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DUALITY OF HARDY SPACE WITH BMO ON THE SHILOV
BOUNDARY OF THE PRODUCT DOMAIN IN C2??

Ji Li

Abstract. In this paper, we introduce the BMO space via heat kernels on M,
where M = M; x ---x M, is the Shilov boundary of the product domain in
C?" defined by Nagel and Stein ([16], see also [17]), each M is the boundary
of a weakly pseudoconvex domain of finite type in C? and the vector fields of
M; are uniformly of finite type ([14]). And we prove that it is the dual space
of product Hardy space H' (M) introduced in [11].

1. INTRODUCTION

In [14], Nagel and Stein studied the initial value problem and the regularity
properties of the heat operator H = 0; + [0, for the Kohn-Laplacian I, on M,
where M is the boundary of a weakly pseudoconvex domain 2 of finite type in
C2. And in [16], they obtained the optimal estimates for solution of the Kohn-
Laplacian on g¢-forms, 00, = DI()"), which is defined on the boundary M = 0Q of
a decoupled domain 2 C C". The method they used is to deduce the results about
regularity of [J, on M from corresponding results on M C C?” via projection,
where M = M; x --- x M, is the Cartesian product of boundaries of domains in
C? mentioned above. Namely, M is the Shilov boundary of the product domain
O X - x Q.

In [17], they developed an L? (1 < p < o) theory of product singular integral
operators on product space M = M x- - -x M, in sufficient generality, which can be
used in a number of different situations, particularly for estimates of fundamental
solutions of [J, mentioned above. They carried this out by first considering the
initial value problem of the heat operator H = 0, + £ for each M;, where L is the
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sub-Laplacian on M; in self-adjoint form, then using the heat kernel to introduce
a Littlewood-Paley theory for each M and finally passing to the corresponding
product theory. s

In [11], the product Hardy space H? on M has been introduced and they obtained
the H? boundedness of the product singular intergal operators studied by Nagel and
Stein in [17].

The main purpose of this paper is to introduce the product BMO space on
restrictive product space M. More precisely, each factor M; satisfies the assumption
that the vector fields on M; are uniformly of finite type (Assumption 3.1, Definition
2.2, see also [14]). And we prove that it is the dual of the Hardy space H'(M) .
Namely, we will show the following

Theorem 1.1. (H'(M))' = BMO(M).

As a consequence of duality, we obtain that the product singular intergal opera-
tors defiend by Nagel and Stein in [17] is bounded on BM O( M) and from L (M)
to BMO(M).

We shall point out that in [11], to establish the Hardy spaces HP(]\A/f), we do not
need to impose any additional condition on M, while introducing the BMO space
and showing the duality the Assumption 3.1 mentioned above is crucial.

We remark that the duality of Hardy space on R™ was first obtained in [9] by
C. Fefferman and Stein. For the multi-parameter product case, S.Y. Chang and
R. Fefferman in [3] proved that the dual of H'(R% x R2) is BMO(R2 x R2).
Recently, in [10], the Carleson measure space CMOP(X x X) was introduced
and it is proved to be the dual space of HP(X x X), where (X, d, u) is space of
homogeneous type in the sense of Coifman and Weiss ([6]), 1 satisfies

Cir < pu(B(z, 1)) < Cor

for all z € X and r > 0, where B(z,r) = {y € X : d(x,y) < r} and d satisfies
some the Lipschitz condition, see more details in [10].

In this paper, to show Theorem 1.1, we will follow the ideas in [10]. The basic
scheme is as follows.

Without lost of generality, we first concentrate on the product space of two
factors, namely M = My x Ms. For the sake of simplicity, we assume that M, =
M, dropping the subscript. s

To begin with, we impose Assumption 3.1 on M, then for such M, we give
the definition of BAMO(M) and establish the Plancherel-Polya-type inequality by
using the discrete Calderon reproducing formula. Next, we introduce the product
sequence spaces s' and ¢! and prove that the dual of s' is ¢! by following the
constructive proof of Theorem 4.2 in [10]. Then we prove that BMO(M) can be
lifted to ¢! and ¢! can be projected to BAM/O(M) and the combination of the lifting
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and projection operators equals the identity on BMO(]\A/f). Similar results also hold
for Hl(ﬁ). From these results, Theorem 1.1 follows.

A brief description of the content of this paper is as follows. In Section 2, we
provide some preliminaries introduced by Nagel and Stein ([17], [14], [16]) and
the product Hardy space H'(M) introduced in [11]. The next three sections focus
on M = M x M. In Section 3 we give the precise definition of BMO(M) and
establish the Plancherel-Polya-type inequality. In Section 4, we develop the product
sequence spaces s and ¢' and prove that (s')’ = ¢'. Theorem 1.1 will be proved

in Section 5. Finally, in Section 6, we describe the resultson M = My X - - - x M,.

2. PRELIMINARIES

2.1. Geometry on M = My x---x M,

We recall the corresponding geometric structure in [16] (See also case (B) of
[17]) by concentrating on each factor M;, which we denote by A, dropping the
subscript i.

Here M arises as the boundary of an unbounded model polynomial domain in
C?. Let Q = {(z,w) € C?: Im(w) > P(z)}, where P is a real, subharmonic,
non-harmonic polynomial of degree m. Then M = 99 = {(z,w) € C? : Im(w) =
P(z)} can be identified with C x R = {(z,t) : z € C,t € R} so that the point
(z,t + iP(z)) corresponds to the point (z,¢). The basic (0, 1) Levi vector field is
then Z = £ —i222 and we write Z = X; +iXy. The real vector fields {Xy, X}
and their commutators of order < m span the tangent space to M at each point.

