TAIWANESE JOURNAL OF MATHEMATICS Vol. 14, No. 1, pp. 81-105, February 2010 This paper is available online at http://www.tjm.nsysu.edu.tw/

DUALITY OF HARDY SPACE WITH BMO ON THE SHILOV BOUNDARY OF THE PRODUCT DOMAIN IN \mathbb{C}^{2n}

Ji Li

Abstract. In this paper, we introduce the BMO space via heat kernels on \widetilde{M} , where $\widetilde{M}=M_1\times\cdots\times M_n$ is the Shilov boundary of the product domain in \mathbb{C}^{2n} defined by Nagel and Stein ([16], see also [17]), each M_i is the boundary of a weakly pseudoconvex domain of finite type in \mathbb{C}^2 and the vector fields of M_i are uniformly of finite type ([14]). And we prove that it is the dual space of product Hardy space $H^1(\widetilde{M})$ introduced in [11].

1. Introduction

In [14], Nagel and Stein studied the initial value problem and the regularity properties of the heat operator $\mathcal{H}=\partial_s+\Box_b$ for the Kohn-Laplacian \Box_b on M, where M is the boundary of a weakly pseudoconvex domain Ω of finite type in \mathbb{C}^2 . And in [16], they obtained the optimal estimates for solution of the Kohn-Laplacian on q-forms, $\Box_b=\Box_b^{(q)}$, which is defined on the boundary $\overline{M}=\partial\Omega$ of a decoupled domain $\Omega\subseteq\mathbb{C}^n$. The method they used is to deduce the results about regularity of \Box_b on \overline{M} from corresponding results on $\widetilde{M}\subset\mathbb{C}^{2n}$ via projection, where $\widetilde{M}=M_1\times\cdots\times M_n$ is the Cartesian product of boundaries of domains in \mathbb{C}^2 mentioned above. Namely, \widetilde{M} is the Shilov boundary of the product domain $\Omega_1\times\cdots\times\Omega_n$.

In [17], they developed an L^p $(1 theory of product singular integral operators on product space <math>\widetilde{M} = M_1 \times \cdots \times M_n$ in sufficient generality, which can be used in a number of different situations, particularly for estimates of fundamental solutions of \Box_b mentioned above. They carried this out by first considering the initial value problem of the heat operator $\mathcal{H} = \partial_s + \mathcal{L}$ for each M_i , where \mathcal{L} is the

Received September 4, 2008, accepted October 8, 2008.

Communicated by Yongsheng Han.

2000 Mathematics Subject Classification: Primary 42B35; Secondary 32T25, 32W30.

Key words and phrases: Shilov boundary, Finite type domains, Uniformly of finite type, Hardy space, BMO space, Sequence space, Plancherel-Polya-type inequality, Uuality.

Project supported by NNSF of China (Grant No. 10771221).

sub-Laplacian on M_i in self-adjoint form, then using the heat kernel to introduce a Littlewood-Paley theory for each M_i and finally passing to the corresponding product theory.

In [11], the product Hardy space H^p on M has been introduced and they obtained the H^p boundedness of the product singular intergal operators studied by Nagel and Stein in [17].

The main purpose of this paper is to introduce the product BMO space on restrictive product space \widetilde{M} . More precisely, each factor M_i satisfies the assumption that the vector fields on M_i are uniformly of finite type (Assumption 3.1, Definition 2.2, see also [14]). And we prove that it is the dual of the Hardy space $H^1(\widetilde{M})$. Namely, we will show the following

Theorem 1.1.
$$(H^1(\widetilde{M}))' = BMO(\widetilde{M}).$$

As a consequence of duality, we obtain that the product singular intergal operators defiend by Nagel and Stein in [17] is bounded on $BMO(\widetilde{M})$ and from $L^{\infty}(\widetilde{M})$ to $BMO(\widetilde{M})$.

We shall point out that in [11], to establish the Hardy spaces $H^p(\widetilde{M})$, we do not need to impose any additional condition on \widetilde{M} , while introducing the BMO space and showing the duality the Assumption 3.1 mentioned above is crucial.

We remark that the duality of Hardy space on \mathbb{R}^n was first obtained in [9] by C. Fefferman and Stein. For the multi-parameter product case, S.Y. Chang and R. Fefferman in [3] proved that the dual of $H^1(\mathbb{R}^2_+ \times \mathbb{R}^2_+)$ is $BMO(\mathbb{R}^2_+ \times \mathbb{R}^2_+)$. Recently, in [10], the Carleson measure space $CMO^p(\mathcal{X} \times \mathcal{X})$ was introduced and it is proved to be the dual space of $H^p(\mathcal{X} \times \mathcal{X})$, where (\mathcal{X}, d, μ) is space of homogeneous type in the sense of Coifman and Weiss ([6]), μ satisfies

$$C_1 r \le \mu(B(x,r)) \le C_2 r$$

for all $x \in \mathcal{X}$ and r > 0, where $B(x,r) = \{y \in \mathcal{X} : d(x,y) < r\}$ and d satisfies some the Lipschitz condition, see more details in [10].

In this paper, to show Theorem 1.1, we will follow the ideas in [10]. The basic scheme is as follows.

Without lost of generality, we first concentrate on the product space of two factors, namely $\widetilde{M}=M_1\times M_2$. For the sake of simplicity, we assume that $M_1=M_2$, dropping the subscript.

To begin with, we impose Assumption 3.1 on M, then for such \widetilde{M} , we give the definition of $BMO(\widetilde{M})$ and establish the Plancherel-Pôlya-type inequality by using the discrete Calderón reproducing formula. Next, we introduce the product sequence spaces s^1 and c^1 and prove that the dual of s^1 is c^1 by following the constructive proof of Theorem 4.2 in [10]. Then we prove that $BMO(\widetilde{M})$ can be lifted to c^1 and c^1 can be projected to $BMO(\widetilde{M})$ and the combination of the lifting

and projection operators equals the identity on $BMO(\widetilde{M})$. Similar results also hold for $H^1(\widetilde{M})$. From these results, Theorem 1.1 follows.

A brief description of the content of this paper is as follows. In Section 2, we provide some preliminaries introduced by Nagel and Stein ([17], [14], [16]) and the product Hardy space $H^1(\widetilde{M})$ introduced in [11]. The next three sections focus on $\widetilde{M}=M\times M$. In Section 3 we give the precise definition of $BMO(\widetilde{M})$ and establish the Plancherel-Pôlya-type inequality. In Section 4, we develop the product sequence spaces s^1 and c^1 and prove that $(s^1)'=c^1$. Theorem 1.1 will be proved in Section 5. Finally, in Section 6, we describe the results on $\widetilde{M}=M_1\times\cdots\times M_n$.

2. Preliminaries

2.1. Geometry on $\widetilde{M} = M_1 \times \cdots \times M_n$

We recall the corresponding geometric structure in [16] (See also case (B) of [17]) by concentrating on each factor M_i , which we denote by M, dropping the subscript i.

Here M arises as the boundary of an unbounded model polynomial domain in \mathbb{C}^2 . Let $\Omega=\{(z,w)\in\mathbb{C}^2:\operatorname{Im}(w)>P(z)\}$, where P is a real, subharmonic, non-harmonic polynomial of degree m. Then $M=\partial\Omega=\{(z,w)\in\mathbb{C}^2:\operatorname{Im}(w)=P(z)\}$ can be identified with $\mathbb{C}\times\mathbb{R}=\{(z,t):z\in\mathbb{C},t\in\mathbb{R}\}$ so that the point (z,t+iP(z)) corresponds to the point (z,t). The basic (0,1) Levi vector field is then $\bar{Z}=\frac{\partial}{\partial\bar{z}}-i\frac{\partial P}{\partial\bar{z}}\frac{\partial}{\partial t}$, and we write $\bar{Z}=\mathbb{X}_1+i\mathbb{X}_2$. The real vector fields $\{\mathbb{X}_1,\mathbb{X}_1\}$ and their commutators of order $\leq m$ span the tangent space to M at each point.

One variant of the control distance is defined as follows:

For each $x,y\in M$, let $AC(x,y,\delta)$ denote the collection of absolutely continuous mapping $\varphi:[0,1]\to M$ with $\varphi(0)=x,\ \varphi(1)=y$, and for almost every $t\in[0,1],\ \varphi'(t)=\sum_{j=1}^2a_j(t)\mathbb{X}_j(\varphi(t))$ with $|a_j(t)|\leq\delta$. The control distance $\rho(x,y)$ from x to y is the infimum of the set of $\delta>0$ such that $AC(x,y,\delta)\neq\emptyset$. The result

we need is that there is a pseudo-metric $d \approx \rho^{-1}$ equivalent to this control metric which has the optimal smoothness; i.e. d(x,y) is C^{∞} on $\{M \times M - \text{diagonal}\}$, and for $x \neq y$

$$(2.1) |\partial_X^K \partial_Y^L d(x,y)| \lesssim d(x,y)^{1-K-L}.$$

(Here ∂_X^K is a product of K of the real vector fields $\{\mathbb{X}_1,\mathbb{X}_2\}$ acting as derivatives on the x variable, and ∂_Y^L are a corresponding L vector fields acting on the y

Here, and throughout the paper, $A \approx B$ means that the ratio A/B is bounded and bounded away from zero by constants that do not depend on the relevant variables in A and B. $A \lesssim B$ means that the ratio A/B is bounded by a constant independent of the relevant variables. $a \lor b = \max\{a, b\}$ and $a \land b = \min\{a, b\}$.

variable). For the existence of such a pseudo-metric, see Theorem 3.3.1 and 4.4.6 in [15], where d is denoted by $\tilde{\rho}$.

When integrating on M, we use Lebesgue measure on $\mathbb{C} \times \mathbb{R}$. Denote by |E| the measure of E. The corresponding nonisotropic ball is $B(x,\delta)=\{y\in M:d(x,y)<\delta\}$ and $|B(x,\delta)|$ denotes its volume. The volume functions are introduced as follows:

(2.2)
$$V(x,y) = |B(x,d(x,y))|.$$

The volume of the ball $B(x, \delta)$ is essentially a polynomial in δ with coefficients that depend on x.

Let $\mathbb{T}=\frac{\partial}{\partial t}$ so that at each point of M the tangent space is spanned by the vectors $\{\mathbb{X}_1,\mathbb{X}_2,\mathbb{T}\}$. Write the commutator $[\mathbb{X}_1,\mathbb{X}_2]=\lambda\mathbb{T}+a_1\mathbb{X}_1+a_2\mathbb{X}_2$, where $\lambda,a_1,a_2\in C^\infty(M)$. For $k\geq 2$, set $\Lambda_k(x)=\sum\limits_{\alpha\leq k-2}|\partial^\alpha\lambda(x)|$, where ∂^α is a

product of α of the real vector fields $\{X_1, X_2\}$. Then the following formula holds for the volume $|B(x, \delta)|$:

(2.3)
$$|B(x,\delta)| \approx \sum_{k=2}^{m} (|\Lambda_k(x)\delta^k|) \delta^2.$$

The balls have the required doubling property

$$|B(x, 2\delta)| \le C|B(x, \delta)|$$
 for all $\delta > 0$.

We now recall the following construction given by Christ in [1], which provides an analogue of the grid of Euclidean dyadic cubes on space of homogeneous type.

