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DUALITY OF HARDY SPACE WITH BMO ON THE SHILOV
BOUNDARY OF THE PRODUCT DOMAIN IN C2n

Ji Li

Abstract. In this paper, we introduce the BMO space via heat kernels on M̃ ,
where M̃ = M1 × · · ·×Mn is the Shilov boundary of the product domain in
C2n defined by Nagel and Stein ([16], see also [17]), each Mi is the boundary
of a weakly pseudoconvex domain of finite type in C2 and the vector fields of
Mi are uniformly of finite type ([14]). And we prove that it is the dual space
of product Hardy space H1(M̃) introduced in [11].

1. INTRODUCTION

In [14], Nagel and Stein studied the initial value problem and the regularity
properties of the heat operator H = ∂s + �b for the Kohn-Laplacian �b on M ,
where M is the boundary of a weakly pseudoconvex domain Ω of finite type in
C2. And in [16], they obtained the optimal estimates for solution of the Kohn-
Laplacian on q-forms, �b = �(q)

b , which is defined on the boundary M = ∂Ω of
a decoupled domain Ω ⊆ Cn. The method they used is to deduce the results about
regularity of �b on M from corresponding results on M̃ ⊂ C2n via projection,
where M̃ = M1 × · · · ×Mn is the Cartesian product of boundaries of domains in
C2 mentioned above. Namely, M̃ is the Shilov boundary of the product domain
Ω1 × · · · × Ωn.

In [17], they developed an Lp (1 < p <∞) theory of product singular integral
operators on product space M̃ = M1×· · ·×Mn in sufficient generality, which can be
used in a number of different situations, particularly for estimates of fundamental
solutions of �b mentioned above. They carried this out by first considering the
initial value problem of the heat operator H = ∂s + L for each Mi, where L is the
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sub-Laplacian on Mi in self-adjoint form, then using the heat kernel to introduce
a Littlewood-Paley theory for each Mi and finally passing to the corresponding
product theory.

In [11], the product Hardy spaceHp on M̃ has been introduced and they obtained
the Hp boundedness of the product singular intergal operators studied by Nagel and
Stein in [17].

The main purpose of this paper is to introduce the product BMO space on
restrictive product space M̃ . More precisely, each factor Mi satisfies the assumption
that the vector fields on Mi are uniformly of finite type (Assumption 3.1, Definition
2.2, see also [14]). And we prove that it is the dual of the Hardy space H 1(M̃) .
Namely, we will show the following

Theorem 1.1.
(
H1(M̃)

)′ = BMO(M̃ ).

As a consequence of duality, we obtain that the product singular intergal opera-
tors defiend by Nagel and Stein in [17] is bounded on BMO(M̃) and from L∞(M̃)
to BMO(M̃).

We shall point out that in [11], to establish the Hardy spaces H p(M̃), we do not
need to impose any additional condition on M̃ , while introducing the BMO space
and showing the duality the Assumption 3.1 mentioned above is crucial.

We remark that the duality of Hardy space on Rn was first obtained in [9] by
C. Fefferman and Stein. For the multi-parameter product case, S.Y. Chang and
R. Fefferman in [3] proved that the dual of H1(R2

+ × R2
+) is BMO(R2

+ × R2
+).

Recently, in [10], the Carleson measure space CMOp(X × X ) was introduced
and it is proved to be the dual space of Hp(X × X ), where (X , d, µ) is space of
homogeneous type in the sense of Coifman and Weiss ([6]), µ satisfies

C1r ≤ µ(B(x, r)) ≤ C2r

for all x ∈ X and r > 0, where B(x, r) = {y ∈ X : d(x, y) < r} and d satisfies
some the Lipschitz condition, see more details in [10].

In this paper, to show Theorem 1.1, we will follow the ideas in [10]. The basic
scheme is as follows.

Without lost of generality, we first concentrate on the product space of two
factors, namely M̃ = M1 ×M2. For the sake of simplicity, we assume that M1 =
M2, dropping the subscript.

To begin with, we impose Assumption 3.1 on M , then for such M̃ , we give
the definition of BMO(M̃) and establish the Plancherel-Pôlya-type inequality by
using the discrete Calderón reproducing formula. Next, we introduce the product
sequence spaces s1 and c1 and prove that the dual of s1 is c1 by following the
constructive proof of Theorem 4.2 in [10]. Then we prove that BMO(M̃) can be
lifted to c1 and c1 can be projected to BMO(M̃) and the combination of the lifting
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and projection operators equals the identity on BMO(M̃ ). Similar results also hold
for H1(M̃). From these results, Theorem 1.1 follows.