One variant of the control distance is defined as follows:

For each =,y € M, let AC(z,y,d) denote the collection of absolutely contin-

uous mapping ¢ : [0,1] — M with ¢(0) = =, ¢(1) = y, and for almost every
2
te[0,1], ¢'(t) = 3 a;()X;(e(t)) with |a;(t)| < &. The control distance p(z, y)

j=1

from x to y is the infimum of the set of § > 0 such that AC(z, y, §) # 0. The result
we need is that there is a pseudo-metric d ~ p ! equivalent to this control metric
which has the optimal smoothness ; i.e. d(x,y) is C* on {M x M — diagonal},

and for x £y
(2.1) 0% Oyd(z, y)| S d(z, )~ F

(Here 0% is a product of K of the real vector fields {X;, X»} acting as derivatives
on the x variable, and 9% are a corresponding L vector fields acting on the y

Here, and throughout the paper, A ~ B means that the ratio A/B is bounded and bounded away
from zero by constants that do not depend on the relevant variables in A and B. A < B means that
the ratio A/B is bounded by a constant independent of the relevant variables. a vV b = max{a,b}
and a A b = min{a, b}.



84 Ji Li

variable). For the existence of such a pseudo-metric, see Theorem 3.3.1 and 4.4.6
in [15], where d is denoted by p.

When integrating on M, we use Lebesgue measure on C x R. Denote by
|E| the measure of E. The corresponding nonisotropic ball is B(z,0) = {y € M :
d(xz,y) < 0} and | B(z, §)| denotes its volume. The volume functions are introduced
as follows:

The volume of the ball B(z,d) is essentially a polynomial in 6 with coefficients
that depend on z.

Let T = % so that at each point of M the tangent space is spanned by the
vectors {X;, Xy, T}. Write the commutator [X;, X5] = AT 4 a1X; + a2Xo, where
Aar,ag € C®(M). For k > 2, set Ag(z) = > |0*\(z)|, where 0% is a

a<k—2

product of « of the real vector fields {X;, Xs}. Then the following formula holds
for the volume |B(z, d):

m

(2.3) 1B(z,8)| ~ Y (|As(x)d") 8%

k=2
The balls have the required doubling property
|B(x,20)| < C|B(x,d)] forall é>0.

We now recall the following construction given by Christ in [1] , which provides
an analogue of the grid of Euclidean dyadic cubes on space of homogeneous type.

Lemma 2.1. [1]. Let (X, p, ) be a space of homogeneous type, then, there
exists a collection {Q* ¢ X : k € Z,a € I;} of open subsets, where I is some
index set, and C1, Cy > 0, such that

(i) u(x\ U, @QF) = 0 for each fixed k and QX N Q% = @ if a # ;

(ii) for any o, 8, k, 1 with [ > k, either Q% C Q% or Q4N Qk = &;

(iiii) for each (k, ) and each I < k there is a unique 3 such that Q% C Qb;
(iv) diam(QF) < C127%;

(v) each Q¥ contains some ball B(z%, C,27F), where 2* ¢ X

In fact, we can think of Q¥ as being a dyadic cube with diameter rough 2%
centered at 2*. As a result, we consider CQ¥ to be the cube with the same center
as QF and diameter Cdiam(Q¥).

Using Lemma 2.1, we can obtain a grid of dyadic cubes on M.

Next we recall Definition 3.3.1 in [14] which characterizes the assumption im-
posed on M.
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Definition 2.2. [14]. Vector fields X1, X5, T are uniformly of finite type m
on an open set U C R? if the derivatives of all coefficients of the vector fields
are uniformly bounded on U and if the quantity Z;’;Q A;(q) is uniformly bounded
and uniformly bounded away from zero on U. The vector fields Y, X;, Xy, T are
uniformly of finite type m on an open set V' C R* if the derivatives of all coefficients
of the vector fields are uniformly bounded on U and if the quantity > ", A;(q) is
uniformly bounded and uniformly bounded away from zero on V.

2.2. The Heat Equation

In [17], the Littlewood-Paley square function was defined in terms of the heat
kernel. More precisely, Nagel and Stein considered the sub-Laplacian £ on M in
self-adjoint form, given by

2
L=) XX,
j=1

Here (X, ¥) = (@, X;¢), where (¢, ¢) =]\£<P($)1ﬁ($)du(w), and ¢, ¢ € C5°(M),

the space of C'> functions on M with compact support. In general, X7 = —X; +a;,
where a; € C*°(M). The solution of the following initial value problem for the
heat equation,

ou
g(x, s)+ Lyu(z,s) =0

with u(x,0) = f(x), is given by u(z,s) = Hs(f)(z), where Hy is the operator
given via the spectral theorem by H, = e 5%, and an appropriate self-adjoint exten-
sion of the non-negative operator £ initially defined on C5° (/). And they proved
that for f € L*(M),

HL(f)(x) = /M H(s, 2, 9)f (v)du(y).

Moreover H(s,z,y) has some nice properties(see Proposition 2.3.1 in [17] and
Theorem 2.3.1 in [14]). We restate them as follows:

(1) H(s,z,y) € C®([0,00) x M x M\{s =0 and z = y}).

(2) For very integer N > 0,

030505 H (s, 2, )|

wl2

_ 1 1 ( Vs )
™ (d(x,y)+s) TV (2, y) +V s(2) +V 5(y) \d(z, y)++/s
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(3) For each integer L > 0 there exists an integer Ny, and a constant C, so that
if o € C§°(B(xo,9)), then for all s € (0, c0)

0% Hy[) ()| < CLoFsup Y 870k (2)].
TN,

(4) Forall (s,z,y) € (0,00)x M xM, H(s,z,y) = H(s,y,x)and H(s,z,y) >
0.

(5) Forall (s,x) € (0,00) x M, [ H(s,z,y)dy = 1.

(6) For 1 < p < oo, [[Hs[flllLrary < | fllLour)-

(7) For every ¢ € C5°(M) and every t > 0, 111101 |Hsl¢] — ¢|l: = 0, where || - [|;
denotes the Sobolev norm.

To introduce the reproducing identity and the Littlewood-Paley square function,

they define a bounded operator ), = 23‘98[1;5, s >0, on L?(M). Denote by gs(z,y)

the kernel of Q. Then from the estimates of H (s, z,y), we have

(a) gs(x,y) € C=® (M x M\{z = y})
(b) For every integer N > 0,

0% 08 g5 (z, )|

w2

< 1 1 ( Vs )
Y (d(z,y) + V) V(@ y) + Vis(a) + Vis(y) \d(z, y) + Vs
(c) /QS(UC, y)dy = /qs(x, y)dz = 0.