Lemma 2.1. [1]. Let (\mathcal{X}, ρ, μ) be a space of homogeneous type, then, there exists a collection $\{Q_{\alpha}^k \subset \mathcal{X} : k \in \mathbb{Z}, \alpha \in I_k\}$ of open subsets, where I_k is some index set, and $C_1, C_2 > 0$, such that

- (i) $\mu(\mathcal{X} \setminus \bigcup_{\alpha} Q_{\alpha}^{k}) = 0$ for each fixed k and $Q_{\alpha}^{k} \cap Q_{\beta}^{k} = \Phi$ if $\alpha \neq \beta$;
- (ii) for any α, β, k, l with $l \geq k$, either $Q_{\beta}^{l} \subset Q_{\alpha}^{k}$ or $Q_{\beta}^{l} \cap Q_{\alpha}^{k} = \Phi$;
- (iii) for each (k, α) and each l < k there is a unique β such that $Q_{\alpha}^{k} \subset Q_{\beta}^{l}$;
- (iv) diam $(Q_{\alpha}^k) \le C_1 2^{-k}$;
- (v) each Q_{α}^k contains some ball $B(z_{\alpha}^k, C_2 2^{-k})$, where $z_{\alpha}^k \in \mathcal{X}$.

In fact, we can think of Q_{α}^{k} as being a dyadic cube with diameter rough 2^{-k} centered at z_{α}^{k} . As a result, we consider CQ_{α}^{k} to be the cube with the same center as Q_{α}^{k} and diameter $C\operatorname{diam}(Q_{\alpha}^{k})$.

Using Lemma 2.1, we can obtain a grid of dyadic cubes on M.

Next we recall Definition 3.3.1 in [14] which characterizes the assumption imposed on M.

Definition 2.2. [14]. Vector fields $\mathbb{X}_1, \mathbb{X}_2, \mathbb{T}$ are uniformly of finite type m on an open set $U \subset \mathbb{R}^3$ if the derivatives of all coefficients of the vector fields are uniformly bounded on U and if the quantity $\sum_{j=2}^m \Lambda_j(q)$ is uniformly bounded and uniformly bounded away from zero on U. The vector fields $\mathbb{Y}, \mathbb{X}_1, \mathbb{X}_2, \mathbb{T}$ are uniformly of finite type m on an open set $V \subset \mathbb{R}^4$ if the derivatives of all coefficients of the vector fields are uniformly bounded on U and if the quantity $\sum_{j=2}^m \Lambda_j(q)$ is uniformly bounded and uniformly bounded away from zero on V.

2.2. The Heat Equation

In [17], the Littlewood-Paley square function was defined in terms of the heat kernel. More precisely, Nagel and Stein considered the sub-Laplacian \mathcal{L} on M in self-adjoint form, given by

$$\mathcal{L} = \sum_{j=1}^{2} \mathbb{X}_{j}^{*} \mathbb{X}_{j}.$$

Here $(\mathbb{X}_j^*\varphi,\psi)=(\varphi,\mathbb{X}_j\psi)$, where $(\varphi,\psi)=\int\limits_M\varphi(x)\bar{\psi}(x)d\mu(x)$, and $\varphi,\psi\in C_0^\infty(M)$, the space of C^∞ functions on M with compact support. In general, $\mathbb{X}_j^*=-\mathbb{X}_j+a_j$, where $a_j\in C^\infty(M)$. The solution of the following initial value problem for the heat equation,

$$\frac{\partial u}{\partial s}(x,s) + \mathcal{L}_x u(x,s) = 0$$

with u(x,0)=f(x), is given by $u(x,s)=H_s(f)(x)$, where H_s is the operator given via the spectral theorem by $H_s=e^{-s\mathcal{L}}$, and an appropriate self-adjoint extension of the non-negative operator \mathcal{L} initially defined on $C_0^\infty(M)$. And they proved that for $f\in L^2(M)$,

$$H_s(f)(x) = \int_M H(s, x, y) f(y) d\mu(y).$$

Moreover H(s, x, y) has some nice properties(see Proposition 2.3.1 in [17] and Theorem 2.3.1 in [14]). We restate them as follows:

- (1) $H(s, x, y) \in C^{\infty}([0, \infty) \times M \times M \setminus \{s = 0 \text{ and } x = y\}).$
- (2) For very integer $N \geq 0$,

$$|\partial_s^j \partial_X^L \partial_Y^K H(s,x,y)|$$

$$\lesssim \frac{1}{(d(x,y) + \sqrt{s})^{2j+K+L}} \frac{1}{V(x,y) + V_{\sqrt{s}}(x) + V_{\sqrt{s}}(y)} \left(\frac{\sqrt{s}}{d(x,y) + \sqrt{s}}\right)^{\frac{N}{2}}.$$

(3) For each integer $L \geq 0$ there exists an integer N_L and a constant C_L so that if $\varphi \in C_0^{\infty}(B(x_0, \delta))$, then for all $s \in (0, \infty)$

$$|\partial_X^L H_s[\varphi](x_0)| \le C_L \delta^{-L} \sup_x \sum_{|J| < N_L} \delta^{|J|} |\partial_X^J \varphi(x)|.$$

- (4) For all $(s, x, y) \in (0, \infty) \times M \times M$, H(s, x, y) = H(s, y, x) and $H(s, x, y) \ge 0$.
- (5) For all $(s, x) \in (0, \infty) \times M$, $\int H(s, x, y) dy = 1$.
- (6) For $1 \le p \le \infty$, $||H_s[f]||_{L^p(M)} \le ||f||_{L^p(M)}$.
- (7) For every $\varphi \in C_0^{\infty}(M)$ and every $t \geq 0$, $\lim_{s \to 0} \|H_s[\varphi] \varphi\|_t = 0$, where $\|\cdot\|_t$ denotes the Sobolev norm.

To introduce the reproducing identity and the Littlewood-Paley square function, they define a bounded operator $Q_s=2s\frac{\partial H_s}{\partial s},\ s>0,$ on $L^2(M)$. Denote by $q_s(x,y)$ the kernel of Q_s . Then from the estimates of H(s,x,y), we have

- (a) $q_s(x,y) \in C^{\infty}(M \times M \setminus \{x = y\}).$
- (b) For every integer $N \geq 0$,

$$|\partial_{X}^{L} \partial_{Y}^{K} q_{s}(x,y)| \le \frac{1}{(d(x,y) + \sqrt{s})^{K+L}} \frac{1}{V(x,y) + V_{\sqrt{s}}(x) + V_{\sqrt{s}}(y)} \left(\frac{\sqrt{s}}{d(x,y) + \sqrt{s}}\right)^{\frac{N}{2}}.$$

$$(c) \int q_{s}(x,y) dy = \int q_{s}(x,y) dx = 0.$$

In [11], to develop the product Hardy space on \widetilde{M} , they discretize the operator Q_s by considering the sequence of bounded operators $\{Q_j\}_{j\in\mathbb{Z}}$, where $Q_j=-\frac{1}{2}\int_{2^{-2j}}^{2^{-2j+2}}Q_s\frac{ds}{s}$. From the behavior of operator H_s , it follows that $\sum_j Q_j=Id$ on $L^2(M)$. Denote by $q_j(x,y)$ the kernel of Q_j . From the estimates of $q_s(x,y)$, for each $j,q_j(x,y)$ satisfies that

- (a') $q_i(x,y) \in C^{\infty}(M \times M \setminus \{x=y\}).$
- (b') For every integer $N \geq 0$,

$$\begin{aligned} |\partial_X^L \partial_Y^K q_j(x,y)| &\lesssim \frac{1}{(d(x,y)+2^{-j})^{K+L}} \frac{1}{V(x,y)+V_{2^{-j}}(x)+V_{2^{-j}}(y)} \left(\frac{2^{-j}}{d(x,y)+2^{-j}}\right)^{\frac{N}{2}}. \\ (c') &\int q_j(x,y) dy = \int q_j(x,y) dx = 0. \end{aligned}$$

2.3. The Hardy space H^1 on product space $\widetilde{M} = M \times M$

To recall the definition of $H^1(\widetilde{M})$, we need to introduce the test function space on \widetilde{M}

Definition 2.3. ([11]). Let $(x_0,y_0)\in\widetilde{M},\ \gamma_1,\gamma_2,r_1,r_2>0,\ 0<\beta_1,\beta_2\leq 1.$ A function on \widetilde{M} is said to be a test function of type $(x_0,y_0;r_1,r_2;\beta_1,\beta_2;\gamma_1,\gamma_2)$ if there exists a constant $C\geq 0$ such that

(i)
$$|f(x,y)| \leq C \frac{1}{V_{r_1}(x_0) + V(x_0,x)} \left(\frac{r_1}{r_1 + d(x,x_0)}\right)^{\gamma_1} \frac{1}{V_{r_2}(y_0) + V(y_0,y)} \left(\frac{r_2}{r_2 + d(y,y_0)}\right)^{\gamma_2}$$
 for all $(x,y) \in \widetilde{M}$;

$$\begin{aligned} &\text{(ii)} \quad |f(x,y) - f(x',y)| \leq C \bigg(\frac{d(x,x')}{r_1 + d(x,x_0)} \bigg)^{\beta_1} \frac{1}{V_{r_1}(x_0) + V(x_0,x)} \bigg(\frac{r_1}{r_1 + d(x,x_0)} \bigg)^{\gamma_1} \\ &\times \frac{1}{V_{r_2}(y_0) + V(y_0,y)} \bigg(\frac{r_2}{r_2 + d(y,y_0)} \bigg)^{\gamma_2} \text{ for all } x,x' \in \widetilde{M} \text{ satisfying that } d(x,x') \\ &\leq (r_1 + d(x,x_0))/2; \end{aligned}$$

(iii) Property (ii) also holds with x and y interchanged;

$$\begin{aligned} &(\text{iv}) \ |f(x,y) - f(x',y) - f(x,y') + f(x',y')| \leq C \bigg(\frac{d(x,x')}{r_1 + d(x,x_0)}\bigg)^{\beta_1} \\ &\frac{1}{V_{r_1}(x_0) + V(x_0,x)} \times \bigg(\frac{r_1}{r_1 + d(x,x_0)}\bigg)^{\gamma_1} \bigg(\frac{d(y,y')}{r_2 + d(y,y_0)}\bigg)^{\beta_2} \\ &\frac{1}{V_{r_2}(y_0) + V(y_0,y)} \bigg(\frac{r_2}{r_2 + d(y,y_0)}\bigg)^{\gamma_2} \text{ for all } x,x',y,y' \in \widetilde{M} \text{ satisfying that } \\ &d(x,x') \leq (r_1 + d(x,x_0))/2 \text{ and } d(y,y') \leq (r_2 + d(y,y_0))/2; \end{aligned}$$

(v)
$$\int_{\widetilde{M}} f(x,y)dx = 0$$
 for all $y \in \widetilde{M}$;

(vi)
$$\int_{\widetilde{M}} f(x,y)dy = 0$$
 for all $x \in \widetilde{M}$.