A brief description of the content of this paper is as follows. In Section 2, we
provide some preliminaries introduced by Nagel and Stein ([17], [14], [16]) and
the product Hardy space H1(M̃) introduced in [11]. The next three sections focus
on M̃ = M ×M . In Section 3 we give the precise definition of BMO(M̃) and
establish the Plancherel-Pôlya-type inequality. In Section 4, we develop the product
sequence spaces s1 and c1 and prove that (s1)′ = c1. Theorem 1.1 will be proved
in Section 5. Finally, in Section 6, we describe the results on M̃ = M1×· · ·×Mn.

2. PRELIMINARIES

2.1. Geometry on M̃ = M1 × · · · ×Mn

We recall the corresponding geometric structure in [16] (See also case (B) of
[17]) by concentrating on each factor Mi, which we denote by M , dropping the
subscript i.

Here M arises as the boundary of an unbounded model polynomial domain in
C2. Let Ω = {(z, w) ∈ C2 : Im(w) > P (z)}, where P is a real, subharmonic,
non-harmonic polynomial of degree m. Then M = ∂Ω = {(z, w) ∈ C2 : Im(w) =
P (z)} can be identified with C × R = {(z, t) : z ∈ C, t ∈ R} so that the point
(z, t+ iP (z)) corresponds to the point (z, t). The basic (0, 1) Levi vector field is
then Z̄ = ∂

∂z̄ −i∂P
∂z̄

∂
∂t , and we write Z̄ = X1 +iX2. The real vector fields {X1,X1}

and their commutators of order ≤ m span the tangent space to M at each point.
One variant of the control distance is defined as follows:
For each x, y ∈ M , let AC(x, y, δ) denote the collection of absolutely contin-

uous mapping ϕ : [0, 1] → M with ϕ(0) = x, ϕ(1) = y, and for almost every

t ∈ [0, 1], ϕ′(t) =
2∑

j=1
aj(t)Xj(ϕ(t)) with |aj(t)| ≤ δ. The control distance ρ(x, y)

from x to y is the infimum of the set of δ > 0 such that AC(x, y, δ) �= ∅. The result
we need is that there is a pseudo-metric d ≈ ρ 1 equivalent to this control metric
which has the optimal smoothness ; i.e. d(x, y) is C∞ on {M ×M − diagonal},
and for x �= y

|∂K
X ∂

L
Y d(x, y)| � d(x, y)1−K−L.(2.1)

(Here ∂K
X is a product of K of the real vector fields {X1,X2} acting as derivatives

on the x variable, and ∂L
Y are a corresponding L vector fields acting on the y

Here, and throughout the paper, A ≈ B means that the ratio A/B is bounded and bounded away
from zero by constants that do not depend on the relevant variables in A and B. A � B means that
the ratio A/B is bounded by a constant independent of the relevant variables. a ∨ b = max{a, b}
and a ∧ b = min{a, b}.
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variable). For the existence of such a pseudo-metric, see Theorem 3.3.1 and 4.4.6
in [15], where d is denoted by ρ̃.

When integrating on M , we use Lebesgue measure on C × R. Denote by
|E| the measure of E . The corresponding nonisotropic ball is B(x, δ) = {y ∈M :
d(x, y) < δ} and |B(x, δ)| denotes its volume. The volume functions are introduced
as follows:

V (x, y) = |B(x, d(x, y))|.(2.2)

The volume of the ball B(x, δ) is essentially a polynomial in δ with coefficients
that depend on x.

Let T = ∂
∂t so that at each point of M the tangent space is spanned by the

vectors {X1,X2,T}. Write the commutator [X1,X2] = λT + a1X1 + a2X2, where
λ, a1, a2 ∈ C∞(M). For k ≥ 2, set Λk(x) =

∑
α≤k−2

|∂αλ(x)|, where ∂α is a

product of α of the real vector fields {X1,X2}. Then the following formula holds
for the volume |B(x, δ)|:

|B(x, δ)| ≈
m∑

k=2

(|Λk(x)δk|)δ2.(2.3)

The balls have the required doubling property

|B(x, 2δ)| ≤ C|B(x, δ)| for all δ > 0.

We now recall the following construction given by Christ in [1] , which provides
an analogue of the grid of Euclidean dyadic cubes on space of homogeneous type.

Lemma 2.1. [1]. Let (X , ρ, µ) be a space of homogeneous type, then, there
exists a collection {Qk

α ⊂ X : k ∈ Z, α ∈ Ik} of open subsets, where Ik is some
index set, and C1, C2 > 0, such that

(i) µ(X \ ⋃
αQ

k
α) = 0 for each fixed k and Qk

α

⋂
Qk

β = Φ if α �= β;
(ii) for any α, β, k, l with l ≥ k, either Q l

β ⊂ Qk
α or Ql

β

⋂
Qk

α = Φ;
(iii) for each (k, α) and each l < k there is a unique β such that Q k

α ⊂ Ql
β;

(iv) diam(Qk
α) ≤ C12−k;

(v) each Qk
α contains some ball B(z k

α, C22−k), where zk
α ∈ X .