In [11], to develop the product Hardy space on M, they discretize the opera-
tor @ by considering the sequence of bounded operators {Qj}jez, where Q; =
-1 f22__22].]+2 QS%. From the behavior of operator H;, it follows that >, Q; = Id
on L?*(M). Denote by g;(x,y) the kernel of Q;. From the estimates of ¢s(z,y),

for each j, ¢;(z,y) satisfies that

(@) gj(z,y) € CF°(M x M\{z =y}).
(t) For every integer N > 0,

0% 0% q;(z, v))|

ol

— o)
N~ (d(z,y) + 27 EHLV (2, y) 4+ Voi(2) + Va-i(y) \d(z,y) + 277

() /QJ(xvy)dy:/qj‘(fB,y)d(L‘:O.
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2.3. The Hardy space H' on product space M=DMxM

To recall the definition of H!(A1), we need to introduce the the test function
space on M

Definition 2.3. ([11]). Let (zo,v0) € M, 71,72, 71,72 > 0, 0 < B1, B2 < 1.
A function on M is said to be a test function of type (xo, yo; 71, 72; 51, 52; 71, V2)
if there exists a constant C' > 0 such that

- 1 r 71 1
) 1f ) < Oy Vo, 2) <r1 ¥ d(lx,xo)> Via(y0) +V (%o, y)

N
) 7.
<7r2 +d(y,yo)> for all (z,y) € M;

. , d(z, 2’ o r "
(i) [f (2, y)-f (2", y)| SC(m +(d(x,)xo)> Vi (xo)—&V(xo,x) <r1—|—d(1x,x0)>

1 "2 for all z, 2/ € M satisfying that d !
8 VT’Q(yO)""V(ym y) ro + d(y, y0)> T,T & fy g (377 37)

< (r1+d(z, 0))/2;
(iii) Property (4i) also holds with x and y interchanged;

/ B1
() 1FGo9) = F(9) = Fa)) + £/ < 0 (9520 )

V (o, 2) * <7"1 + C?ln(lwv 360)>71 <7"2 Cﬁzkz:)yo)>ﬂg

Y2

"2 for all z, 2, y, ' € M satisfying that
Vio (Y0) + V(yo, y) \ 2 +d(y,y0)> T Y, Y fying

d(w,2") < (r1+d(x,20))/2 and d(y, y) < (ra + d(y, %))/ 2;

(V) /1\7[ f(z,y)de =0 for all y € M:

v7’1 (1‘0)

—

(vi) /1\7[ fz,y)dy =0 for all z € M.

If f is a test function of type (xo,yo;7r1,72; 51, B2; V1, Y2), We write f €
G(w‘o, Yo 71, T2; 061, B2; Y1, ’)/2) and we define the norm of f by

HfHG(J»’O,yO%T’l,7’2§51,52§’Yl,72) = inf{C: (i), (1), (%) and (iv) hold}.

We denote by G(51, B2;71,72) the class of G(zo,yo; 1, 1; 51, B2;71,72) for any
fixed (xo, yo) € ]/\Z We can check that G(.%'Q, Yo; 71, T2; ﬂl, ﬂg; Y1, 'yg) = G(ﬂl, ﬂg;
1, v2) With equivalent norms for all (z¢, yo) € M and 1,75 > 0. Furthermore, it
is easy to check that G((31, 32;71,72) is a Banach space with respect to the norm

in G(B1, B2: 71, 72)-
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Now for 91,92 € (0,1), let éﬁl,ﬁg(ﬂl,ﬂg;'yl,'yg) be the completion of the
Space G(’l?l, o3 V1, 192) in G(ﬁl, Bo; 1, 'yg) when 0 < 3;, v < Y withi =1,2. We

define the dual space (égl’gg (81, B2; 71, ')’2))/ to be the set of all linear functionals
L from Cozﬁl,gg (81, B2; 71, 72) to C with the property that there exists C' > 0 such
that for all f € Gy, 9,(51, B2; 71, 72),

LI < ClIfle :

Goq,99(B1,62;71,72)

Next we recall the product square function S ' defined via the sequence of opera-
tors {Q;}ecz in [11]. If f(z,y) is a function on A we define Q;,-Q;, = Q;, ®Qj,
with @;, acting on the first variable and @, on the second. S is then given by

(2.4) Sy ={ > ¥ |Qj1'Qj2(f)(xvy)|2}%'

J1=—00 jog=—00

And we have ||S(f) for 1 < p < oo ([11]). Then H'(M) is

defined as follows.

HLp(]T/f) ~ HfHLp(]T/f)

Definition 2.4. ([11]). Let 0 < ¥; < 1 and 0 < (;,v; < ¢; fori = 1,2. The

Hardy space H'(M) is defined to be the set of all f € (égl,ﬁg(ﬂl,ﬂg;'yl,'yg))/

such that Hg[f]HLl(M) < oo, and we define

11y = WS o ary-

Now we recall the discrete Calderon reproducing formula, the Plancherel-Polya-

type inequality for (M) and the almost orthogonality estimate as follows.

Lemma 2.5. ([11]). For ¥; € (0,1), 0 < B,y < ¥; with = 1,2 and f €
Go1,05(B1, B2; 71, 72),

(25) f(fL', y) :Z Z ‘I“J‘ak1ak2 ((L‘, Ty, yJ)leng [f](va yJ)v

ki,ko I1,J

where gk, gk, € éﬁl’ﬁg(ﬂl,ﬂg;'yl,'yg); I,J C M are dyadic cubes with length
2-k1=No and 2=%2—No for a fixed integer No; x7, y; are any fixed points in I and

J, respectively. The series in (2.5) converges in the norm of égl’gg (81, B2; 71, 72)-
Moreover, for f € (égl’gg(ﬂl,ﬂg;'yl,'yg))/, (2.5) holds in the dual space (égl’gg
(B1, B2; 11, 72)) -
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Lemma 2.6. ([11]). Suppose 0 < ¥; < 1 and 0 < B;,v; < ¢; fori = 1,2.
Then, for all f € (G, .0,(31, B2; 71,72))",

H{ZZ Sup Qi Qs [)(u )2 X (x)XJ(y)}%

(2.6) v ko 1,0 WELVES LY(M)
inf [ Qp Quolf) ()] Xf(w)XJ(y)}2 ,
H{ kfl k‘ IJ EI’UEJ Ll(M)

where I, J are the same as in Lemma 2.5.

