3] S )

=1  j=no+1
< ZZ SUP 1 fi ()] +
i= 1j 1 llzll<
€
:ZZHfz‘jH(a)Jr§ < +o00. =
i=1 j=1

Lemma 2.4. Let f; € Fcs(X,Y) be bounded, Vi € N. If >, || fi(2)]| <
+oo for each = € X, then the function sequence {>7 | [If;(-)|| € R* : n € N} is
equicontinuous at 0 € X, i.e., Ve > 03 v > 0 such that " | || fi(z)|| < e for all
|z|| <~ and all n € N. Thus, > 72, || fi(:)]| : X — R is continuous at 0 € X.

Proof. Let0<e<1, I=10, 5555
I for all n € N}. Then 0 € M.

By Lemma 2.2, >, || fi(-)|| : X — R is continuous for all n € N and so M
is a nonempty closed set in X.

Letz € X and a € (0, 1) for which ||ax| < 4, and 0 =

0
If 0 <t <5, then

Jand M={zeX : ||lz[| <4, >0, || fi(x)]|

e
2(14+C) (142272 [ filaz) )

D lfittow) = 3 lsifi(om)| (il < Ct < 0)
i=1 i=1
<03 Ihtea)l < 5 gy YnEN

ie, tax € M, V0 <t <& Hence, o= niax € M whenever n > £

This shows that X = U°° L nM. "Since X is a Banach space, it follows from
Baire category theorem that {z € X : ||z <y} C M - M ={u—v:u,ve M}
for some v > 0.

Let x, w € M. Then |lu|| < 4. Since |y + tz|| = ||y|l + s||z|| with |s| < |¢| for
y, z€Yandt € K, itfollowsthat > " , || fi(z—u)|| = >0 [|rifi(z)+si fi(w)| =

2imi([rifs@)ll + sill fi(w))) = s Irilllfi(@)] + 255 sill f(w)ll, Vo € N,
where |r; — 1| < C| - 1] =C, |s}| < |si] < C| — 1| = C. Hence,

Sl —wi < 1+ O (T Is@I+ X fwl)
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21+0) 21+ 0)

Since {z € X : |jz|| <~} Cc M —M, >", ||fi(z)]] <ewhenn e N and
[l <. m

S(l—f—C)( )ZE, VneN.

Lemma 25. Let n € N and f;; € Fcs(X,Y) be bounded, Vi, j € N. If
(fij)ijen € (I%(X),1(Y)) and

Ful(@i) = (D2 fulen) o (@) € 15(X),

J=1

then F,, : [°°(X) — [1(Y) is continuous at 0 € [>°(X) and for every a > 0,

[Fnll@) = sup ZHZJ%] ; H < +oo.

(@j)llo<a’ =7 55

Proof. Let limy(zx;)32, = 0in 1°°(X), i.e., limg sup; ||zx;]| = 0.

Since (fi;)ijen € (1°(X),1X(Y)) and (0,---,0, #,0,0,---) € 1°°(X) when

l
rzeXandjeN, > >, Hfzj(x)H < +oo for every z € X and j € N. By Lemma
2.4, limy, >-7°, || fij(xk;)|| = 0 for each j € N and

lim | B ()30 1 = h,gng |3t < 1m 32 S sl =

Thus, F, : [°°(X) — [1(Y) is continuous at 0 € [*°(X).

Let a > 0. By Lemma 2.4, for each j € N there is a 6; € (0,6) such
that >°°°, || fij(x)|| < 1 whenever ||z|| < ;. Letting 6 = min(6;,6s,---,6,),
2 1 fig (@)l <1, Vil <6, 1 <5 <n.