In fact, we can think of Qk
α as being a dyadic cube with diameter rough 2−k

centered at zk
α. As a result, we consider CQk

α to be the cube with the same center
as Qk

α and diameter Cdiam(Qk
α).

Using Lemma 2.1, we can obtain a grid of dyadic cubes on M .
Next we recall Definition 3.3.1 in [14] which characterizes the assumption im-

posed on M .
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Definition 2.2. [14]. Vector fields X1,X2,T are uniformly of finite type m
on an open set U ⊂ R3 if the derivatives of all coefficients of the vector fields
are uniformly bounded on U and if the quantity

∑m
j=2 Λj(q) is uniformly bounded

and uniformly bounded away from zero on U . The vector fields Y,X1,X2,T are
uniformly of finite type m on an open set V ⊂ R4 if the derivatives of all coefficients
of the vector fields are uniformly bounded on U and if the quantity

∑m
j=2 Λj(q) is

uniformly bounded and uniformly bounded away from zero on V .

2.2. The Heat Equation

In [17], the Littlewood-Paley square function was defined in terms of the heat
kernel. More precisely, Nagel and Stein considered the sub-Laplacian L on M in
self-adjoint form, given by

L =
2∑

j=1

X∗
jXj.

Here (X∗
jϕ, ψ) = (ϕ,Xjψ), where (ϕ, ψ) =

∫
M

ϕ(x)ψ̄(x)dµ(x), and ϕ, ψ ∈ C∞
0 (M),

the space of C∞ functions on M with compact support. In general, X∗
j = −Xj +aj ,

where aj ∈ C∞(M). The solution of the following initial value problem for the
heat equation,

∂u

∂s
(x, s) + Lxu(x, s) = 0

with u(x, 0) = f(x), is given by u(x, s) = Hs(f)(x), where Hs is the operator
given via the spectral theorem by Hs = e−sL , and an appropriate self-adjoint exten-
sion of the non-negative operator L initially defined on C∞

0 (M). And they proved
that for f ∈ L2(M),

Hs(f)(x) =
∫

M

H(s, x, y)f(y)dµ(y).

Moreover H(s, x, y) has some nice properties(see Proposition 2.3.1 in [17] and
Theorem 2.3.1 in [14]). We restate them as follows:

(1) H(s, x, y) ∈ C∞(
[0,∞)×M ×M\{s = 0 and x = y}).

(2) For very integer N ≥ 0,

|∂j
s∂

L
X∂

K
Y H(s, x, y)|

� 1
(d(x, y)+

√
s)2j+K+L

1
V (x, y)+V√s(x)+V√s(y)

( √
s

d(x, y)+
√
s

)N
2

.



86 Ji Li

(3) For each integer L ≥ 0 there exists an integer NL and a constant CL so that
if ϕ ∈ C∞

0 (B(x0, δ)), then for all s ∈ (0,∞)

|∂L
XHs[ϕ](x0)| ≤ CLδ

−L sup
x

∑
|J|≤NL

δ|J||∂J
Xϕ(x)|.

(4) For all (s, x, y) ∈ (0,∞)×M×M ,H(s, x, y) = H(s, y, x) and H(s, x, y) ≥
0.

(5) For all (s, x) ∈ (0,∞)×M ,
∫
H(s, x, y)dy = 1.

(6) For 1 ≤ p ≤ ∞, ‖Hs[f ]‖Lp(M ) ≤ ‖f‖Lp(M ).
(7) For every ϕ ∈ C∞

0 (M) and every t ≥ 0, lim
s→0

‖Hs[ϕ]−ϕ‖t = 0, where ‖ · ‖t

denotes the Sobolev norm.

To introduce the reproducing identity and the Littlewood-Paley square function,
they define a bounded operator Qs = 2s∂Hs

∂s , s > 0, on L2(M). Denote by qs(x, y)
the kernel of Qs. Then from the estimates of H(s, x, y), we have

(a) qs(x, y) ∈ C∞(
M ×M\{x = y}).

(b) For every integer N ≥ 0,

|∂L
X∂

K
Y qs(x, y)|

� 1
(d(x, y) +

√
s)K+L

1
V (x, y) + V√s(x) + V√s(y)

( √
s

d(x, y) +
√
s

)N
2

.

(c)
∫
qs(x, y)dy =

∫
qs(x, y)dx = 0.

In [11], to develop the product Hardy space on M̃ , they discretize the opera-
tor Qs by considering the sequence of bounded operators {Qj}j∈Z, where Qj =

−1
2

∫ 2−2j+2

2−2j Qs
ds
s . From the behavior of operator Hs, it follows that

∑
j Qj = Id

on L2(M). Denote by qj(x, y) the kernel of Qj . From the estimates of qs(x, y),
for each j, qj(x, y) satisfies that

(a′) qj(x, y) ∈ C∞(
M ×M\{x = y}).