Let gk, gk, (z,x1,y,ys) be the same as in Lemma 2.5. Note that for any

/817/82771772 € (07 1)1 qk1q~k2(x7$17y7yJ) € G(ﬁbﬁ%')’b'}?)- We have that for
any v1,v2 € (0,1) and €1 € (0,71), €2 € (0,72),

|Gy Qo Gy Ty (2, 1, Y,y )| S 27 Rl gmliz=hales

1 9 (j1nk1) oGt
X :
7)) V(z,zr) + Vo-tiarn (%) + VomGian (21) (2‘“”’“1) + d(z, x;))

1 9—(j2Ak2) 72
V (Y, Y1) + Va—tianka) () + Vo—tianna) (1) (2_(j2A’“2) + d(y, yJ)> '

3. Probuct BMO SPACE AND THE PLANCHEREL-POLYA-TYPE INEQUALITY

In this section, to characterize the dual space of H 1(J\A/f ), we introduce the
product BMO space on M = M x M, which is motivated by ideas of Chang
and R. Fefferman([2]), see also [10]. To carry this out, we impose the following
assumption on M in all rest sections.

Assumption 3.1. Let M and the real vector fields {X;, Xy, T} be the same
as in §2.1. Assume that {Xy, Xy, T} are uniformly of finite type m on M (see
Definition 2.2).

Now we give the definition of BMO space on M = M x M via the sequence
of operators {Q; } ez as follows.

Definition 3.2. Suppose 0 < ¥; < 1 and 0 < G;,v; < ¢; for i = 1,2. We

define the space BMO(M) to be the set of all f € (égl’gg (81, B2; 71, 72))' such
that

1l paron

e Sup{ ‘/Z > !le%[f](%y)IQXI(w)XJ(y)dwdy} <o,

k ko I X JCQ

ol
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where the supermum is taken over all open sets €2 in M with finite measure and for
each k; and ko, I, J range over all the dyadic cubes with length ¢(1) = 2-k1—™o
and ¢(J) = 27%2=No  respectively.

To see this definition is independent of the choice of Q) ;, we first establish the
Plancherel-Polya-type inequality for BMO(M).

TheoremN3.3. Let all notation be the same as in Definition 3.2. Then for each
f € BMO(M),

Slgllp{ﬁ/ﬂz > supJ|Qk1Qk2[f](u,v)|2x1(x)xJ(y)dxdy}

uelve
(3.2) kl,kQ IXJQQ

“S‘;lp{ﬁ/gl > 2 it |Qn Qs [f](u,v)|2XI(x)XJ(y)dxdy}2-

kl,kg IXJQQ

1
2

-

Proof. Since M satisfies Assumption 3.1, then the quantity Z;’;Q Aji(q) is
uniformly bounded and uniformly bounded away from zero on M. Thus, from
(2.3), we have

(33) |B(z,8)| ~ |B(y.d)| for all 2,y € M,
and
(34)  |B(z,0)| ~ 0™ ford>1;  |B(z,0)|~d* ford <1l

The estimates in (3.11) are crucial, namely, if diam/ ~ 6, < 1, then |I| ~ §*
and if diam/ ~ §,6 > 1, then |I| ~ 6™*2. These estimates will be often used in
the following proof.

Now for any f € BMO(M), by using the discrete product reproducing identity
(2.5), the Holder inequality and the almost orthogonality estimate (2.7), we have

sup | Qe Qua ] (i 0)]?

uelveJ
’ , 1
< 2—|k1—k1|612—|k2—k2|62 |II||JI|
k;; ];’ V(xI’xI’)J’_‘/Q—(kl/\k,l)(xI)—i_‘/Qf(k,l/\k'l)(xI')
1°
2—(1@1/\k1) " .
x( :
2_(k1/\k1) + d(xj, xI,) V(yJa ny) + ‘/27(k2/\k,'2) (yj) + ‘/27(;62/\;612) (yJI)

o~ (kaAky)

)

Y2 2
X - Q. Qu L) (1, yr)
(2—(k2/\k2) + d(yj,yj’)) ky kg

where ¢; is chosen to satisfy ¢; € (9;,1) fori = 1,2, I’ and J’ range over all dyadic

cubes with length ¢(1") ~ 9-k1—No and ((J) =~ 9—k>—No, respectively. Moreover,
xy, xp and yz, vy can be any fixed points in I, I’ and .J, .J, respectively.
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diam(Z)  diam(I') o akl) o 1: . y
diam(T) A dam(1)" 2 v ~ diam([) Vv diam(I"),
d(xr, 2p) > dist(I, I’) and that similar results hold for ko, ks, and J, J’. Then

Sup | Qs Qo [] (1, v) [

uelved

Note that 2—/k1=F1l ~

1) diam([7) diam([’) et diam(J)  diam(J')7e
kzk/ IZ:J/ 11 [ m(1") diam([)} [diam(J') " diam(.J) }
1 diam(I) v diam(I")

gg!
8 Vaise(r,1) (1) + [I| V[ T'] <diam([) V diam(I") + dist({, I'))

1 < diam(J) V diam(J") )72
Vaise(s,) (vr) + [ J| V| J'| \diam(J) v diam(J') 4 dist(J, J')
2
X |Qk;Qk;[f](xF7yJ/)| :
Combining the above estimate with the facts that ;> and y ;- are arbitrary points in

I' and J' respectively and ab = (a v b)?(% A £) for any a,b > 0 implies that for
any open set Q € M with finite measure,