Pick an integer no > § and let j € {1,2,---,n}, ||z < a. Then |[=| =
”“”” <6 < ¢ and
> 7 1 T
0—
}:Hfu =30 s e+ )
> 7 1 T
o —
= ;1: rz‘jlfz‘j(ino ) +3z‘j1fz‘j(n—0)H
> n 2
0—
= ?“z‘jl?“z‘ﬂf(in )+7“w18m2fw( )+$w1fw( O)H
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= E H(ﬁ‘jlﬁﬂ"'ﬁj no—1 T 717452 * * *Tij ng—2Sij ng—1 + -~
i=1

X
+ 751852 + Sijl)fij(n_o) H7
where |1, — 1] < C|1] = C, |s;5x| < C|1] = C and so

Z”fu )| < no(1+ )"0~ 12 fU x H

<ng(l+C)"™ 1, VHxH<a 1<j<n,

|Fall = sup ZHZfU z) H

|| Tj HOOSQZ 1 jf

ZZ 1 fij(25)]

||(J»‘] Hooéaj 1 =1

< nng(1+ C)" ! < fo0. ]

We also need a useful fact in linear algebra.

Lemma 2.6. ([9, Lemma 3.2]). Let E be a vector space and V' a convex set
inFE,0eV. If xq, 29, -+, z, € E and M > 0 such that

MY x; eV, VAC{1,2,---,n}, A#J,
JEA

then Z?lejxj ev, VOSSJ‘ <M, j=1,2,---,n
3. A CHARACTERIZATION OF THE MATRIX FAmILY (I°°(X), IP(Y))

Let X, Y be real Banach spaces and C > 1, 6 > 0. Let Y’ be the dual space
of Y.

Theorem 3.1. Let f;; € Fcs5(X,Y) be bounded, Vi, j € N. If (fij)ijen €
(1°°(X),1(Y)) and

f’lj (wa xj ) ) (xj) € ZOO(X)v

then for every a > 0,

1fidlllay = SIS At <

||(J»‘] Hooéaz 1 =1
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Proof.  Suppose that a > 0 and ||[fi;]|(a) = +oc. Pick (21;) € I°°(X) for
which [|(z15) [0 < aand 3272, | 3252, fij(x1;)[|>1. Then Sy 13252 fi ()|
> 1 for some 4y > 1 and so Y 1L, || D772, fij(21;)[| > 1 for some my > 1.

Foreachi € {1,2,--- 41} picky; € Y/ with [ly;|| = Land || 3772, fij(z15)]l =
Y (22721 fij(z15)). Then Zz VY (05 fij(21y)) > 1.

Let cI)Zd((xj)) = ( j:l flj(xj)v B ;’il fhj(xj)v 0,0,---)and Fm((xj)) =
(5L fij(x)2y, Y (x)) € 1%°(X). By Lemma 2.3 and 2.5,

@l = sup > i) < 4.

||(m])|‘°°§az 1 j 1
1Pl = sup S| i) < o
laleza S 11
since ||[f]ll(a) = +o00, there is (w9;) € 1°(X) with [|(22;)]lec < a such that

2z 122520 i (w2i) | > 1411Pi [l @)+ Fy ll @) Then 352, (1 3252y fij(w25) || >
L+ [|®4 ]l (a) + [ Fny ll(a) for some 2 > 4y and na > ny, and it follows from

19 llay = 320 1 D272 zj(%) + et i (O = 058 13252, fij (22
and HFmH(a > Zz 1 HZ ~1 Jij(xg;)]| that

St 1435 S+ S5
B S e+ 35 [ ne]

=11+
ie., ZZ el HZJ el > 1+ 2 !!Z?llfij(mzj)!! and

3| X st = Z |2 e =2 sten|

E (Bl £l
:Z;IHJZ:J“U Toj H Z;IHJZ;JCU T2; H > 1.

Now for each ¢ € {i; + 1,41 +2,---,i2} pick y; € Y’ with |y/|| = 1 and
122520, 11 fig(w2) | = 4i (32520, 1 fig(w25)). Then

STyl Y figlagy)) > 1

=i1+1  j=ni1+1
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Continuing this construction inductively gives integer sequences 0 = ig < i1 <
ip < i3 < -+, 0=mng <m <ng<mg<-- and {yj} C Y’ with [jy]|| =1 and
{gj inp—1+1<j<np,keN}C{xeX:|z| <a} such that

yz"( i fij(xkj)) :H f: fz‘j(wkj)H, i1+l <i<ip, k=1,2,3,---,

J=ng_1+1 j=np_1+1

i

(*) Z y;( f: fz‘j(fl'kj)>>1, k=1,2,3,---.