If f is a test function of type $(x_0, y_0; r_1, r_2; \beta_1, \beta_2; \gamma_1, \gamma_2)$, we write $f \in G(x_0, y_0; r_1, r_2; \beta_1, \beta_2; \gamma_1, \gamma_2)$ and we define the norm of f by

$$||f||_{G(x_0,y_0;r_1,r_2;\beta_1,\beta_2;\gamma_1,\gamma_2)} = \inf\{C: (i),(ii),(iii) \text{ and } (iv) \text{ hold}\}.$$

We denote by $G(\beta_1,\beta_2;\gamma_1,\gamma_2)$ the class of $G(x_0,y_0;1,1;\beta_1,\beta_2;\gamma_1,\gamma_2)$ for any fixed $(x_0,y_0)\in \widetilde{M}$. We can check that $G(x_0,y_0;r_1,r_2;\beta_1,\beta_2;\gamma_1,\gamma_2)=G(\beta_1,\beta_2;\gamma_1,\gamma_2)$ with equivalent norms for all $(x_0,y_0)\in \widetilde{M}$ and $r_1,r_2>0$. Furthermore, it is easy to check that $G(\beta_1,\beta_2;\gamma_1,\gamma_2)$ is a Banach space with respect to the norm in $G(\beta_1,\beta_2;\gamma_1,\gamma_2)$.

Now for $\vartheta_1, \vartheta_2 \in (0,1)$, let $\overset{\circ}{G}_{\vartheta_1,\vartheta_2}(\beta_1,\beta_2;\gamma_1,\gamma_2)$ be the completion of the space $G(\vartheta_1,\vartheta_2;\vartheta_1,\vartheta_2)$ in $G(\beta_1,\beta_2;\gamma_1,\gamma_2)$ when $0<\beta_i,\gamma_i<\vartheta_i$ with i=1,2. We define the dual space $(\overset{\circ}{G}_{\vartheta_1,\vartheta_2}(\beta_1,\beta_2;\gamma_1,\gamma_2))'$ to be the set of all linear functionals L from $\overset{\circ}{G}_{\vartheta_1,\vartheta_2}(\beta_1,\beta_2;\gamma_1,\gamma_2)$ to $\mathbb C$ with the property that there exists $C\geq 0$ such that for all $f\in \overset{\circ}{G}_{\vartheta_1,\vartheta_2}(\beta_1,\beta_2;\gamma_1,\gamma_2)$,

$$|L(f)| \le C||f||_{\mathring{G}_{\vartheta_1,\vartheta_2}(\beta_1,\beta_2;\gamma_1,\gamma_2)}^{\circ}.$$

Next we recall the product square function \widetilde{S} defined via the sequence of operators $\{Q_j\}_{j\in\mathbb{Z}}$ in [11]. If f(x,y) is a function on \widetilde{M} we define $Q_{j_1}\cdot Q_{j_2}=Q_{j_1}\otimes Q_{j_2}$ with Q_{j_1} acting on the first variable and Q_{j_2} on the second. \widetilde{S} is then given by

(2.4)
$$\widetilde{S}(f)(x,y) = \left\{ \sum_{j_1 = -\infty}^{\infty} \sum_{j_2 = -\infty}^{\infty} \left| Q_{j_1} \cdot Q_{j_2}(f)(x,y) \right|^2 \right\}^{\frac{1}{2}}.$$

And we have $\|\widetilde{S}(f)\|_{L^p(\widetilde{M})} \approx \|f\|_{L^p(\widetilde{M})}$ for $1 ([11]). Then <math>H^1(\widetilde{M})$ is defined as follows.

Definition 2.4. ([11]). Let $0 < \vartheta_i < 1$ and $0 < \beta_i, \gamma_i < \vartheta_i$ for i = 1, 2. The Hardy space $H^1(\widetilde{M})$ is defined to be the set of all $f \in (\mathring{G}_{\vartheta_1,\vartheta_2}(\beta_1,\beta_2;\gamma_1,\gamma_2))'$ such that $\|\widetilde{S}[f]\|_{L^1(\widetilde{M})} < \infty$, and we define

$$||f||_{H^1(\widetilde{M})} = ||\widetilde{S}[f]||_{L^1(\widetilde{M})}.$$

Now we recall the discrete Calderón reproducing formula, the Plancherel-Pôlyatype inequality for $H^1(\widetilde{M})$ and the almost orthogonality estimate as follows.

Lemma 2.5. ([11]). For $\vartheta_i \in (0,1)$, $0 < \beta_i, \gamma_i < \vartheta_i$ with = 1,2 and $f \in \overset{\circ}{G}_{\vartheta_1,\vartheta_2}(\beta_1,\beta_2;\gamma_1,\gamma_2)$,

$$(2.5) f(x,y) = \sum_{k_1,k_2} \sum_{I,J} |I||J|\widetilde{q}_{k_1}\widetilde{q}_{k_2}(x,x_I,y,y_J)Q_{k_1}Q_{k_2}[f](x_I,y_J),$$

where $\widetilde{q}_{k_1}\widetilde{q}_{k_2} \in \overset{\circ}{G}_{\vartheta_1,\vartheta_2}(\beta_1,\beta_2;\gamma_1,\gamma_2); \ I,J \subset M$ are dyadic cubes with length $2^{-k_1-N_0}$ and $2^{-k_2-N_0}$ for a fixed integer $N_0; x_I, y_J$ are any fixed points in I and J, respectively. The series in (2.5) converges in the norm of $\overset{\circ}{G}_{\vartheta_1,\vartheta_2}(\beta_1,\beta_2;\gamma_1,\gamma_2)$. Moreover, for $f \in (\overset{\circ}{G}_{\vartheta_1,\vartheta_2}(\beta_1,\beta_2;\gamma_1,\gamma_2))'$, (2.5) holds in the dual space $(\overset{\circ}{G}_{\vartheta_1,\vartheta_2}(\beta_1,\beta_2;\gamma_1,\gamma_2))'$.

Lemma 2.6. ([11]). Suppose $0 < \vartheta_i < 1$ and $0 < \beta_i, \gamma_i < \vartheta_i$ for i = 1, 2. Then, for all $f \in (\mathring{G}_{\vartheta_1,\vartheta_2}(\beta_1,\beta_2;\gamma_1,\gamma_2))'$,

(2.6)
$$\left\| \left\{ \sum_{k_1, k_2} \sum_{I,J} \sup_{u \in I, v \in J} |Q_{k_1} Q_{k_2}[f](u,v)|^2 \chi_I(x) \chi_J(y) \right\}^{\frac{1}{2}} \right\|_{L^1(\widetilde{M})} \\ \approx \left\| \left\{ \sum_{k_1, k_2} \sum_{I,J} \inf_{u \in I, v \in J} |Q_{k_1} Q_{k_2}[f](u,v)|^2 \chi_I(x) \chi_J(y) \right\}^{\frac{1}{2}} \right\|_{L^1(\widetilde{M})},$$

where I, J are the same as in Lemma 2.5.

Let $\widetilde{q}_{k_1}\widetilde{q}_{k_2}(x,x_I,y,y_J)$ be the same as in Lemma 2.5. Note that for any $\beta_1,\beta_2,\gamma_1,\gamma_2\in(0,1),\ \widetilde{q}_{k_1}\widetilde{q}_{k_2}(x,x_I,y,y_J)\in G(\beta_1,\beta_2,\gamma_1,\gamma_2)$. We have that for any $\gamma_1,\gamma_2\in(0,1)$ and $\epsilon_1\in(0,\gamma_1),\ \epsilon_2\in(0,\gamma_2)$,

$$|q_{j_{1}}q_{j_{2}}\widetilde{q}_{k_{1}}\widetilde{q}_{k_{2}}(x,x_{I},y,y_{J})| \lesssim 2^{-|j_{1}-k_{1}|\epsilon_{1}}2^{-|j_{2}-k_{2}|\epsilon_{2}}$$

$$(2.7) \quad \frac{1}{V(x,x_{I})+V_{2^{-(j_{1}\wedge k_{1})}}(x)+V_{2^{-(j_{1}\wedge k_{1})}}(x_{I})} \times \left(\frac{2^{-(j_{1}\wedge k_{1})}}{2^{-(j_{1}\wedge k_{1})}+d(x,x_{I})}\right)^{\gamma_{1}}$$

$$\frac{1}{V(y,y_{J})+V_{2^{-(j_{2}\wedge k_{2})}}(y)+V_{2^{-(j_{2}\wedge k_{2})}}(y_{J})}\left(\frac{2^{-(j_{2}\wedge k_{2})}}{2^{-(j_{2}\wedge k_{2})}+d(y,y_{J})}\right)^{\gamma_{2}}.$$

3. PRODUCT BMO SPACE AND THE PLANCHEREL-PÔLYA-TYPE INEQUALITY

In this section, to characterize the dual space of $H^1(\widetilde{M})$, we introduce the product BMO space on $\widetilde{M}=M\times M$, which is motivated by ideas of Chang and R. Fefferman([2]), see also [10]. To carry this out, we impose the following assumption on M in all rest sections.

Assumption 3.1. Let M and the real vector fields $\{\mathbb{X}_1, \mathbb{X}_2, \mathbb{T}\}$ be the same as in §2.1. Assume that $\{\mathbb{X}_1, \mathbb{X}_2, \mathbb{T}\}$ are uniformly of finite type m on M (see Definition 2.2).

Now we give the definition of BMO space on $\widetilde{M}=M\times M$ via the sequence of operators $\{Q_i\}_{i\in\mathbb{Z}}$ as follows.

Definition 3.2. Suppose $0 < \vartheta_i < 1$ and $0 < \beta_i, \gamma_i < \vartheta_i$ for i = 1, 2. We define the space $BMO(\widetilde{M})$ to be the set of all $f \in (\overset{\circ}{G}_{\vartheta_1,\vartheta_2}(\beta_1,\beta_2;\gamma_1,\gamma_2))'$ such that

(3.1)
$$= \sup_{\Omega} \left\{ \frac{1}{|\Omega|} \int_{\Omega} \sum_{k_1, k_2, I \times J \subseteq \Omega} |Q_{k_1} Q_{k_2}[f](x, y)|^2 \chi_I(x) \chi_J(y) dx dy \right\}^{\frac{1}{2}} < \infty,$$

where the supermum is taken over all open sets Ω in \widetilde{M} with finite measure and for each k_1 and k_2 , I,J range over all the dyadic cubes with length $\ell(I)=2^{-k_1-N_0}$ and $\ell(J)=2^{-k_2-N_0}$, respectively.

To see this definition is independent of the choice of Q_j , we first establish the Plancherel-Pôlya-type inequality for $BMO(\widetilde{M})$.

Theorem 3.3. Let all notation be the same as in Definition 3.2. Then for each $f \in BMO(\widetilde{M})$,

(3.2)
$$\sup_{\Omega} \left\{ \frac{1}{|\Omega|} \int_{\Omega} \sum_{k_{1},k_{2}} \sum_{I \times J \subseteq \Omega} \sup_{u \in I, v \in J} |Q_{k_{1}}Q_{k_{2}}[f](u,v)|^{2} \chi_{I}(x) \chi_{J}(y) dx dy \right\}^{\frac{1}{2}} \\ \approx \sup_{\Omega} \left\{ \frac{1}{|\Omega|} \int_{\Omega} \sum_{k_{1},k_{2}} \sum_{I \times J \subseteq \Omega} \inf_{u \in I, v \in J} |Q_{k_{1}}Q_{k_{2}}[f](u,v)|^{2} \chi_{I}(x) \chi_{J}(y) dx dy \right\}^{\frac{1}{2}}.$$

Proof. Since M satisfies Assumption 3.1, then the quantity $\sum_{j=2}^{m} \Lambda_j(q)$ is uniformly bounded and uniformly bounded away from zero on M. Thus, from (2.3), we have

(3.3)
$$|B(x,\delta)| \approx |B(y,\delta)|$$
 for all $x, y \in M$,

and

(3.4)
$$|B(x,\delta)| \approx \delta^{m+2}$$
 for $\delta \ge 1$; $|B(x,\delta)| \approx \delta^4$ for $\delta \le 1$.