(b′) For every integer N ≥ 0,

|∂L
X∂

K
Y qj(x, y)|

� 1
(d(x, y) + 2−j)K+L

1
V (x, y) + V2−j(x) + V2−j(y)

(
2−j

d(x, y) + 2−j

)N
2

.

(c′)
∫
qj(x, y)dy =

∫
qj(x, y)dx= 0.
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2.3. The Hardy space H1 on product space M̃ = M ×M

To recall the definition of H1(M̃), we need to introduce the the test function
space on M̃

Definition 2.3. ([11]). Let (x0, y0) ∈ M̃ , γ1, γ2, r1, r2 > 0, 0 < β1, β2 ≤ 1.
A function on M̃ is said to be a test function of type (x0, y0; r1, r2; β1, β2; γ1, γ2)
if there exists a constant C ≥ 0 such that

(i) |f(x, y)| ≤ C 1
Vr1(x0) + V (x0, x)

(
r1

r1 + d(x, x0)

)γ1
1

Vr2(y0) + V (y0, y)(
r2

r2 + d(y, y0)

)γ2

for all (x, y) ∈ M̃ ;

(ii) |f(x, y)−f(x′, y)|≤C
(

d(x, x′)
r1 + d(x, x0)

)β1
1

Vr1(x0)+V (x0, x)

(
r1

r1+d(x, x0)

)γ1

× 1
Vr2(y0)+V (y0, y)

(
r2

r2 + d(y, y0)

)γ2

for all x, x′∈M̃ satisfying that d(x, x′)

≤(r1 + d(x, x0))/2;
(iii) Property (ii) also holds with x and y interchanged;

(iv) |f(x, y)− f(x′, y)− f(x, y′) + f(x′, y′)| ≤ C

(
d(x, x′)

r1 + d(x, x0)

)β1

1
Vr1(x0) + V (x0, x)

×
(

r1
r1 + d(x, x0)

)γ1
(

d(y, y′)
r2 + d(y, y0)

)β2

1
Vr2(y0) + V (y0, y)

(
r2

r2 + d(y, y0)

)γ2

for all x, x′, y, y′ ∈ M̃ satisfying that

d(x, x′) ≤ (r1 + d(x, x0))/2 and d(y, y′) ≤ (r2 + d(y, y0))/2;

(v)
∫

M̃

f(x, y)dx = 0 for all y ∈ M̃ ;

(vi)
∫

M̃
f(x, y)dy = 0 for all x ∈ M̃ .

If f is a test function of type (x0, y0; r1, r2; β1, β2; γ1, γ2), we write f ∈
G(x0, y0; r1, r2; β1, β2; γ1, γ2) and we define the norm of f by

‖f‖G(x0,y0;r1,r2;β1,β2;γ1,γ2) = inf{C : (i), (ii), (iii) and (iv) hold}.

We denote by G(β1, β2; γ1, γ2) the class of G(x0, y0; 1, 1; β1, β2; γ1, γ2) for any
fixed (x0, y0) ∈ M̃. We can check that G(x0, y0; r1, r2; β1, β2; γ1, γ2) = G(β1, β2;
γ1, γ2) with equivalent norms for all (x0, y0) ∈ M̃ and r1, r2 > 0. Furthermore, it
is easy to check that G(β1, β2; γ1, γ2) is a Banach space with respect to the norm
in G(β1, β2; γ1, γ2).
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Now for ϑ1, ϑ2 ∈ (0, 1), let
◦
Gϑ1,ϑ2(β1, β2; γ1, γ2) be the completion of the

space G(ϑ1, ϑ2; ϑ1, ϑ2) inG(β1, β2; γ1, γ2) when 0 < βi, γi < ϑi with i = 1, 2. We
define the dual space

( ◦
Gϑ1,ϑ2(β1, β2; γ1, γ2)

)′
to be the set of all linear functionals

L from
◦
Gϑ1,ϑ2(β1, β2; γ1, γ2) to C with the property that there exists C ≥ 0 such

that for all f ∈ ◦
Gϑ1,ϑ2(β1, β2; γ1, γ2),

|L(f)| ≤ C‖f‖ ◦
Gϑ1,ϑ2

(β1,β2;γ1,γ2)
.

Next we recall the product square function S̃ defined via the sequence of opera-
tors {Qj}j∈Z in [11]. If f(x, y) is a function on M̃ we define Qj1 ·Qj2 = Qj1⊗Qj2

with Qj1 acting on the first variable and Qj2 on the second. S̃ is then given by

S̃(f)(x, y) =
{ ∞∑

j1=−∞

∞∑
j2=−∞

∣∣Qj1 ·Qj2(f)(x, y)
∣∣2} 1

2
.(2.4)

And we have ‖S̃(f)‖
Lp(M̃)

≈ ‖f‖
Lp(M̃)

for 1 < p < ∞ ([11]). Then H 1(M̃) is
defined as follows.