1=tp—1+1 Jj=ng—1+1

Consider the matrix [3°5,  \ v/(327%, 1y fij(%p;))lkpen. Fix p € N and
let

Tpjs Mp—1+1 <7 <my,

Zj =
0, otherwise.

Then (z;) € 1°°(X) and 3232, || 3252, 1 fuj(pg) Il = 22220 11325720 fis(25)]] <
+o0 and so

0511,?1‘ i y§< i fz‘j(%j))‘

’i:’ik_l-f—l j:np_1+1

cim 3 (S st

’i:’ik_l-f—l j:np_1+1
i Tp
<tim > || Y fulew)|

’i:’ik_l-f—l j:np_1+1

1k Np
=t >0 X0 st =o0,
’i:’ik_l-f—l j:np_1+1
e, limg 3k, wi(305E, i fi(wpy)) =0, Yp e N,

) Tp,j npy_1+1§j§npwy:172737...7
Letp; <py <---inNandu; =
0, otherwise.

Then (u;) € I°(X) and > 2%, || 2252, fij(u;)]l < +oc. Hence,

R O horen

i=ip_1+1 j=1
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s 3 (S s)
i=ip_14+1 j=1

ik 00

>lim| ) yé(Z fz‘j(“j)) ‘

i=ip_1+1 j=1

—tim| >3 uifilw))]
i=tp_1+1 j=1

pru

—tim| > Y Syl

i:ik_l +1 v=1 j:npu _1+1

= lim i i y§< ”ZP: fz‘j(wpuj))‘zoa

v=1 i:’ik_l-f—l j:npu_l-f—l

e, limg 307, Z;k:z‘k_1+1 yé(Z?i%pv_lﬂ fij(@p,5)) = 0.
Then limy > 5%, L yi(D07E, 4 fij(zks)) = 0 by Antosik-Mikusinski ma-
trix theorem [10; 11; 2]. This contradicts (+) and so |[[fi;]l|(q) < -+oc. [

Lemma 3.1 p,p' > 1, .+ = 1 and f; € Y* fori,j € N. Then

(fz‘j)z‘,jeN S (ZOO(X), lp(Y)) if and onIy if (Sifij)i,jeN € (ZOO(X), ll(Y)) for each
(Si) S lp/_

Proof. If 325 || 3252, fij(a;)[IP < 400 and (s;) € I¥', then
i H i&‘fﬁj(%)” = Zf; |4 ifij(xj)H
< (3m)" (S gl <

Conversely, if > 7%, |sil | 2272 fij (@)l = 22520 [ 32521 sifis(25)ll < +oc,
V(si) €17, then 3770, || 3772, fij(z5)[IP < +o0. -

Theorem 3.2. Let p > 1 and f;; € Fcs(X,Y) be bounded, Vi, j € N. If
(fij)igen € (I%°(X), P(Y)) and

Bl = (X flep) o (@) € 1¥(X),
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then for every a > 0,

w_ (S| % ) <+

Iz lloo<a Ny 14

Proof. By Theorem 3.1, the conclusion holds whenp = 1. Let p>1, I%Jr% =1
and a>0. By Lemma 3.1 and Theorem 3.1,

sup isz‘ 3 fz‘j(%)“‘él sup ZHZSsz x; H<—|—oo V(s;)el”

l(@)llec<a ' ;5 j=1 (#j)lo<a

Hence {(|| >=72, fij(z;)[1)721 « I(z)]lc < a} is a pointwise bounded subfamily of
1P = (1*"Y. Then the resonance theorem shows that

o (SIS ael)” <+ .