‘Z 22 M sup |QuQualf](w v
k1 ko IxJCQ €l
11 Ty7 171, 7] diam(T) diam(1) e
S / //\ . //\ N
k%]x;g,g;y[‘f \I\H\J \J\Hdlam(l) dlam([)}
[dlam(J) diam(.J’ )} €

X

(VAT (LT 1)

(3.5) diam(J') * diam(J)
y |I| Vv |T'| < diam(I) Vv diam(I") )71
Vaise(r,ry (1) + 1]V [I'] \diam(I) V diam(I") + dist(Z, I")
|J| V|| < diam(J) V diam(J") )72
Vaise(,0 (ya) + [J| v || \diam(J) v diam(J") + dist(J, .J")
: 2
X< infQu Q1w v

For our convenience, let R =1 x J and R = I' x J’, where I, J, I’ and J’ range
over all dyadic cubes on M. And set

I IEDBDIDIEDY:
kike IXJCQ RCQ g/ 1,0 R

[RISI] < |5 |R| = 1] x[J'];
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, ! ! iam iam(I')1eir diam(J) diam(J’) e
T(R’R):[%A%M% %M((iiiam((ll’))/\((iham((]])} [giam((j’)/\((iham(({])} ;

o, ®)= (11 v 1) (11 v 1)

R(R.R) = 1) v || ( . diam(.l) Vv diam(l.’) )71
Vaist(r,1y (@) + | 1| V [I'] *diam (1) V diam(1”) + dist(I, I")
" [TV || ( diam(J) Vv diam(J") )72.
Vaise(,0 (ys) + [TV [ '] \diam(J) V diam(J’) + dist(J, J')/

Sp= sup |Qu Qu,[f](u,v)[
UEI,UEJ 2
Tw= inf |QuQu[f)(u )"

uel’ weJ'
Then, (3.5) can be rewritten as

1 1

(36) o > |RISk S o >N (R, RYW(R,R)P(R,R)Tx.
191 2 I i T

To complete the proof, we need to prove that the right-hand side of (3.6) can be

controlled by

1
sup — Z |R | TR,
Q ‘Q‘ R'CQ

where © ranges over all open sets in M with finite measure.

Let Q% = U 3(2’7 X 2£J) for 7,£> 0 and
R=IxJCQ

Boo={R =1'xJ :3R'(Q"° # 0};

Big={R =1I'xJ':3(2'I' x J') [0 £0,32 11 x J') (|20 =0}
Boy={R =T1xJ:3(I' x2".J") ﬂQW £0,3(I' x 2071 nQo,z_l e
Bio=A{R =1I'xJ:32T'x2"J) (| Q" #8327 x2 1) (b =03,

where i, £ > 1.
First, it is obvious that |J B,y C {R' = I' x J',I', J" are dyadic cubes}.
i,£>0
Moreover, since lim Q%¢ = M, we can see that for any dyadic rectangle R, it must

i,0—00
belong to some B; 4. Thus, {R' = 1" x J',I', J" are dyadic cubes} C |J Biy.
i,0>0

Hence we have

{R'=1IxJ,I'J are dyadic cubes} = U Biy.
i,0>0
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As a consequence, the right-hand side of (3.6) can be controlled by

ﬁRCQ(Z+ZZ+ZZ+ZZ)

R/EBO’O i>1 R/eBi,O >1 R/EBQ[ i,0>1 R/EBZ"[
(R, R')o(R, R)P(R, R))Tp
=: [+ IT+ IIT + IV.

We first estimate I. Note that when R’ € By, 3R' Q%0 # 0, so let " = {R':
1 0,0 0,0\ 10,0 0,0 0,0
‘BRIHQO’O‘ Z 2_h‘3R/‘}y Dh - fh \fh—l’ f—l - @ and Qh = LJOOR/7
R'eDy’
where h > 0. Since By = |J D% we have
h>0

(3.7) I< ‘1@ > > > r(R R)(R,R)P(R, R)Tg.

h>0 prep00 RCO

To estimate (3.7), for each R’ € Dg’o, we decompose {R : R C Q} by

Ago(R) = {R C Q:dist(Z, I') <diam(I) V diam(I), dist(J,J ) <diam(J) Vv diam(J’)};

Ajo(R)= {R C Q:27 7 (diam(T) V diam(I)) <dist(Z, ') < 27 (diam(I) V diam(I')),
dist(J, J ) < diam(J) v diam(J')};

Ao x(R)= {R C Q:dist(I, 1) < diam(I) V diam(I ),
2F=1 (diam(J) V diam(J")) < dist(J, J ) < 2 (diam(J) V diam(J')) };

A (R = {R C Q:27 7Y (diam(T) V diam(1)) < dist(Z, ) < 27 (diam(I) V diam(T)),
21 (diam(J) Vv diam(J")) < dist(J, J ) < 2% (diam(J) v diam(J")) }

where j, k > 1. Then we split the right-hand side of (3.7) into
1 ’
DD S (D SEED S D DD SIS DI DI 133
h20 R eD)° “ReAgo(R') 721 ReA;o(R') Kk2LReAgr(R') J,k21ReA;x(R)
xr(R, R)P(R, R) Ty =: 1) + Ty + I3 + 1.
Now we first estimate ;. To do this, we only need to consider

(3.8) > (R, R)(RR)

Re Aop (R/)
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for any R € D’ and h > 0, since P(R, R') < 1 in this case. In what follows,
we use the geometrical argument as we deal with the homogeneous space, which
is a generalization of Chang and R. Fefferman’s idea, see more details in [10] and
[2]. Note that when R € Ago(R'), 3R(3R # 0. So we can split (3.8) into four
cases:

Case 1. |I'| > |1, |J'| < |J|.

We first consider the comparlson of the diameters of 7, I’ and J, J'. Note that
diam(I) ~ 27% and diam(I') ~ 9k, As we remarked above, the following
geometric arguments follow from Assumption 3.1.