The estimates in (3.11) are crucial, namely, if $\operatorname{diam} I \approx \delta, \delta \leq 1$, then $|I| \approx \delta^4$ and if $\operatorname{diam} I \approx \delta, \delta > 1$, then $|I| \approx \delta^{m+2}$. These estimates will be often used in the following proof.

Now for any $f \in BMO(\widetilde{M})$, by using the discrete product reproducing identity (2.5), the Hölder inequality and the almost orthogonality estimate (2.7), we have

$$\begin{split} \sup_{u \in I, v \in J} & \left| Q_{k_1} Q_{k_2}[f](u, v) \right|^2 \\ \lesssim \sum_{k_1', k_2'} 2^{-|k_1 - k_1'| \epsilon_1} 2^{-|k_2 - k_2'| \epsilon_2} \sum_{I', J'} |I'| |J'| \frac{1}{V(x_I, x_{I'}) + V_{2^{-(k_1 \wedge k_1')}}(x_I) + V_{2^{-(k_1 \wedge k_1')}}(x_{I'})} \\ \times & \left(\frac{2^{-(k_1 \wedge k_1')}}{2^{-(k_1 \wedge k_1')} + d(x_I, x_{I'})} \right)^{\gamma_1} \frac{1}{V(y_J, y_{J'}) + V_{2^{-(k_2 \wedge k_2')}}(y_J) + V_{2^{-(k_2 \wedge k_2')}}(y_{J'})} \\ \times & \left(\frac{2^{-(k_2 \wedge k_2')}}{2^{-(k_2 \wedge k_2')} + d(y_J, y_{J'})} \right)^{\gamma_2} \left| Q_{k_1'} Q_{k_2'}[f](x_{I'}, y_{J'}) \right|^2, \end{split}$$

where ϵ_i is chosen to satisfy $\epsilon_i \in (\vartheta_i, 1)$ for i = 1, 2, I' and J' range over all dyadic cubes with length $\ell(I') \approx 2^{-k_1' - N_0}$ and $\ell(J') \approx 2^{-k_2' - N_0}$, respectively. Moreover, $x_I, x_{I'}$ and $y_J, y_{J'}$ can be any fixed points in I, I' and J, J', respectively.

Note that
$$2^{-|k_1-k_1'|} \approx \frac{\operatorname{diam}(I)}{\operatorname{diam}(I')} \wedge \frac{\operatorname{diam}(I')}{\operatorname{diam}(I)}$$
, $2^{-(k_1 \wedge k_1')} \approx \operatorname{diam}(I) \vee \operatorname{diam}(I')$, $d(x_I, x_{I'}) \geq \operatorname{dist}(I, I')$ and that similar results hold for k_2, k_2' and J, J' . Then
$$\sup_{u \in I, v \in J} \left| Q_{k_1} Q_{k_2}[f](u, v) \right|^2 \\ \lesssim \sum_{k_1', k_2'} \sum_{I', J'} |I'| |J'| \left[\frac{\operatorname{diam}(I)}{\operatorname{diam}(I')} \wedge \frac{\operatorname{diam}(I')}{\operatorname{diam}(I)} \right]^{\epsilon_1} \left[\frac{\operatorname{diam}(J)}{\operatorname{diam}(J')} \wedge \frac{\operatorname{diam}(J')}{\operatorname{diam}(J)} \right]^{\epsilon_2} \\ \times \frac{1}{V_{\operatorname{dist}(I, I')}(x_I) + |I| \vee |I'|} \left(\frac{\operatorname{diam}(I) \vee \operatorname{diam}(I')}{\operatorname{diam}(I) \vee \operatorname{diam}(J')} \right)^{\gamma_1} \\ \times \frac{1}{V_{\operatorname{dist}(J, J')}(y_J) + |J| \vee |J'|} \left(\frac{\operatorname{diam}(J) \vee \operatorname{diam}(J')}{\operatorname{diam}(J) \vee \operatorname{diam}(J')} \right)^{\gamma_2} \\ \times |Q_{k_1'} Q_{k_2'}[f](x_{I'}, y_{J'})|^2.$$

Combining the above estimate with the facts that $x_{I'}$ and $y_{J'}$ are arbitrary points in I' and J' respectively and $ab = (a \vee b)^2 \left(\frac{a}{b} \wedge \frac{b}{a}\right)$ for any a,b>0 implies that for any open set $\Omega \in \widetilde{M}$ with finite measure,

$$\frac{1}{|\Omega|} \sum_{k_{1},k_{2}} \sum_{I \times J \subset \Omega} |I||J| \sup_{u \in I,v \in J} |Q_{k_{1}}Q_{k_{2}}[f](u,v)|^{2}$$

$$\lesssim \frac{1}{|\Omega|} \sum_{k_{1},k_{2}} \sum_{I \times J \subset \Omega} \sum_{k'_{1},k'_{2}} \sum_{I',J'} \left[\frac{|I|}{|I'|} \wedge \frac{|I'|}{|I|} \right] \left[\frac{|J|}{|J'|} \wedge \frac{|I'|}{|J|} \right] \left[\frac{\operatorname{diam}(I)}{\operatorname{diam}(I')} \wedge \frac{\operatorname{diam}(I')}{\operatorname{diam}(I)} \right]^{\epsilon_{1}}$$

$$\times \left[\frac{\operatorname{diam}(J)}{\operatorname{diam}(J')} \wedge \frac{\operatorname{diam}(J')}{\operatorname{diam}(J)} \right]^{\epsilon_{2}} \cdot \left(|I| \vee |I'| \right) \left(|J| \vee |J'| \right)$$

$$\times \frac{|I| \vee |I'|}{V_{\operatorname{dist}(I,I')}(x_{I}) + |I| \vee |I'|} \left(\frac{\operatorname{diam}(I) \vee \operatorname{diam}(I')}{\operatorname{diam}(I) \vee \operatorname{diam}(I')} \right)^{\gamma_{1}}$$

$$\times \frac{|J| \vee |J'|}{V_{\operatorname{dist}(J,J')}(y_{J}) + |J| \vee |J'|} \left(\frac{\operatorname{diam}(J) \vee \operatorname{diam}(J')}{\operatorname{diam}(J) \vee \operatorname{diam}(J')} \right)^{\gamma_{2}}$$

$$\times \inf_{u \in I'} |Q_{k'_{1}}Q_{k'_{2}}[f](u,v)|^{2}.$$

For our convenience, let $R = I \times J$ and $R' = I' \times J'$, where I, J, I' and J' range over all dyadic cubes on M. And set

$$\sum_{k_1, k_2} \sum_{I \times J \subset \Omega} = \sum_{R \subset \Omega} \sum_{k'_1, k'_2} \sum_{I', J'} = \sum_{R'};$$
$$|R| = |I| \times |J|; \ |R'| = |I'| \times |J'|;$$

$$\begin{split} r(R,R') &= \Big[\frac{|I|}{|I'|} \wedge \frac{|I'|}{|I|}\Big] \Big[\frac{|J|}{|J'|} \wedge \frac{|J'|}{|J|}\Big] \Big[\frac{\operatorname{diam}(I)}{\operatorname{diam}(I')} \wedge \frac{\operatorname{diam}(I')}{\operatorname{diam}(I)}\Big]^{\epsilon_1} \Big[\frac{\operatorname{diam}(J)}{\operatorname{diam}(J')} \wedge \frac{\operatorname{diam}(J')}{\operatorname{diam}(J)}\Big]^{\epsilon_2}; \\ v(R,R') &= \Big(|I| \vee |I'|\Big) \Big(|J| \vee |J'|\Big); \\ R(R,R') &= \frac{|I| \vee |I'|}{V_{\operatorname{dist}(I,I')}(x_I) + |I| \vee |I'|} \Big(\frac{\operatorname{diam}(I) \vee \operatorname{diam}(I')}{\operatorname{diam}(I) \vee \operatorname{diam}(I') + \operatorname{dist}(I,I')}\Big)^{\gamma_1} \\ &\times \frac{|J| \vee |J'|}{V_{\operatorname{dist}(J,J')}(y_J) + |J| \vee |J'|} \Big(\frac{\operatorname{diam}(J) \vee \operatorname{diam}(J')}{\operatorname{diam}(J) \vee \operatorname{diam}(J')}\Big)^{\gamma_2}; \\ S_R &= \sup_{u \in I, v \in J} |Q_{k_1} Q_{k_2}[f](u,v)|^2; \\ T_{R'} &= \inf_{u \in I', v \in J'} |Q_{s_1'} Q_{s_2'}[f](u,v)|^2. \end{split}$$

Then, (3.5) can be rewritten as

$$(3.6) \quad \frac{1}{|\Omega|} \sum_{R \subset \Omega} |R| S_R \lesssim \frac{1}{|\Omega|} \sum_{R \subset \Omega} \sum_{R'} r(R, R') v(R, R') P(R, R') T_{R'}.$$

To complete the proof, we need to prove that the right-hand side of (3.6) can be controlled by

$$\sup_{\overline{\Omega}} \frac{1}{|\overline{\Omega}|} \sum_{R' \subset \overline{\Omega}} |R'| T_{R'},$$

where $\overline{\Omega}$ ranges over all open sets in M with finite measure.

Let
$$\Omega^{i,\ell} = \bigcup_{R=I \times J \subset \Omega} 3(2^i I \times 2^\ell J)$$
 for $i, \ell \geq 0$ and
$$B_{0,0} = \{R' = I' \times J' : 3R' \bigcap \Omega^{0,0} \neq \emptyset\};$$

$$B_{i,0} = \{R' = I' \times J' : 3(2^i I' \times J') \bigcap \Omega^{i,0} \neq \emptyset, 3(2^{i-1} I' \times J') \bigcap \Omega^{i-1,0} = \emptyset\};$$

$$B_{0,\ell} = \{R' = I' \times J' : 3(I' \times 2^\ell J') \bigcap \Omega^{0,\ell} \neq \emptyset, 3(I' \times 2^{\ell-1} J') \bigcap \Omega^{0,\ell-1} = \emptyset\};$$

$$B_{i,\ell} = \{R' = I' \times J' : 3(2^i I' \times 2^\ell J') \bigcap \Omega^{i,\ell} \neq \emptyset, 3(2^{i-1} I' \times 2^{\ell-1} J') \bigcap \Omega^{i-1,\ell-1} = \emptyset\},$$

where $i, \ell \geq 1$.