(zj)llco<a

Now for f;; € Fos(X,Y) (i, j € N) and i € N let

[(Fim Finsts fimze =)l = sup HZfU z)||

k>n, H(a:] o<1

the group norm of (fi;);>n [4, p.5] which is the key object in the Maddox results
of [3; 4]. Moreover, for p > 1 and a > 0 let

Ifislllp.a = sup (Zusz 2 H )l/p

m,n>1, [[(z5)|lc<a

Theorem 3.3. Let p > 1 and f;; € Fcs(X,Y) be bounded, Vi, j € N. If
(fij)ijen € (I°(X),P(Y)), then for every a > 0,

H[fz‘j]”p,a = sup (Z Hsz 2 H )l/p

[(@)lloo<a ™55 7 55

Proof. Leta > 0. If ||[(z))|ls < a, then ||(z1, 22, -+ ,2,,0,0,- )]s < a for

all nand so (352, || Y75y fij (@) IP)/P < supjjao<a (oo 112252 fii (25)[P)1/7,
Vn € N. By Theorem 3.2,
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Ifislllpa = sup (iHZfU (z; H )l/p

m,n>1, [|(z5)l|ec<a ;54

(SIS e

n>1, [|(z;)llec<a
||(zsl|1p<a<ZHZfU 2 H )1/p
ez I

Leta > 0 and ||(z;)|loc < a. Then

(SIS mel) = om (SIS i)

m>1

< (I mel)”

m>1, H(z MNoo<a i=1

— sup hm(ZZ;HZfU % H )1/12

m>1,||(2)|c<a ™

(S nel)”

m2>1, [[(z)|ec<an2l N5

e (iHwa )

= H[fij]Haa- =
Recall that 0 < 6 <1 and C' > 1 in the notation F¢ 5(X,Y).

A

IN

Theorem 3.4. Let p > 1 and f;; € Fc5(X,Y) be bounded, Vi, j € N. Then
(fz‘j)z‘,jeN c (ZOO(X), lp(Y)) if and onIy if

() for each i € N, limy, ||(fin, fi n+1, fint2, )| =0, and

() 11 fiilllp,a < 400, Va > 0.

Proof. = By Theorem 3.3, (Il) holds. Leti € N. Then 22, f;;(x;) con-
verges for each (z;) € [°°(X). By Lemma 2.1, 3772, f;;(x;) converges uniformly
with respect to ||(z;)]|.c < 1 and so (1) holds.

<= If ||(z)]|sc <1, then (I) shows that {Zle fij(z;)}72, is Cauchy and so
=1 fij(z;) converges for all i € N.

Let (z;) € I°°(X) with ||(z;)||cc > 1 and e> 0. Pick an m € N such that
% <éf<landleti e N, M =m(l+C)™ L By (l) there is an ng € N
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such that supy>, |(z;)lls<t | Zf:n Jij(z)|| < 55 for all n > ng. If A C Nis
zj/m, jEA,

finite and z; = 0 PZA

" then [|(z;)]ls < 1 and, observing f;;(0) = 0, we
have that

HMZfU(fn—j)H < %, Vk>n>ng, AC{n,n+1,---,k}, A#o.

For convenience, we say that >, y; = 0 when A is empty. As in the proof of
Lemma 2.2, fi;(x;) = fij(m3) = s; fi;(3L) where s; € [-M, M]. For k > n >
nopand Ay ={jeN:n<j<k, SJZO} Npg={jeN:n<j<k s <0} it
follows from Lemma 2.6 that

|50 ;Wm
| 5 |5 o Gl
IE ol S eon)

This shows that {Zle fij(w5)}32, is Cauchy and so 7%, fij(x;) converges.
Now let (z;) € 1*°(X) and a = 1 + ||(2}) ] 0o- Since > 5=y fij(x;) converges
for all 7 € N, it follows from (1) that

(SIS mel) - s (S5 sl
: (ZHZfU D)

m>1, H(z Moo<a i—1

= sup lim (; H Zfzﬂ 2 H )1/12

m>1,||(z)|ec<a ™

< e (I me))”

m,n>1,||(2)]|c<a

= H[fij]”p,a < +00. [ |



10.

11.
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