If 251 27K > 1, then 27 M(m+2) ~ |1| > |I| ~ 2-F1(m+2) This yields
9k > 9k,

If 277,271 < 1, then 24 ~ |I| > |I] ~ 2~%'%. This also implies
9=k > 9k,

If 2K > 1> 27" then obviously 9-k1 > 97k,

If 2751 < 1 < 27%1, we can see that this is impossible since in Casel, 1’| > |].

Combining the above four results, we can see that diam(I') > diam(7). Simi-

larly, we can obtain that diam(J') < diam(J).
From this, we have

1]
1 3R] S [3R(3R| < BR'(Q% S = 1\33'\

then 2811 < |31') < |I'|. Thus |I'| =~ 2h=1+m| 1|, for some ny > 0. For each
fixed ny, the number of such I's must be < 2™, As for J, |J| =~ 2"2|.J'| for
some ny > 0. For each fixed ns, the number of such J'’s is less than a constant
independent of ny, since 3J(3.J # 0 and |.J| > |J'|.

Again, by Assumption 3.1, if 251,27k > 1, then 2~k (m+2) ~ |I'| ~

oh=l4n1|[| g 2h=14mg—k1(m+2) This yields that dlam((lf)) N2
Similarly, if 2751 > 1 > 2751, then 27 (™2 &~ |['] ~ 2h-ltm|]| ~
h—14n
2h=1+mg=k1-4 This implies that dlam((f)) <o Tmr,
Finally, if 2-%1,27%1 < 1, then 251 ~ |I'| m 2h=14m|[| ~ 27F14, Hence,
diam(l) _ ,—h=lim
diam(I’) ~ '

dlam(I) < 9"t diam(J")

Combining the above cases, we have < (1) “mez . Similarly, Fam(J) S

n2

2_ m—+2 |
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Thus

> r(R.R)(R,R)

Recasel
!

= (2) () e
wit NI\ \diam(r')) \ diam(7)
< Z 2—(h—1+m)(1+&2)2—n2(1+"32)2n1u,‘?ngu,‘

n1,m2>0

< 2—h(1+&2)‘R/‘_

Case 2. |I'| <|I|,|J'| > |J|.
This can be handled similarly as Case 1. We have

> r(REBWRE) 5 2MEER)R),
Recase2

Case 3. |I'| > |1, |J'| > |J|.
Similar to Casel, by comparing 2% and 2~%: with 1 respectively, we can obtain
that diam(I") > diam(7) and diam(.J') > diam(.J). Thus we have

/ / 1
|R| < 3R (3R] < 3R () Q00| < St 3R

thus 2"~1|R| < |R'|. Hence |R'| ~ 2"—*"|R| for some n > 0. For each fixed n,
the number of such R’s is < 2".

Now we further consider the diameter of the cubes I, 1’, .J, J .

If 27%1 2k > 1 and 27%2, 27k > 1, then 2K (mF2)9—ka(m+2) o gh—1+n
2~k (m+2)g—k2(m+2) - Hence 7(32‘;1((?) 7&2‘;}(?) <o

Similarly, by continuing comparing 2% and 9k, with 1, respectively, we have

diam(/) diam(J) o o—0=ddn
Siam(7') diam(J) > 27 m+z . As a consequence, we have

S i) 5 (S0 ()

Recase3 Recase3
< Z 2—(h—1+n)(1+ﬁ—2) \R’\
n>0

< 2—h(1+ﬁ_—2)‘R/‘7

where €3 = €1 A €.
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Case 4. |I'| <|I|,|J'| < |J].
Similar to Case 3, we have diam(I') < diam(I) and diam(J') < diam(.J),
which implies that

/ / 1 /
IR S I3R()3R] < [3R [ Qol < Qh—_l\BR I
Hence there exists a constant 4y > 0 independent of R and R’ such that 0 < h < hy.
We obtain that |R| ~ 2"~1*7|R'| for some n > 0 and that for each fixed n, the
number of such R"’s is less then a constant independent of n. Also, by using the

R R : ! : ! __h—=14n
same skills as in Case3, we have di2n(l)diam(J) < o—="55% Tharafore
diam(I) diam(J) ~

> r(R,RWR,R)

Recase4

R'| ( diam(I')\ " [ diam(J’)\ :
oy B (demlD)NE (AR < ponsita gy,
R |R| \ diam([]) diam(.J)

where €3 is the same as in Case3.
Now let us turn to I;.

1 / /
S 3D (D D DD DD D KL SRR 20
h R/EDQ’O R€ casel R€ case2 ReE case3 RE cased
= 11 + 1o + I3 + D4

Obviously, combining the fact that [Q0°| < h2"|Q| for h > 1, |20°] < |0,
€ € (0;,1) for i = 1,2, we have
1 _ €3
]111,]112,]113 S @Z Z 2 h(1+m+2)‘R/‘TR/
h R ep??
0,0
< ZQ—h(Hﬁ—Q)‘Qh | 1

Y. IR|Tw

‘|
R'c )

—h(I+525) poh o L /
< 22 2 B2 s%p 1] Zﬁ (R )Ty
h R'cQ

< Sl}pi > R Ty
Q ‘Q‘ R 6
ch
As for T4, noting that 0 < h < hg then we can get the same estimate as above.
Then, following the same routine and skills as in the proof of Theorem 3.2 in
[10], we can obtain the estimates of other three terms in I and similarly we can
deal with II, III and TV with only minor differences that we need to compare the
diameter of the dyadic cube with 1 according to the volume of the cube.
This completes the proof of Theorem 3.3. ]
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4. PRODUCT SEQUENCE SPACES AND DUALITY

In this section, we introduce the product sequence space c! and prove that ¢! is
the dual space of s!. Let M = M x M, where M is mentioned in Section 2.1. We
first recall the definition of s' introduced in [11].