First, it is obvious that $\bigcup_{i,\ell\geq 0} B_{i,\ell} \subset \{R'=I'\times J',I',J' \text{ are dyadic cubes}\}$. Moreover, since $\lim_{i,\ell\to\infty} \Omega^{i,\ell} = \widetilde{M}$, we can see that for any dyadic rectangle R', it must

Moreover, since $\lim_{i,\ell\to\infty}\Omega^{i,\ell}=\widetilde{M}$, we can see that for any dyadic rectangle R', it must belong to some $B_{i,\ell}$. Thus, $\{R'=I'\times J',I',J' \text{ are dyadic cubes}\}\subset\bigcup_{i,\ell\geq 0}B_{i,\ell}$. Hence we have

$$\{R' = I' \times J', I', J' \text{ are dyadic cubes}\} = \bigcup_{i,\ell > 0} B_{i,\ell}.$$

As a consequence, the right-hand side of (3.6) can be controlled by

$$\frac{1}{|\Omega|} \sum_{R \subset \Omega} \left(\sum_{R' \in B_{0,0}} + \sum_{i \ge 1} \sum_{R' \in B_{i,0}} + \sum_{\ell \ge 1} \sum_{R' \in B_{0,\ell}} + \sum_{i,\ell \ge 1} \sum_{R' \in B_{i,\ell}} \right)
r(R, R') v(R, R') P(R, R') T_{R'}
=: \mathbb{I} + \mathbb{II} + \mathbb{III} + \mathbb{IV}.$$

We first estimate \mathbb{I} . Note that when $R' \in B_{0,0}$, $3R' \cap \Omega^{0,0} \neq \emptyset$, so let $\mathcal{F}_h^{0,0} = \{R' : |3R' \cap \Omega^{0,0}| \geq \frac{1}{2^h} |3R'|\}$, $\mathcal{D}_h^{0,0} = \mathcal{F}_h^{0,0} \setminus \mathcal{F}_{h-1}^{0,0}$, $\mathcal{F}_{-1}^{0,0} = \emptyset$ and $\Omega_h^{0,0} = \bigcup_{R' \in \mathcal{D}_h^{0,0}} R'$,

where $h \geq 0$. Since $B_{0,0} = \bigcup_{h>0} \mathcal{D}_h^{0,0}$, we have

(3.7)
$$\mathbb{I} \leq \frac{1}{|\Omega|} \sum_{h \geq 0} \sum_{R' \in \mathcal{D}_h^{0,0}} \sum_{R \subset \Omega} r(R, R') v(R, R') P(R, R') T_{R'}.$$

To estimate (3.7), for each $R' \in \mathcal{D}_h^{0,0}$, we decompose $\{R : R \subset \Omega\}$ by

$$\begin{split} A_{0,0}(R^{'}) &= \bigg\{ R \subseteq \Omega : \operatorname{dist}(I,I^{'}) \leq \operatorname{diam}(\mathbf{I}) \vee \operatorname{diam}(\mathbf{I}^{'}), \ \operatorname{dist}(J,J^{'}) \leq \operatorname{diam}(\mathbf{J}) \vee \operatorname{diam}(\mathbf{J}^{'}) \bigg\}; \\ A_{j,0}(R^{'}) &= \bigg\{ R \subseteq \Omega : 2^{j-1} \big(\operatorname{diam}(\mathbf{I}) \vee \operatorname{diam}(\mathbf{I}^{'}) \big) < \operatorname{dist}(I,I^{'}) \leq 2^{j} \big(\operatorname{diam}(\mathbf{I}) \vee \operatorname{diam}(\mathbf{I}^{'}) \big), \\ \operatorname{dist}(J,J^{'}) &\leq \operatorname{diam}(\mathbf{J}) \vee \operatorname{diam}(\mathbf{J}^{'}) \bigg\}; \\ A_{0,k}(R^{'}) &= \bigg\{ R \subseteq \Omega : \operatorname{dist}(I,I^{'}) \leq \operatorname{diam}(\mathbf{I}) \vee \operatorname{diam}(\mathbf{I}^{'}), \end{split}$$

$$2^{k-1} \left(\operatorname{diam}(\mathbf{J}) \vee \operatorname{diam}(\mathbf{J}') \right) < \operatorname{dist}(J, J') \leq 2^k \left(\operatorname{diam}(\mathbf{J}) \vee \operatorname{diam}(\mathbf{J}') \right)$$

$$A_{j,k}(R^{'}) = \left\{ R \subseteq \Omega : 2^{j-1} \left(\operatorname{diam}(I) \vee \operatorname{diam}(I^{'}) \right) < \operatorname{dist}(I,I^{'}) \leq 2^{j} \left(\operatorname{diam}(I) \vee \operatorname{diam}(I^{'}) \right), 2^{k-1} \left(\operatorname{diam}(J) \vee \operatorname{diam}(J^{'}) \right) < \operatorname{dist}(J,J^{'}) \leq 2^{k} \left(\operatorname{diam}(J) \vee \operatorname{diam}(J^{'}) \right) \right\},$$

where $j, k \ge 1$. Then we split the right-hand side of (3.7) into

$$\frac{1}{|\Omega|} \sum_{h \geq 0} \sum_{R' \in \mathcal{D}_{h}^{0,0}} \left(\sum_{R \in A_{0,0}(R')} + \sum_{j \geq 1} \sum_{R \in A_{j,0}(R')} + \sum_{k \geq 1} \sum_{R \in A_{0,k}(R')} + \sum_{j,k \geq 1} \sum_{R \in A_{j,k}(R')} \right) v(R, R') \times r(R, R') P(R, R') T_{R'} =: \mathbb{I}_{1} + \mathbb{I}_{2} + \mathbb{I}_{3} + \mathbb{I}_{4}.$$

Now we first estimate \mathbb{I}_1 . To do this, we only need to consider

(3.8)
$$\sum_{R \in A_{0,0}(R')} r(R, R') v(R, R')$$

for any $R' \in \mathcal{D}_h^{0,0}$ and $h \geq 0$, since $P(R, R') \leq 1$ in this case. In what follows, we use the geometrical argument as we deal with the homogeneous space, which is a generalization of Chang and R. Fefferman's idea, see more details in [10] and [2]. Note that when $R \in A_{0,0}(R')$, $3R \cap 3R' \neq \emptyset$. So we can split (3.8) into four cases:

Case 1. $|I'| \ge |I|, |J'| \le |J|.$

We first consider the comparison of the diameters of I, I' and J, J'. Note that $\operatorname{diam}(I) \approx 2^{-k_1}$ and $\operatorname{diam}(I') \approx 2^{-k_1'}$. As we remarked above, the following geometric arguments follow from Assumption 3.1.

If $2^{-k_1}, 2^{-k_1'} \ge 1$, then $2^{-k_1'(m+2)} \approx |I'| \ge |I| \approx 2^{-k_1(m+2)}$. This yields $2^{-k_1'} > 2^{-k_1}$

 $\sim 10^{-10} \cdot 10^{-10}$ If $2^{-k_1'}, 2^{-k_1'} \le 1$, then $2^{-k_1' \cdot 4} \approx |I'| \ge |I| \approx 2^{-k_1 \cdot 4}$. This also implies $2^{-k_1'} > 2^{-k_1}$

If $2^{-k_1'} \ge 1 \ge 2^{-k_1}$, then obviously $2^{-k_1'} \ge 2^{-k_1}$.

If $2^{-k_1'} \le 1 \le 2^{-k_1}$, we can see that this is impossible since in Case1, $|I'| \ge |I|$. Combining the above four results, we can see that $diam(I') \gtrsim diam(I)$. Similarly, we can obtain that $\operatorname{diam}(J') \lesssim \operatorname{diam}(J)$.

From this, we have

$$\frac{|I|}{|3I'|}|3R'| \lesssim |3R \bigcap 3R'| \lesssim |3R' \bigcap \Omega^{0,0}| \lesssim \frac{1}{2^{h-1}}|3R'|,$$

then $2^{h-1}|I| \leq |3I'| \lesssim |I'|$. Thus $|I'| \approx 2^{h-1+n_1}|I|$, for some $n_1 \geq 0$. For each fixed n_1 , the number of such I's must be $\lesssim 2^{n_1}$. As for J, $|J| \approx 2^{n_2} |J'|$ for some $n_2 \geq 0$. For each fixed n_2 , the number of such J's is less than a constant independent of n_2 , since $3J \cap 3J' \neq \emptyset$ and $|J| \geq |J'|$.

Again, by Assumption 3.1, if $2^{-k_1}, 2^{-k_1'} \geq 1$, then $2^{-k_1'(m+2)} \approx |I'| \approx$ $2^{h-1+n_1}|I| \approx 2^{h-1+n_1}2^{-k_1(m+2)}$. This yields that $\frac{\operatorname{diam}(I)}{\operatorname{diam}(I')} \approx 2^{-\frac{h-1+n_1}{m+2}}$.

Similarly, if $2^{-k_1'} \geq 1 \geq 2^{-k_1}$, then $2^{-k_1'(m+2)} \approx |I'| \approx 2^{h-1+n_1}|I| \approx$ $2^{h-1+n_1}2^{-k_1\cdot 4}$. This implies that $\frac{\operatorname{diam}(I)}{\operatorname{diam}(I')} \lesssim 2^{-\frac{h-1+n_1}{m+2}}$.

Finally, if 2^{-k_1} , $2^{-k_1'} \leq 1$, then $2^{-k_1' \cdot 4} \approx |I'| \approx 2^{h-1+n_1} |I| \approx 2^{-k_1 \cdot 4}$. Hence, $\frac{\operatorname{diam}(I)}{\operatorname{diam}(I')} \approx 2^{-\frac{h-1+n_1}{4}}$.

Combining the above cases, we have $\frac{\operatorname{diam}(I)}{\operatorname{diam}(I')} \lesssim 2^{-\frac{h-1+n_1}{m+2}}$. Similarly, $\frac{\operatorname{diam}(J')}{\operatorname{diam}(J)} \lesssim$ $2^{-\frac{n_2}{m+2}}$

Thus

$$\begin{split} & \sum_{R \in case1} r(R,R')v(R,R') \\ &= \sum_{R \in case1} \left(\frac{|I|}{|I'|}\right) \left(\frac{|J'|}{|J|}\right) \left(\frac{\operatorname{diam}(I)}{\operatorname{diam}(I')}\right)^{\epsilon_1} \left(\frac{\operatorname{diam}(J')}{\operatorname{diam}(J)}\right)^{\epsilon_2} |I'||J| \\ &\lesssim \sum_{n_1,n_2 \geq 0} 2^{-(h-1+n_1)(1+\frac{\epsilon_1}{m+2})} 2^{-n_2(1+\frac{\epsilon_2}{m+2})} 2^{n_1} |I'| 2^{n_2} |J'| \\ &\lesssim 2^{-h(1+\frac{\epsilon_1}{m+2})} |R'|. \end{split}$$

Case 2. $|I'| \leq |I|, |J'| \geq |J|.$

This can be handled similarly as Case 1. We have

$$\sum_{R \in case2} r(R, R') v(R, R') \lesssim 2^{-h(1 + \frac{\epsilon_2}{m+2})} |R'|.$$

Case 3. |I'| > |I|, |J'| > |J|.

Similar to Case 1, by comparing 2^{-k_i} and $2^{-k'_i}$ with 1 respectively, we can obtain that $\operatorname{diam}(I') \gtrsim \operatorname{diam}(I)$ and $\operatorname{diam}(J') \gtrsim \operatorname{diam}(J)$. Thus we have

$$|R| \lesssim |3R' \bigcap 3R| \le |3R' \bigcap \Omega_{0,0}| \le \frac{1}{2^{h-1}} |3R'|.$$

thus $2^{h-1}|R| \lesssim |R'|$. Hence $|R'| \approx 2^{h-1+n}|R|$ for some $n \geq 0$. For each fixed n, the number of such R's is $\lesssim 2^n$.