Definition 2.4. ([11]). Let 0 < ϑi < 1 and 0 < βi, γi < ϑi for i = 1, 2. The
Hardy space H 1(M̃) is defined to be the set of all f ∈ (

◦
Gϑ1,ϑ2(β1, β2; γ1, γ2))′

such that ‖S̃[f ]‖
L1(M̃)

<∞, and we define

‖f‖
H1(M̃)

= ‖S̃[f ]‖
L1(M̃ )

.

Now we recall the discrete Calderón reproducing formula, the Plancherel-Pôlya-
type inequality for H1(M̃) and the almost orthogonality estimate as follows.

Lemma 2.5. ([11]). For ϑi ∈ (0, 1), 0 < βi, γi < ϑi with = 1, 2 and f ∈
◦
Gϑ1,ϑ2(β1, β2; γ1, γ2),

f(x, y) =
∑
k1 ,k2

∑
I,J

|I ||J|q̃k1 q̃k2(x, xI, y, yJ)Qk1Qk2[f ](xI , yJ),(2.5)

where q̃k1 q̃k2 ∈ ◦
Gϑ1,ϑ2(β1, β2; γ1, γ2); I, J ⊂ M are dyadic cubes with length

2−k1−N0 and 2−k2−N0 for a fixed integer N0; xI , yJ are any fixed points in I and
J , respectively. The series in (2.5) converges in the norm of

◦
Gϑ1,ϑ2(β1, β2; γ1, γ2).

Moreover, for f ∈ ( ◦
Gϑ1,ϑ2(β1, β2; γ1, γ2)

)′, (2.5) holds in the dual space
( ◦
Gϑ1,ϑ2

(β1, β2; γ1, γ2)
)′.
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Lemma 2.6. ([11]). Suppose 0 < ϑi < 1 and 0 < βi, γi < ϑi for i = 1, 2.

Then, for all f ∈ (
◦
Gϑ1,ϑ2(β1, β2; γ1, γ2))′,

(2.6)

∥∥∥∥
{ ∑

k1,k2

∑
I,J

sup
u∈I,v∈J

|Qk1Qk2 [f ](u, v)|2 χI(x)χJ (y)
}1

2
∥∥∥∥

L1(M̃)

≈
∥∥∥∥
{ ∑

k1,k2

∑
I,J

inf
u∈I,v∈J

|Qk1Qk2 [f ](u, v)|2 χI(x)χJ(y)
} 1

2
∥∥∥∥

L1(M̃ )

,

where I, J are the same as in Lemma 2.5.

Let q̃k1 q̃k2(x, xI, y, yJ) be the same as in Lemma 2.5. Note that for any
β1, β2, γ1, γ2 ∈ (0, 1), q̃k1 q̃k2(x, xI, y, yJ) ∈ G(β1, β2, γ1, γ2). We have that for
any γ1, γ2 ∈ (0, 1) and ε1 ∈ (0, γ1), ε2 ∈ (0, γ2),

(2.7)

|qj1qj2 q̃k1 q̃k2(x, xI, y, yJ)| � 2−|j1−k1|ε12−|j2−k2|ε2

1
V (x, xI) + V2−(j1∧k1)(x) + V2−(j1∧k1)(xI)

×
(

2−(j1∧k1)

2−(j1∧k1) + d(x, xI)

)γ1

1
V (y, yJ) + V2−(j2∧k2)(y) + V2−(j2∧k2)(yJ )

(
2−(j2∧k2)

2−(j2∧k2) + d(y, yJ)

)γ2

.

3. PRODUCT BMO SPACE AND THE PLANCHEREL-PÔLYA-TYPE INEQUALITY

In this section, to characterize the dual space of H1(M̃), we introduce the
product BMO space on M̃ = M × M , which is motivated by ideas of Chang
and R. Fefferman([2]), see also [10]. To carry this out, we impose the following
assumption on M in all rest sections.

Assumption 3.1. Let M and the real vector fields {X1,X2,T} be the same
as in §2.1. Assume that {X1,X2,T} are uniformly of finite type m on M (see
Definition 2.2).

Now we give the definition of BMO space on M̃ = M ×M via the sequence
of operators {Qj}j∈Z as follows.

Definition 3.2. Suppose 0 < ϑi < 1 and 0 < βi, γi < ϑi for i = 1, 2. We
define the space BMO(M̃ ) to be the set of all f ∈ ( ◦

Gϑ1,ϑ2(β1, β2; γ1, γ2)
)′ such

that

(3.1)

‖f‖
BMO(M̃)

= sup
Ω

{
1
|Ω|

∫
Ω

∑
k1,k2

∑
I×J⊆Ω

∣∣Qk1Qk2 [f ](x, y)
∣∣2χI(x)χJ(y)dxdy

}1
2

<∞,
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where the supermum is taken over all open sets Ω in M̃ with finite measure and for
each k1 and k2, I, J range over all the dyadic cubes with length 
(I) = 2−k1−N0

and 
(J) = 2−k2−N0 , respectively.