Definition 4.1. [11]. Set Xgr(x1,29) = |R|~Y/?xg(21,z2) for any dyadic
rectangle R in M. The product sequence space s' is defined as the collection of
all complex-value sequences s = {sr}r such that

(4.2) Isller = [1{ > (salXat@n22)*H | 57y
R

Definition 4.2. The product sequence space ¢! is defined as the collection of
all complex-value sequences t = {tg}r such that

1 1/2
(4.2) It = sup{ﬁ Z |2} "
o 19 £,

where the sup is taken over all open sets 2 € M with finite measure and R ranges
over all the dyadic rectangles in M.

The main result in this section is the following duality theorem.
Theorem 4.3. (31)/ =cl.

Proof. First, we prove that for all ¢ € ¢!, let

(4.3) L(s) = ZSR -tg, Vse s,
R

then [L(s)| < [Islls1 (|2l cr-
To see this, let

Y = {(z1,22) € M - {Z (\SR‘XR(QCLM))Q}U? > 2k},
R

1 1
By = {R: | )R] > IRl [k (Rl < 5B}

~ —~ 1
Qp = {(1‘1,%‘2) eM :MS(XQ]g) > 5},

where M is the strong maximal function on M. By (4.3) and the Holder inequality,
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1 1

|L( Z > Isrl?) 2 ( Z\tR\ )?

REBk REBk
1
» < ST lonh)’ )
Re By, RCQ
< Z\QW > lswl?) el
ReBy,

Combining the facts that [ > p (IsrlXr(2)) de < 22D Q\Q 4| <
o\ 1
C22%|Q.| and that

/ S (srlta(@)’dr > 3 [salP IR0\t () B
Q

k\Qk-H ReBy, ReBy,
since R € B, then R is contained in €y,

11
S IselPIRI7SIR

ReBy,

5 Jsal

ReBy,

AV

Y

=

we have ( > \33\2) < Qk\Qk\%. Substituting this back into the last term of
ReBy,

(4.4) yields that |L(s)| < [|s]lst[E]|er-

Conversely, we need to verify that for any L € (sl)/, there exists ¢ € ¢! with
It]|o2 < || L] such that for all s € s, L(s) = Y srtr. Here we adapt a similar idea

given by Frazier and Jawerth in [8] in one-pgrameter case to our multi-parameter
situation.
We define si, = 1 when R = R; and sé = 0 for all other R. Then it is easy to
see that ||S% [ = 1. Now for all s € s', s = {sp} = > sr,s%,, the limit holds
(2

in the norm of s*, where {R;};cz are denoted by all dyadic rectangles in M. For
any L e (81) , let fRi = L( ) then L ) Zst ) ZsRifRi = ZSRfR-
‘ R

(2
Let ¢t = {tr}. Then we only need to check that Ht”cl <||LJ|.
For any open set Q2 C M with finite measure, let 2 be a new measure such that

a(R) = “Q“ when R C Q, ii(R) = 0 when R ¢ Q. And let [?(fz) be a sequence
space such that when s € I—2 (i), ( > [sr \2‘R‘

)1/2 < oo. It is easy to see that
RCQ ‘Q‘
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(12(m)) = 12(j). Then,
(G 2 b} = W2l

RCQ
R
Z(tR\R\_l/Q) 3R u
i €]

= sup
s HSHLQ(Q)SI

IN

sup
st ||sllj2 (<1

R|Y?|s
L <X{R§Q}(R)%>

|[RI"2sr|
€]

1

< s I HX{R@}@)

s Isll2 gy <1 s

By (4.1) and the Holder inequality, we have

R| 1/2
< 2| Bl .
(Z o mw)

st RCQ

R|Y?s
HX{RQQ}U%%

Hence,

[tler < sup L] - [sllizay < [IL]]-
st ||sllj2 (<1

This completes the proof of Theorem 4.3.

5. DUALITY oF H*(M) with BMO(M)
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In this section, we prove Theorem 1.1. Let M = M x M, where M satisfies

Assumption 3.1. First, we define the lifting and projection operators as follows.

Definition 5.1. Suppose ¢; € (0,1) and 0 < 3;,v; < ¢; for i = 1,2. For any

fe (Cohgl,gg (B1, B2;71,72))’, define the lifting operator S¢ by

5.1) Solf) = {m%u\%@kl% [f](xf,yﬂ}

)
k1,k2,1,J

where k1, ko € Z, I, J are the same as in Lemma 2.5and R =1 x J, zy and y;

are the centers of I and J, respectively.
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Definition 5.2. For any complex-value sequence XA = { A, ky.7.7 } by k.1, 0E-
fine the projection operator T@ by

1 1
(5.2) TN (,y) =D Y 12|12k, Gy (2, 21,95 90) - N1,
gk IJ

where g, gs, (z, x1,y,y) are the same as in Lemma 2.5, and &y, ko; I, J; 1,y
are the same as in the above definition. Moreover,

Té(SQ(f))((L‘, y) - Z Z ‘”“”&/ﬂ&kz (IL', xnY, yJ)Q/ﬂQkQ [f](x17 yJ)'

kiko I,J

For the above lifting and projection operators, we first recall the following result
on H'(M) showed in [11].

Lemma 5.3. ([11]). For any f € H'(M), we have
(5.3) 1SN st S AN gy -
Conversely, for any s € s?,

(5.4) 1T 1 iy < sl

Moreover, T@SQ equals the identity on H ().

We now establish a similar result on BMO(]\A/f) as follows.

Lemma 5.4. For any f € BMO(M), we have
(5.5) 1So(Nller Sl paron:
Conversely, for any ¢ € ¢!,

(5.6) HTQ(t)HBMO(JT/I) S itlfer
Moreover, T755¢ equals the identity on BMO(M).