Now we further consider the diameter of the cubes I, I', J, J'. If $2^{-k_1}, 2^{-k_1'} \geq 1$ and $2^{-k_2}, 2^{-k_2'} \geq 1$, then $2^{-k_1'(m+2)}2^{-k_2'(m+2)} \approx 2^{h-1+n} 2^{-k_1(m+2)}2^{-k_2(m+2)}$. Hence $\frac{\text{diam}(I)}{\text{diam}(I')} \frac{\text{diam}(J)}{\text{diam}(J')} \lesssim 2^{-\frac{h-1+n}{m+2}}$.

Similarly, by continuing comparing 2^{-k_i} and $2^{-k_i'}$ with 1, respectively, we have $\frac{\operatorname{diam}(I)}{\operatorname{diam}(I')} \frac{\operatorname{diam}(J)}{\operatorname{diam}(J')} \lesssim 2^{-\frac{h-1+n}{m+2}}$. As a consequence, we have

$$\sum_{R \in case3} r(R, R') v(R, R') = \sum_{R \in case3} \frac{|R|}{|R'|} \left(\frac{\operatorname{diam}(I)}{\operatorname{diam}(I')}\right)^{\epsilon_1} \left(\frac{\operatorname{diam}(J)}{\operatorname{diam}(J')}\right)^{\epsilon_2} |R'|$$

$$\lesssim \sum_{n \geq 0} 2^{-(h-1+n)(1+\frac{\epsilon_3}{m+2})} |R'|$$

$$\lesssim 2^{-h(1+\frac{\epsilon_3}{m+2})} |R'|,$$

where $\epsilon_3 = \epsilon_1 \wedge \epsilon_2$.

Case 4. $|I'| \le |I|, |J'| \le |J|.$

Similar to Case 3, we have $\operatorname{diam}(I') \lesssim \operatorname{diam}(I)$ and $\operatorname{diam}(J') \lesssim \operatorname{diam}(J)$, which implies that

$$|R'| \lesssim |3R' \bigcap 3R| \leq |3R' \bigcap \Omega_{0,0}| \leq \frac{1}{2^{h-1}} |3R'|.$$

Hence there exists a constant $h_0>0$ independent of R and R' such that $0\leq h\leq h_0$. We obtain that $|R|\approx 2^{h-1+n}|R'|$ for some $n\geq 0$ and that for each fixed n, the number of such R''s is less then a constant independent of n. Also, by using the same skills as in Case3, we have $\frac{\operatorname{diam}(I')}{\operatorname{diam}(I)}\frac{\operatorname{diam}(J')}{\operatorname{diam}(J)}\lesssim 2^{-\frac{h-1+n}{m+2}}$. Therefore

$$\begin{split} & \sum_{R \in case4} r(R,R')v(R,R') \\ &= \sum_{R \in case4} \frac{|R'|}{|R|} \bigg(\frac{\operatorname{diam}(I')}{\operatorname{diam}(I)}\bigg)^{\epsilon_1} \bigg(\frac{\operatorname{diam}(J')}{\operatorname{diam}(J)}\bigg)^{\epsilon_2} |R| \lesssim 2^{-h\frac{\epsilon_3}{m+2}} |R'|, \end{split}$$

where ϵ_3 is the same as in Case3.

Now let us turn to \mathbb{I}_1 .

$$\mathbb{I}_{1} = \frac{1}{|\Omega|} \sum_{h} \sum_{R' \in \mathcal{D}_{h}^{0,0}} \left(\sum_{R \in case1} + \sum_{R \in case2} + \sum_{R \in case3} + \sum_{R \in case4} \right) r(R, R') v(R, R') T_{R'} \\
= : \mathbb{I}_{11} + \mathbb{I}_{12} + \mathbb{I}_{13} + \mathbb{I}_{14}.$$

Obviously, combining the fact that $|\Omega_h^{0,0}| \lesssim h2^h |\Omega|$ for $h \geq 1$, $|\Omega_0^{0,0}| \lesssim |\Omega|$, $\epsilon_i \in (\vartheta_i,1)$ for i=1,2, we have

$$\mathbb{I}_{11}, \mathbb{I}_{12}, \mathbb{I}_{13} \lesssim \frac{1}{|\Omega|} \sum_{h} \sum_{R' \in \mathcal{D}_{h}^{0,0}} 2^{-h(1 + \frac{\epsilon_{3}}{m+2})} |R'| T_{R'}$$

$$\lesssim \sum_{h} 2^{-h(1 + \frac{\epsilon_{3}}{m+2})} \frac{|\Omega_{h}^{0,0}|}{|\Omega|} \frac{1}{|\Omega_{h}^{0,0}|} \sum_{R' \subset \Omega_{h}^{0,0}} |R'| T_{R'}$$

$$\lesssim \sum_{h} 2^{-h(1 + \frac{\epsilon_{3}}{m+2})} h 2^{h} \sup_{\bar{\Omega}} \frac{1}{|\bar{\Omega}|} \sum_{R' \subset \bar{\Omega}} \mu(R') T_{R'}$$

$$\lesssim \sup_{\bar{\Omega}} \frac{1}{|\bar{\Omega}|} \sum_{R' \subset \bar{\Omega}} \mu(R') T_{R'}.$$

As for \mathbb{I}_{14} , noting that $0 \le h \le h_0$ then we can get the same estimate as above.

Then, following the same routine and skills as in the proof of Theorem 3.2 in [10], we can obtain the estimates of other three terms in \mathbb{I} and similarly we can deal with \mathbb{II} , \mathbb{III} and \mathbb{IV} with only minor differences that we need to compare the diameter of the dyadic cube with 1 according to the volume of the cube.

This completes the proof of Theorem 3.3.

4. PRODUCT SEQUENCE SPACES AND DUALITY

In this section, we introduce the product sequence space c^1 and prove that c^1 is the dual space of s^1 . Let $\widetilde{M} = M \times M$, where M is mentioned in Section 2.1. We first recall the definition of s^1 introduced in [11].

Definition 4.1. [11]. Set $\tilde{\chi}_R(x_1, x_2) = |R|^{-1/2} \chi_R(x_1, x_2)$ for any dyadic rectangle R in \widetilde{M} . The product sequence space s^1 is defined as the collection of all complex-value sequences $s = \{s_R\}_R$ such that

(4.1)
$$||s||_{s^1} = ||\{\sum_R (|s_R|\tilde{\chi}_R(x_1, x_2))^2\}^{1/2}||_{L^1(\widetilde{M})}.$$

Definition 4.2. The product sequence space c^1 is defined as the collection of all complex-value sequences $t = \{t_R\}_R$ such that

(4.2)
$$||t||_{c^1} = \sup_{\Omega} \left\{ \frac{1}{|\Omega|} \sum_{R \subset \Omega} |t_R|^2 \right\}^{1/2},$$

where the sup is taken over all open sets $\Omega \in \widetilde{M}$ with finite measure and R ranges over all the dyadic rectangles in \widetilde{M} .

The main result in this section is the following duality theorem.

Theorem 4.3.
$$(s^1)' = c^1$$
.

Proof. First, we prove that for all $t \in c^1$, let

(4.3)
$$L(s) = \sum_{R} s_R \cdot \overline{t}_R, \quad \forall s \in s^1,$$

then $|L(s)| \lesssim ||s||_{s^1} ||t||_{c^1}$.

To see this, let

$$\Omega_{k} = \left\{ (x_{1}, x_{2}) \in \widetilde{M} : \left\{ \sum_{R} \left(|s_{R}| \widetilde{\chi}_{R}(x_{1}, x_{2}) \right)^{2} \right\}^{1/2} > 2^{k} \right\};
B_{k} = \left\{ R : |\Omega_{k} \bigcap R| > \frac{1}{2} |R|, |\Omega_{k+1} \bigcap R| \leq \frac{1}{2} |R| \right\};
\widetilde{\Omega}_{k} = \left\{ (x_{1}, x_{2}) \in \widetilde{M} : \mathcal{M}_{s}(\chi_{\Omega_{k}}) > \frac{1}{2} \right\},$$

where M_s is the strong maximal function on \widetilde{M} . By (4.3) and the Hölder inequality,

$$|L(s)| \leq \sum_{k} \left(\sum_{R \in B_{k}} |s_{R}|^{2} \right)^{\frac{1}{2}} \left(\sum_{R \in B_{k}} |t_{R}|^{2} \right)^{\frac{1}{2}}$$

$$\leq \sum_{k} |\tilde{\Omega}_{k}|^{\frac{1}{2}} \left(\sum_{R \in B_{k}} |s_{R}|^{2} \right)^{\frac{1}{2}} \left(\frac{1}{|\tilde{\Omega}_{k}|} \sum_{R \subset \tilde{\Omega}_{k}} |t_{R}|^{2} \right)^{\frac{1}{2}}$$

$$\leq \sum_{k} |\tilde{\Omega}_{k}|^{\frac{1}{2}} \left(\sum_{R \in B_{k}} |s_{R}|^{2} \right)^{\frac{1}{2}} ||t||_{c^{1}}.$$

Combining the facts that $\int\limits_{\tilde{\Omega}_k\backslash\Omega_{k+1}}\sum_{R\in B_k}\left(|s_R|\tilde{\chi}_R(x)\right)^2\!dx\leq 2^{2(k+1)}|\tilde{\Omega}_k\backslash\Omega_{k+1}|\leq C2^{2k}|\Omega_k| \text{ and that }$

$$\int_{\tilde{\Omega}_{k}\backslash\Omega_{k+1}} \sum_{R\in B_{k}} \left(|s_{R}|\tilde{\chi}_{R}(x) \right)^{2} dx \geq \sum_{R\in B_{k}} |s_{R}|^{2} |R|^{-1} |\tilde{\Omega}_{k}\backslash\Omega_{k+1} \cap R|
since $R \in B_{k}$ then R is contained in $\tilde{\Omega}_{k}$

$$\geq \sum_{R\in B_{k}} |s_{R}|^{2} |R|^{-1} \frac{1}{2} |R|$$

$$\geq \frac{1}{2} \sum_{R\in B_{k}} |s_{R}|^{2},$$$$

we have $\left(\sum_{R\in B_k} |s_R|^2\right)^{\frac{1}{2}} \lesssim 2^k |\Omega_k|^{\frac{1}{2}}$. Substituting this back into the last term of (4.4) yields that $|L(s)| \lesssim \|s\|_{s^1} \|t\|_{c^1}$.

Conversely, we need to verify that for any $L \in (s^1)'$, there exists $t \in c^1$ with $||t||_{c^1} \le ||L||$ such that for all $s \in s^1$, $L(s) = \sum_R s_R \overline{t}_R$. Here we adapt a similar idea given by Frazier and Jawerth in [8] in one-parameter case to our multi-parameter situation

We define $s_R^i=1$ when $R=R_i$ and $s_R^i=0$ for all other R. Then it is easy to see that $\|S_R^i\|_{s^1}=1$. Now for all $s\in s^1,\ s=\{s_R\}=\sum_i s_{R_i}s_{R_i}^i$, the limit holds in the norm of s^1 , where $\{R_i\}_{i\in\mathbb{Z}}$ are denoted by all dyadic rectangles in \widetilde{M} . For any $L\in \left(s^1\right)'$, let $\overline{t}_{R_i}=L(s^i)$, then $L(s)=L(\sum_i s_{R_i}s^i)=\sum_i s_{R_i}\overline{t}_{R_i}=\sum_R s_R\overline{t}_R$. Let $t=\{t_R\}$. Then we only need to check that $\|t\|_{c^1}\leq \|L\|$.