To see this definition is independent of the choice of Qj, we first establish the
Plancherel-Pôlya-type inequality for BMO(M̃).

Theorem 3.3. Let all notation be the same as in Definition 3.2. Then for each
f ∈ BMO(M̃),

(3.2)
sup
Ω

{
1
|Ω|

∫
Ω

∑
k1,k2

∑
I×J⊆Ω

sup
u∈I,v∈J

∣∣Qk1Qk2[f ](u, v)
∣∣2χI(x)χJ(y)dxdy

} 1
2

≈ sup
Ω

{
1
|Ω|

∫
Ω

∑
k1,k2

∑
I×J⊆Ω

inf
u∈I,v∈J

∣∣Qk1Qk2 [f ](u, v)
∣∣2χI(x)χJ(y)dxdy

} 1
2

.

Proof. Since M satisfies Assumption 3.1, then the quantity
∑m

j=2 Λj(q) is
uniformly bounded and uniformly bounded away from zero on M . Thus, from
(2.3), we have

|B(x, δ)| ≈ |B(y, δ)| for all x, y ∈M,(3.3)

and
|B(x, δ)| ≈ δm+2 for δ ≥ 1; |B(x, δ)| ≈ δ4 for δ ≤ 1.(3.4)

The estimates in (3.11) are crucial, namely, if diamI ≈ δ, δ ≤ 1, then |I | ≈ δ4

and if diamI ≈ δ, δ > 1, then |I | ≈ δm+2. These estimates will be often used in
the following proof.

Now for any f ∈ BMO(M̃), by using the discrete product reproducing identity
(2.5), the Hölder inequality and the almost orthogonality estimate (2.7), we have

sup
u∈I,v∈J

∣∣Qk1Qk2[f ](u, v)
∣∣2

�
∑
k
′
1,k

′
2

2−|k1−k
′
1|ε12−|k2−k

′
2|ε2

∑
I′,J′

|I′||J ′| 1
V (xI , xI′)+V

2−(k1∧k
′
1)(xI)+V

2−(k1∧k
′
1)(xI′)

×
( 2−(k1∧k

′
1)

2−(k1∧k
′
1) + d(xI , xI′)

)γ1 1
V (yJ , yJ′) + V

2−(k2∧k
′
2)(yJ ) + V

2−(k2∧k
′
2)(yJ′ )

×
( 2−(k2∧k

′
2)

2−(k2∧k
′
2) + d(yJ , yJ′)

)γ2 ∣∣Qk
′
1
Qk

′
2
[f ](xI′ , yJ′ )

∣∣2,
where εi is chosen to satisfy εi ∈ (ϑi, 1) for i = 1, 2, I′ and J ′ range over all dyadic
cubes with length 
(I ′) ≈ 2−k

′
1−N0 and 
(J ′) ≈ 2−k

′
2−N0 , respectively. Moreover,

xI , xI′ and yJ , yJ ′ can be any fixed points in I , I ′ and J , J ′, respectively.
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Note that 2−|k1−k
′
1| ≈ diam(I)

diam(I ′)
∧ diam(I ′)

diam(I) , 2−(k1∧k
′
1) ≈ diam(I)∨ diam(I ′),

d(xI , xI′) ≥ dist(I, I ′) and that similar results hold for k2, k
′
2 and J, J ′. Then

sup
u∈I,v∈J

∣∣Qk1Qk2 [f ](u, v)
∣∣2

�
∑
k
′
1,k

′
2

∑
I′,J ′

|I ′||J ′|
[ diam(I)
diam(I ′)

∧ diam(I ′)
diam(I)

]ε1[ diam(J)
diam(J ′)

∧ diam(J ′)
diam(J)

]ε2

× 1
Vdist(I,I′)(xI) + |I | ∨ |I ′|

( diam(I) ∨ diam(I ′)
diam(I) ∨ diam(I ′) + dist(I, I ′)

)γ1

× 1
Vdist(J,J ′)(yJ) + |J| ∨ |J ′|

( diam(J) ∨ diam(J ′)
diam(J) ∨ diam(J ′) + dist(J, J ′)

)γ2

× ∣∣Q
k
′
1
Q

k
′
2
[f ](xI′, yJ ′)

∣∣2.
Combining the above estimate with the facts that xI′ and yJ ′ are arbitrary points in
I ′ and J ′ respectively and ab = (a ∨ b)2(a

b ∧ b
a

)
for any a, b > 0 implies that for

any open set Ω ∈ M̃ with finite measure,

(3.5)

1
|Ω|

∑
k1,k2

∑
I×J⊂Ω

|I ||J| sup
u∈I,v∈J

∣∣Qk1Qk2 [f ](u, v)
∣∣2

� 1
|Ω|

∑
k1,k2

∑
I×J⊂Ω

∑
k
′
1,k

′
2

∑
I′,J ′

[ |I |
|I ′|∧

|I ′|
|I |

][ |J|
|J ′|∧

|I ′|
|J|

][ diam(I)
diam(I ′)