Proof. According to Definition 4.2, 5.1 and 3.2, (5.5) follows directly from the
Plancherel-Polya-type inequality for BMO(M) (Theorem 3.3).
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Now let us prove (5.6). For any ¢ € ¢!, by Definition 3.2 and 5.2 and using the
same skills as in the estimate of (3.5), we obtain that

‘Q‘ > > M sw Qg o)

k1,ko IXJCQ2
I I''hrld d I di I')qe
Z DD HI_" A ‘\T\} [% " ‘\JH [dj:rrnn((f’)) " dlizrrz((l)) [
k‘1 ko IXJCO k‘/ k‘/ r,J
[dlam(J) A diam(J’ )rz
diam(J") = diam(J)
|I| v |T'| < diam(I) v diam(I") )71
Vaise(r,ry (1) + 1|V |I'] \diam(I) V diam(I") + dist(Z, I')

(V) (1] v 1)

X

y |J| V]| < diam(J) V diam(J") )72
Vaise(,00 (yg) + 1]V || \diam(J) v diam(J") + dist(J, J')
1 12
|ty o g 1721 72]

In fact, we now deal with the same estimates as (3.5) with only minor modification

. 2 . _1 _1,2
that ueIl/r,lfeJ/|Qk;Qk;[f](u7v)| is replaced by |tk;,k;,1/,w [I'|~2|J'|"2|". Thus,

following the proof of Theorem 3.3, we can obtain that

T o < (500 7gr X 5 1tk swr 117 zuw—a!) < il

ki,ko IXJCSK2

Finally, we can easily get that from the Calderbn reproducing formula T@SQ is the
identity operator on BMO(M). The proof of Lemma 5.4 is completed. [ ]

We now prove the main result, Theorem 1.1.

Proof of Theorem 1.1. First, for any g € Colgl,gg (81, B2; 71, 72) with 0 <
Bi,vi < 9; fori=1,2and f € BMO(M), from Lemma 2.5, we have

< fig>= Z Z‘I“J‘élﬂékz[.ﬂ(xlvyJ)Q/ﬂka[f](vayJ)'

ki,ko I,J

Here we use @k to denote the operator whose kernel is g, (x,y). Following the
idea of (4 4), we have | < f,g > | < C[IS5(9)lls:[1Sq(f)ller, where S5(g) =
{11121712Qn, Qn 9] (x1,v.) Y

From the Definition 4.1, the CalderOn reproducing formula and the Plancherel-
Polya-type inequality (6.2), we can get that [S5(g)[ls < HgHHl(M . And from
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Lemma 5.4, we have ||So(f)||a < C”f”BMO(M)' Thus,

Since Gﬁl 9, (01, B2; 71, 72) is dense in H(M ) it follows from a standard density
argument that BMO(M) C (Hl(M))

Conversely, suppose L € (HY(M))". Then Ly = Lo Ty € (s') by Lemma
5.3. So by Theorem 4.3, there exists ¢t € ¢! such that Li(s) =< t,s > for all
s € st and that [|t]|» ~ ||L1]] < ||L] since T is bounded. Hence for any

9 € G,,9,(B1, B2;11,72), L(g) = L(T;550(9)) =< t, Sq(g) > . From Definition
4.2, we have

1 1
<t,S0(9) > = Y > 2112 Qk Qu,l9)(x1,ys) thy ko1,
ki,ko I,J
=/ > Z\I\ 121y @iy (2, 1,9, Y5y a1, - 9@, y)dady
ki,ko I,J
= <Tg(t),g

By using the Plancherel-Polya-type inequality in Theorem 3.3, we can get that
”TQ(t)”BMO(M) < C|t]|a < CJ||L||. By the density argument, we have that for
any g € H'(M),

L(g) =< Tq(t), 9 >,

which shows that (H(M))’ € BMO(M). ]

6. ProbucT CASe oF n FACTORS

In this section, we describe the results on M = My x - - - x My, where each
M; satisfies Assumption 3.1, since the method we used on M = M x M can be
applied for the product case of n factors.

To begin with, we state some necessary resultsin [11]. Denote by Colgl,... 9, (81,715

-5 Bn, yn) and (Colgl,... 9, (81,713 -+ 3 Bny7n))’ the test function space and its dual
space, where ¢; € (0,1) and 0 < S3;,7y; < ¥; for i = 1,2,---,n. The Littlewood-
Paley square function associated to the sequence of operators {Q, }x,cz on each
M; is defined by

S, wn {Z Z\Q;ﬂ Qi ><x1,---7xn>\2}.

N
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In [11] we can see that || S(H)Il 7, ~ /1|0 i
space H'(M) is defined as follows.

for 1 < p < co. And the Hardy

Definition 6.1. ([11]). Let 0 < ¥, <1and0<ﬁz,fyz<19 fori=1,---,n

The Hardy space Hl( ) is defined to be the set of all fe(Gg1 9, (81,7155 B,

vy))’ such that || S[f ]HLl(M) < oo, and we define

= ||51/]

Now we give the definition of BMO(M) via the sequence of operators {Q, }x,cz
on each M; as follows.

Definition 6.2. Let 0 < ¢¥; < land 0 < G;,v; < ; fori =1,---,n. We
define the space BMO(M) to be the setof all f € (G, .....0, (1,715 5 Brs n))’
such that

(-

(6.1) sup{m‘ /Q |Qk1 Qe [f) (1, - 7xn)|2

<k Iy X x[ncsz
2
xle(xl)---Xjn(xn)dxl---dxn} < 00,

where the sup is taken over all open sets €2 in M with finite measure and for each
k;, I; ranges over all the dyadic cubes in M; with length ¢(I;) = 27 %—No for
i=1,2,---,n

Following the same routine as in the product case of two factors, we can establish
the Plancherel-Polya-type inequality for BMO(M).

Theorem 6.3. Let all the notation be the same as in Definition 6.2. Then for
all f e BMO(M),

sup{‘m/gk sup |Qk1 an[f](ulv"'vun)|

- en I X ><I co W€, un€ln
1

3
X1, (1) X, () - -dxn}

~ 2
Sup{‘m /Qk wer uneI |Qk1 Q£ - ’u”)|

<k I X ><InCQ
1

2
XX (21) X1, (Tn)d2 - -dwn} .
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Next, we can extend the result of sequence spaces on product space of 2-factors,
namely, Theorem 4.3, Lemma 5.3 and 5.4, to product spaces of n-factors. Then, by
working on the level of sequence spaces, we can obtain Theorem 1.1 on product
case of n factors. For the detail, we omit it here.

10.

11.

12.

13.

14.

15.
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