For any open set $\Omega\subset \widetilde{M}$ with finite measure, let $\bar{\mu}$ be a new measure such that $\bar{\mu}(R)=\frac{|R|}{|\Omega|}$ when $R\subset\Omega$, $\bar{\mu}(R)=0$ when $R\nsubseteq\Omega$. And let $l^2(\bar{\mu})$ be a sequence space such that when $s\in l^{-2}(\bar{\mu})$, $\big(\sum_{R\subset\Omega}|s_R|^2\frac{|R|}{|\Omega|}\big)^{1/2}<\infty$. It is easy to see that

$$(l^2(\bar{\mu}))' = l^2(\bar{\mu})$$
. Then,

$$\left\{ \frac{1}{|\Omega|} \sum_{R \subset \Omega} |t_R|^2 \right\}^{1/2} = \||R|^{-1/2} |t_R|\|_{l^2(\bar{\mu})} \\
= \sup_{s: \|s\|_{l^2(\bar{\mu})} \le 1} \left| \sum_{R \subseteq \Omega} (t_R |R|^{-1/2}) \cdot \overline{s}_R \cdot \frac{|R|}{|\Omega|} \right| \\
\le \sup_{s: \|s\|_{l^2(\bar{\mu})} \le 1} \left| L\left(\chi_{\{R \subseteq \Omega\}}(R) \frac{|R|^{1/2} |s_R|}{|\Omega|}\right) \right|$$

$$\leq \sup_{s: \|s\|_{l^{2}(\bar{\mu})} \leq 1} \|L\| \cdot \|\chi_{\{R \subseteq \Omega\}}(R) \frac{|R|^{1/2} |s_{R}|}{|\Omega|} \|_{s^{1}}.$$

By (4.1) and the Hölder inequality, we have

$$\left\| \chi_{\{R \subseteq \Omega\}}(R) \frac{|R|^{1/2} |s_R|}{|\Omega|} \right\|_{s^1} \le \left(\sum_{R \subseteq \Omega} |s_R|^2 \frac{|R|}{|\Omega|} \right)^{1/2}.$$

Hence,

$$||t||_{c^1} \le \sup_{s: ||s||_{l^2(\bar{\mu})} \le 1} ||L|| \cdot ||s||_{l^2(\bar{\mu})} \le ||L||.$$

This completes the proof of Theorem 4.3.

5. Duality of
$$H^1(\widetilde{M})$$
 with $BMO(\widetilde{M})$

In this section, we prove Theorem 1.1. Let $\widetilde{M} = M \times M$, where M satisfies Assumption 3.1. First, we define the lifting and projection operators as follows.

Definition 5.1. Suppose $\vartheta_i \in (0,1)$ and $0 < \beta_i, \gamma_i < \vartheta_i$ for i=1,2. For any $f \in (\overset{\circ}{G}_{\vartheta_1,\vartheta_2}(\beta_1,\beta_2;\gamma_1,\gamma_2))'$, define the lifting operator S_Q by

(5.1)
$$S_Q(f) = \left\{ |I|^{\frac{1}{2}} |J|^{\frac{1}{2}} Q_{k_1} Q_{k_2}[f](x_I, y_J) \right\}_{k_1, k_2, I, J},$$

where $k_1, k_2 \in \mathbb{Z}$, I, J are the same as in Lemma 2.5 and $R = I \times J$, x_I and y_J are the centers of I and J, respectively.

Definition 5.2. For any complex-value sequence $\lambda = \{\lambda_{k_1,k_2,I,J}\}_{k_1,k_2,I,J}$, define the projection operator $T_{\widetilde{O}}$ by

$$(5.2) \quad T_{\widetilde{Q}}(\lambda)(x,y) = \sum_{i,k} \sum_{I,J} |I|^{\frac{1}{2}} |J|^{\frac{1}{2}} \widetilde{q}_{k_1} \widetilde{q}_{k_2}(x,x_I,y,y_J) \cdot \lambda_{j,k,I,J},$$

where $\widetilde{q}_{s_1}\widetilde{q}_{s_2}(x,x_I,y,y_J)$ are the same as in Lemma 2.5, and k_1,k_2 ; I,J; x_I,y_J are the same as in the above definition. Moreover,

$$T_{\widetilde{Q}}(S_{Q}(f))(x,y) = \sum_{k_{1},k_{2}} \sum_{I,J} |I||J|\widetilde{q}_{k_{1}}\widetilde{q}_{k_{2}}(x,x_{I},y,y_{J})Q_{k_{1}}Q_{k_{2}}[f](x_{I},y_{J}).$$

For the above lifting and projection operators, we first recall the following result on $H^1(\widetilde{M})$ showed in [11].

Lemma 5.3. ([11]). For any $f \in H^1(\widetilde{M})$, we have

(5.3)
$$||S_Q(f)||_{s^1} \lesssim ||f||_{H^1(\widetilde{M})}.$$

Conversely, for any $s \in s^1$,

(5.4)
$$||T_{\widetilde{Q}}(s)||_{H^1(\widetilde{M})} \lesssim ||s||_{s^1}.$$

Moreover, $T_{\widetilde{Q}}S_Q$ equals the identity on $H^1(\widetilde{M})$.

We now establish a similar result on $BMO(\widetilde{M})$ as follows.

Lemma 5.4. For any $f \in BMO(\widetilde{M})$, we have

(5.5)
$$||S_Q(f)||_{c^1} \lesssim ||f||_{BMO(\widetilde{M})}.$$

Conversely, for any $t \in c^1$,

(5.6)
$$||T_Q(t)||_{BMO(\widetilde{M})} \lesssim ||t||_{c^1}.$$

Moreover, $T_{\widetilde{Q}}S_Q$ equals the identity on $BMO(\widetilde{M})$.

Proof. According to Definition 4.2, 5.1 and 3.2, (5.5) follows directly from the Plancherel-Pôlya-type inequality for $BMO(\widetilde{M})$ (Theorem 3.3).

Now let us prove (5.6). For any $t \in c^1$, by Definition 3.2 and 5.2 and using the same skills as in the estimate of (3.5), we obtain that

$$\frac{1}{|\Omega|} \sum_{k_{1},k_{2}} \sum_{I \times J \subset \Omega} |I| |J| \sup_{u \in I, v \in J} |Q_{k_{1}}Q_{k_{2}}[T_{\widetilde{Q}}(t)](u,v)|^{2}
\lesssim \frac{1}{|\Omega|} \sum_{k_{1},k_{2}} \sum_{I \times J \subset \Omega} \sum_{k'_{1},k'_{2}} \sum_{I',J'} \left[\frac{|I|}{|I'|} \wedge \frac{|I'|}{|I|} \right] \left[\frac{|J|}{|J'|} \wedge \frac{|J'|}{|J|} \right] \left[\frac{\operatorname{diam}(I)}{\operatorname{diam}(I')} \wedge \frac{\operatorname{diam}(I')}{\operatorname{diam}(I)} \right]^{\epsilon_{1}}
\times \left[\frac{\operatorname{diam}(J)}{\operatorname{diam}(J')} \wedge \frac{\operatorname{diam}(J')}{\operatorname{diam}(J)} \right]^{\epsilon_{2}} \cdot \left(|I| \vee |I'| \right) \left(|J| \vee |J'| \right)
\times \frac{|I| \vee |I'|}{V_{\operatorname{dist}(I,I')}(x_{I}) + |I| \vee |I'|} \left(\frac{\operatorname{diam}(I) \vee \operatorname{diam}(I')}{\operatorname{diam}(I) \vee \operatorname{diam}(J')} \right)^{\gamma_{1}}
\times \frac{|J| \vee |J'|}{V_{\operatorname{dist}(J,J')}(y_{J}) + |J| \vee |J'|} \left(\frac{\operatorname{diam}(J) \vee \operatorname{diam}(J')}{\operatorname{diam}(J) \vee \operatorname{diam}(J')} \right)^{\gamma_{2}}
\times |t_{k'_{1},k'_{2},I',J'}| |I'|^{-\frac{1}{2}} |J'|^{-\frac{1}{2}}|^{2}.$$

In fact, we now deal with the same estimates as (3.5) with only minor modification that $\inf_{u\in I',v\in J'}\left|Q_{k'_1}Q_{k'_2}[f](u,v)\right|^2$ is replaced by $\left|t_{k'_1,k'_2,I',J'}\right|I'|^{-\frac{1}{2}}|J'|^{-\frac{1}{2}}|^2$. Thus, following the proof of Theorem 3.3, we can obtain that

$$||T_{\widetilde{Q}}(t)||_{BMO(\widetilde{M})} \lesssim \left(\sup_{\Omega} \frac{1}{|\Omega|} \sum_{k_1, k_2} \sum_{I \times J \subset \Omega} |I||J| |t_{k_1, k_2, I, J}| |I|^{-\frac{1}{2}} |J|^{-\frac{1}{2}} |^2\right)^{\frac{1}{2}} \lesssim ||t||_{c^1}.$$

Finally, we can easily get that from the Calderón reproducing formula $T_{\widetilde{Q}}S_Q$ is the identity operator on $BMO(\widetilde{M})$. The proof of Lemma 5.4 is completed.

We now prove the main result, Theorem 1.1.

Proof of Theorem 1.1. First, for any $g \in \overset{\circ}{G}_{\vartheta_1,\vartheta_2}(\beta_1,\beta_2;\gamma_1,\gamma_2)$ with $0 < \beta_i, \gamma_i < \vartheta_i$ for i=1,2 and $f \in BMO(\widetilde{M})$, from Lemma 2.5, we have

$$\langle f, g \rangle = \sum_{k_1, k_2} \sum_{I, J} |I| |J| \widetilde{Q}_{k_1} \widetilde{Q}_{k_2}[f](x_I, y_J) Q_{k_1} Q_{k_2}[f](x_I, y_J).$$

Here we use \widetilde{Q}_{k_i} to denote the operator whose kernel is $\widetilde{q}_{k_i}(x,y)$. Following the idea of (4.4), we have $|< f,g>| \leq C\|S_{\widetilde{Q}}(g)\|_{s^1}\|S_Q(f)\|_{c^1}$, where $S_{\widetilde{Q}}(g)=\{|I|^{\frac{1}{2}}|J|^{\frac{1}{2}}\widetilde{Q}_{k_1}\widetilde{Q}_{k_2}[g]\ (x_I,y_J)\}_{k_1,k_2,I,J}$. From the Definition 4.1, the Calderón reproducing formula and the Plancherel-

From the Definition 4.1, the Calderón reproducing formula and the Plancherel-Pôlya-type inequality (6.2), we can get that $||S_{\widetilde{Q}}(g)||_{s^1} \lesssim ||g||_{H^1(\widetilde{M})}$. And from

Lemma 5.4, we have $\|S_Q(f)\|_{c^1} \leq C\|f\|_{BMO(\widetilde{M})}$. Thus,

$$|< f,g>| \leq C \|f\|_{BMO(\widetilde{M})} \|g\|_{H^1(\widetilde{M})}.$$

Since $\overset{\circ}{G}_{\vartheta_1,\vartheta_2}(\beta_1,\beta_2;\gamma_1,\gamma_2)$ is dense in $H^1(\widetilde{M})$, it follows from a standard density argument that $BMO(\widetilde{M})\subseteq (H^1(\widetilde{M}))'$.