∧diam(I ′)
diam(I)

]ε1

×
[ diam(J)
diam(J ′)

∧ diam(J ′)
diam(J)

]ε2 · (|I | ∨ |I ′|)(|J| ∨ |J ′|)
× |I | ∨ |I ′|
Vdist(I,I′)(xI) + |I | ∨ |I ′|

( diam(I) ∨ diam(I ′)
diam(I) ∨ diam(I ′) + dist(I, I ′)

)γ1

× |J| ∨ |J ′|
Vdist(J,J ′)(yJ ) + |J| ∨ |J ′|

( diam(J) ∨ diam(J ′)
diam(J) ∨ diam(J ′) + dist(J, J ′)

)γ2

× inf
u∈I′,v∈J ′

∣∣Q
k
′
1
Q

k
′
2
[f ](u, v)

∣∣2.
For our convenience, let R = I × J and R′ = I ′ × J ′, where I, J, I ′ and J ′ range
over all dyadic cubes on M . And set∑

k1,k2

∑
I×J⊂Ω

=
∑
R⊂Ω

;
∑
k
′
1,k

′
2

∑
I′,J ′

=
∑
R′

;

|R|=|I | × |J|; |R′| = |I ′|×|J ′|;
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r(R,R′)=
[ |I|
|I′| ∧

|I′|
|I|

][ |J |
|J ′| ∧

|J ′|
|J |

][ diam(I)
diam(I′)

∧ diam(I′)
diam(I)

]ε1[ diam(J)
diam(J ′)

∧ diam(J ′)
diam(J)

]ε2
;

v(R,R′)=
(
|I| ∨ |I′|

)(
|J | ∨ |J ′|

)
;

R(R,R′) =
|I| ∨ |I′|

Vdist(I,I′)(xI) + |I| ∨ |I′|
( diam(I) ∨ diam(I′)
diam(I) ∨ diam(I′) + dist(I, I′)

)γ1

× |J | ∨ |J ′|
Vdist(J,J′)(yJ ) + |J | ∨ |J ′|

( diam(J) ∨ diam(J ′)
diam(J) ∨ diam(J ′) + dist(J, J ′)

)γ2

;

SR = sup
u∈I,v∈J

∣∣Qk1Qk2 [f ](u, v)
∣∣2;

TR′ = inf
u∈I′,v∈J ′

∣∣Q
s
′
1
Q

s
′
2
[f ](u, v)

∣∣2.
Then, (3.5) can be rewritten as

1
|Ω|

∑
R⊂Ω

|R|SR � 1
|Ω|

∑
R⊂Ω

∑
R′
r(R,R′)v(R,R′)P (R,R′)TR′.(3.6)

To complete the proof, we need to prove that the right-hand side of (3.6) can be
controlled by

sup
Ω

1
|Ω|

∑
R′⊂Ω

|R′|TR′,

where Ω ranges over all open sets in M̃ with finite measure.

Let Ωi,� =
⋃

R=I×J⊂Ω

3(2iI × 2�J) for i, 
 ≥ 0 and

B0,0 = {R′ = I′×J ′ : 3R′ ⋂Ω0,0 �= ∅};
Bi,0 = {R′ = I′×J ′ : 3(2iI′ × J ′)

⋂
Ωi,0 �= ∅, 3(2i−1I′ × J ′)

⋂
Ωi−1,0 = ∅};

B0,� = {R′ = I′×J ′ : 3(I′ × 2�J ′)
⋂

Ω0,� �= ∅, 3(I′ × 2�−1J ′)
⋂

Ω0,l−1 = ∅};
Bi,� = {R′ = I′×J ′ : 3(2iI′×2�J ′)

⋂
Ωi,� �= ∅, 3(2i−1I′×2�−1J ′)

⋂
Ωi−1,l−1 =∅},

where i, 
 ≥ 1.
First, it is obvious that

⋃
i,�≥0

Bi,� ⊂ {R′ = I ′ × J ′, I ′, J ′ are dyadic cubes}.

Moreover, since lim
i,�→∞

Ωi,� = M̃ , we can see that for any dyadic rectangleR′, it must

belong to some Bi,�. Thus, {R′ = I ′ × J ′, I ′, J ′ are dyadic cubes} ⊂ ⋃
i,�≥0

Bi,�.

Hence we have

{R′ = I ′ × J ′, I ′, J ′ are dyadic cubes} =
⋃

i,�≥0

Bi,�.
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As a consequence, the right-hand side of (3.6) can be controlled by

1
|Ω|

∑
R⊂Ω

( ∑
R′∈B0,0

+
∑
i≥1

∑
R′∈Bi,0

+
∑
�≥1

∑
R′∈B0,�

+
∑
i,�≥1

∑
R′∈Bi,�

)

r(R,R′)v(R,R′)P (R,R′)TR′

=: I + II + III + IV.