Conversely, suppose $L \in (H^1(\widetilde{M}))'$. Then $L_1 = L \circ T_{\widetilde{Q}} \in (s^1)'$ by Lemma 5.3. So by Theorem 4.3, there exists $t \in c^1$ such that $L_1(s) = \langle t, s \rangle$ for all $s \in s^1$ and that $\|t\|_{c^1} \approx \|L_1\| \lesssim \|L\|$ since $T_{\widetilde{Q}}$ is bounded. Hence for any $g \in \overset{\circ}{G}_{\vartheta_1,\vartheta_2}(\beta_1,\beta_2;\gamma_1,\gamma_2), \ L(g) = L(T_{\widetilde{Q}}S_Q(g)) = \langle t,S_Q(g) \rangle$. From Definition 4.2, we have

$$\langle t, S_Q(g) \rangle = \sum_{k_1, k_2} \sum_{I,J} |I|^{\frac{1}{2}} |J|^{\frac{1}{2}} Q_{k_1} Q_{k_2}[g](x_I, y_J) \cdot t_{k_1, k_2, I, J}$$

$$= \int_{\widetilde{M}} \sum_{k_1, k_2} \sum_{I,J} |I|^{\frac{1}{2}} |J|^{\frac{1}{2}} q_{k_1} q_{k_2}(x, x_I, y, y_J) t_{k_1, k_2, I, J} \cdot g(x, y) dx dy$$

$$= \langle T_Q(t), g \rangle .$$

By using the Plancherel-Pôlya-type inequality in Theorem 3.3, we can get that $\|T_Q(t)\|_{BMO(\widetilde{M})} \leq C\|t\|_{c^1} \leq C\|L\|$. By the density argument, we have that for any $g \in H^1(\widetilde{M})$,

$$L(g) = \langle T_Q(t), g \rangle,$$

which shows that $(H^1(\widetilde{M}))' \subseteq BMO(\widetilde{M})$.

6. Product Case of n Factors

In this section, we describe the results on $\widetilde{M}=M_1\times\cdots\times M_n$, where each M_i satisfies Assumption 3.1, since the method we used on $\widetilde{M}=M\times M$ can be applied for the product case of n factors.

To begin with, we state some necessary results in [11]. Denote by $\overset{\circ}{G}_{\vartheta_1,\cdots,\vartheta_n}(\beta_1,\gamma_1;\cdots;\beta_n,\gamma_n)$ and $(\overset{\circ}{G}_{\vartheta_1,\cdots,\vartheta_n}(\beta_1,\gamma_1;\cdots;\beta_n,\gamma_n))'$ the test function space and its dual space, where $\vartheta_i \in (0,1)$ and $0<\beta_i,\gamma_i<\vartheta_i$ for $i=1,2,\cdots,n$. The Littlewood-Paley square function associated to the sequence of operators $\{Q_{k_i}\}_{k_i\in\mathbb{Z}}$ on each M_i is defined by

$$\widetilde{S}(f)(x_1,\dots,x_n) = \left\{ \sum_{k_1} \dots \sum_{k_n} |Q_{k_1} \dots Q_{k_n}(f)(x_1,\dots,x_n)|^2 \right\}^{\frac{1}{2}}.$$

In [11] we can see that $\|\widetilde{S}(f)\|_{L^p(\widetilde{M})} \approx \|f\|_{L^p(\widetilde{M})}$ for $1 . And the Hardy space <math>H^1(\widetilde{M})$ is defined as follows.

Definition 6.1. ([11]). Let $0 < \vartheta_i < 1$ and $0 < \beta_i, \gamma_i < \vartheta_i$ for $i = 1, \dots, n$. The Hardy space $H^1(\widetilde{M})$ is defined to be the set of all $f \in (\mathring{G}_{\vartheta_1, \dots, \vartheta_n}(\beta_1, \gamma_1; \dots; \beta_n, \gamma_n))'$ such that $\|\widetilde{S}[f]\|_{L^1(\widetilde{M})} < \infty$, and we define

$$||f||_{H^1(\widetilde{M})} = ||\widetilde{S}[f]||_{L^1(\widetilde{M})}.$$

Now we give the definition of $BMO(\widetilde{M})$ via the sequence of operators $\{Q_{k_i}\}_{k_i\in\mathbb{Z}}$ on each M_i as follows.

Definition 6.2. Let $0<\vartheta_i<1$ and $0<\beta_i,\gamma_i<\vartheta_i$ for $i=1,\cdots,n.$ We define the space $BMO(\widetilde{M})$ to be the set of all $f\in (\overset{\circ}{G}_{\vartheta_1,\cdots,\vartheta_n}(\beta_1,\gamma_1;\cdots;\beta_n,\gamma_n))'$ such that

$$(6.1) \qquad = \sup_{\Omega} \left\{ \frac{1}{|\Omega|} \int_{\Omega} \sum_{k_1, \dots, k_n} \sum_{I_1 \times \dots \times I_n \subseteq \Omega} |Q_{k_1} \dots Q_{k_n}[f](x_1, \dots, x_n)|^2 \right. \\ \left. \times \chi_{I_1}(x_1) \dots \chi_{I_n}(x_n) dx_1 \dots dx_n \right\}^{\frac{1}{2}} < \infty,$$

where the sup is taken over all open sets Ω in \widetilde{M} with finite measure and for each k_i , I_i ranges over all the dyadic cubes in M_i with length $\ell(I_i) = 2^{-k_i - N_0}$ for $i = 1, 2, \dots, n$.

Following the same routine as in the product case of two factors, we can establish the Plancherel-Pôlya-type inequality for $BMO(\widetilde{M})$.

Theorem 6.3. Let all the notation be the same as in Definition 6.2. Then for all $f \in BMO(\widetilde{M})$,

$$\sup_{\Omega} \left\{ \frac{1}{|\Omega|} \int_{\Omega} \sum_{k_1, \dots, k_n} \sum_{I_1 \times \dots \times I_n \subseteq \Omega} \sup_{u_1 \in I_1, \dots, u_n \in I_n} |Q_{k_1} \dots Q_{k_n}[f](u_1, \dots, u_n)|^2 \right. \\
\left. \times \chi_{I_1}(x_1) \dots \chi_{I_n}(x_n) dx_1 \dots dx_n \right\}^{\frac{1}{2}} \\
\approx \sup_{\Omega} \left\{ \frac{1}{|\Omega|} \int_{\Omega} \sum_{k_1, \dots, k_n} \sum_{I_1 \times \dots \times I_n \subseteq \Omega} \inf_{u_1 \in I_1, \dots, u_n \in I_n} |Q_{k_1} \dots Q_{k_n}[f](u_1, \dots, u_n)|^2 \right. \\
\left. \times \chi_{I_1}(x_1) \dots \chi_{I_n}(x_n) dx_1 \dots dx_n \right\}^{\frac{1}{2}}.$$

Next, we can extend the result of sequence spaces on product space of 2-factors, namely, Theorem 4.3, Lemma 5.3 and 5.4, to product spaces of n-factors. Then, by working on the level of sequence spaces, we can obtain Theorem 1.1 on product case of n factors. For the detail, we omit it here.

REFERENCES

- 1. M. Christ, A T(b) theorem with remarks on analytic capacity and the Cauchy integral, *Collog. Math.*, **60/61** (1990), 601-628.
- 2. S-Y. A. Chang and R. Fefferman, A continuous version of the duality of H^1 and BMO on the bi-disc, *Ann. Math.*, **112** (1980), 179-201.
- 3. S-Y. A. Chang and R. Fefferman, Some recent developments in Fourier analysis and H^p -theory on product domains, *Bull. Amer. Math. Soc.* (*N.S.*), **12(1)** (1985), 1-43.
- 4. D.-C. Chang, A. Nagel and E. M. Stein, *Estimates for the* ∂-*Neumann problem for pseudoconvex domains in* ℂ² *of finite type*, Proc. Natl. Acad. Sci. U.S.A., Vol. 85, pp. 8771-8774, December 1988 Mathematics.
- 5. D.-C. Chang, A. Nagel and E. M. Stein, Estimates for the $\overline{\partial}$ -Neumann problem in pseudoconvex domains of finite type in C^2 , *Acta Math.*, **169** (1992), 153-228.
- 6. R. Coifman and G. Weiss, *Analyse harmonique non-commutative sur certains espaces homogènes*, Lecture Notes in Math. **242**, Springer, Berlin, 1971.
- 7. D. G. Deng and Y. S. Han, *Harmonic analysis on spaces of homogeneous type*. With a preface by Yves Meyer, Lecture Notes in Mathematics, 1966, Springer-Verlag, Berlin, 2009.
- 8. M. Frazier and B. Jawerth, A discrete transform and decomposition of distribution spaces, *J. Funct. Anal.*, **93** (1990), 34-170.
- 9. C. Fefferman and E. M. Stein, H^p spaces of several variables, *Acta. Math.*, **129** (1972), 137-195.
- 10. Y. S. Han, J. Li and G. Lu, *Duality of Hardy space* H^p on product spaces of homogeneous type, Submitted 2008.
- 11. Y. S. Han, J. Li and G. Lu, Product theory on Carnot-Caratheodory spaces, Preprint.
- 12. Y. Han, D. Müller and D. Yang, A theory of Besov and Triebel-Lizorkin spaces on Metric measure spaces Modeled on Carnot Carathéodory spaces, Abstract and Applied Analysis, Vol. 2008, Article ID 893409.
- 13. Y. Han, D. Muller and D. Yang, Littlewood-Paley characterizations for Hardy spaces on spaces of homogeneous type, *Math. Nachr.*, **279** (2006), 1505-1537.
- 14. A. Nagel and E. M. Stein, The \Box_b -Heat equation on pseudoconvex manifolds of finite type in \mathbb{C}^2 , *Math. Z.*, **238** (2001), 37-88.
- 15. A. Nagel and E. M. Stein, Differentiable control metrics and scaled bump functions, *J. Differential Geom.*, **57** (2001), 465-492.

- 16. A. Nagel and E. M. Stein, The $\bar{\partial}_b$ -complex on decoupled boundaries in \mathbb{C}^n , Ann. of Math. (2), **164** (2006), 649-713.
- 17. A. Nagel and E. M. Stein, On the product theory of singular integrals, *Rev. Mat. Iberoamericana.*, **20** (2004), 531-561.
- 18. A. Nagel, E. M. Stein and S. Wainger, *Boundary behaviour of functions holomorphic in domains of finite type*, Proc. Natl. Acad. Sci. USA, Mathematics. Vol. 78, No. 11, November 1981, pp. 6596-6599.
- 19. A. Nagel, E. M. Stein and S. Wainger, Ball and metrics defined by vector fields I: Basic properties, *Acta. Math.*, **155** (1985), 103-147.

Ji Li Department of Mathematics, Sun Yat-sen University, Guangzhou 510275, P. R. China E-mail: liji6@mail.sysu.edu.cn