We first estimate I. Note that when R′ ∈ B0,0, 3R′ ⋂Ω0,0 �= ∅, so let F0,0
h = {R′ :

|3R′ ⋂Ω0,0| ≥ 1
2h |3R′|}, D0,0

h = F 0,0
h \F 0,0

h−1, F0,0
−1 = ∅ and Ω0,0

h =
⋃

R′∈D0,0
h

R′,

where h ≥ 0. Since B0,0 =
⋃

h≥0

D0,0
h , we have

I ≤ 1
|Ω|

∑
h≥0

∑
R′∈D0,0

h

∑
R⊂Ω

r(R,R′)v(R,R′)P (R,R′)TR′.(3.7)

To estimate (3.7), for each R′ ∈ D0,0
h , we decompose {R : R ⊂ Ω} by

A0,0(R
′
)=

{
R ⊆ Ω :dist(I, I

′
)≤diam(I)∨ diam(I

′
), dist(J, J

′
)≤diam(J)∨ diam(J

′
)
}

;

Aj,0(R
′
)=

{
R ⊆ Ω :2j−1

(
diam(I) ∨ diam(I

′
)
)
<dist(I, I

′
) ≤ 2j

(
diam(I) ∨ diam(I

′
)
)
,

dist(J, J
′
) ≤ diam(J) ∨ diam(J

′
)
}

;

A0,k(R
′
)=

{
R ⊆ Ω :dist(I, I

′
) ≤ diam(I)∨ diam(I

′
),

2k−1
(
diam(J) ∨ diam(J

′
)
)
< dist(J, J

′
) ≤ 2k

(
diam(J) ∨ diam(J

′
)
)}

;

Aj,k(R
′
)=

{
R ⊆ Ω :2j−1

(
diam(I) ∨ diam(I

′
)
)
< dist(I, I

′
) ≤ 2j

(
diam(I) ∨ diam(I

′
)
)
,

2k−1
(
diam(J) ∨ diam(J

′
)
)
< dist(J, J

′
) ≤ 2k

(
diam(J) ∨ diam(J

′
)
)}
,

where j, k ≥ 1. Then we split the right-hand side of (3.7) into
1
|Ω|

∑
h≥0

∑
R

′∈D0,0
h

( ∑
R∈A0,0(R

′ )

+
∑
j≥1

∑
R∈Aj,0(R

′)

+
∑
k≥1

∑
R∈A0,k(R′)

+
∑

j,k≥1

∑
R∈Aj,k(R′)

)
v(R,R

′
)

×r(R,R′
)P (R,R

′
)TR

′ =: I1 + I2 + I3 + I4.

Now we first estimate I1. To do this, we only need to consider∑
R∈A0,0(R

′
)

r(R,R
′
)v(R,R

′
)(3.8)
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for any R′ ∈ D0,0
h and h ≥ 0, since P (R,R

′
) ≤ 1 in this case. In what follows,

we use the geometrical argument as we deal with the homogeneous space, which
is a generalization of Chang and R. Fefferman’s idea, see more details in [10] and
[2]. Note that when R ∈ A0,0(R

′
), 3R

⋂
3R

′ �= ∅. So we can split (3.8) into four
cases:

Case 1. |I ′| ≥ |I |, |J ′| ≤ |J|.
We first consider the comparison of the diameters of I, I ′ and J, J ′. Note that

diam(I) ≈ 2−k1 and diam(I
′
) ≈ 2−k

′
1 . As we remarked above, the following

geometric arguments follow from Assumption 3.1.
If 2−k1 , 2−k

′
1 ≥ 1, then 2−k

′
1(m+2) ≈ |I ′| ≥ |I | ≈ 2−k1(m+2). This yields

2−k
′
1 � 2−k1 .
If 2−k1 , 2−k

′
1 ≤ 1, then 2−k

′
1·4 ≈ |I ′| ≥ |I | ≈ 2−k1·4. This also implies

2−k
′
1 � 2−k1 .
If 2−k

′
1 ≥ 1 ≥ 2−k1 , then obviously 2−k

′
1 ≥ 2−k1 .

If 2−k
′
1 ≤ 1 ≤ 2−k1 , we can see that this is impossible since in Case1, |I ′| ≥ |I |.

Combining the above four results, we can see that diam(I
′
) � diam(I). Simi-

larly, we can obtain that diam(J
′
) � diam(J).

From this, we have

|I |
|3I ′| |3R

′| � |3R
⋂

3R′| � |3R′ ⋂Ω0,0| � 1
2h−1

|3R′|,

then 2h−1|I | ≤ |3I ′| � |I ′|. Thus |I ′| ≈ 2h−1+n1 |I |, for some n1 ≥ 0. For each
fixed n1, the number of such I’s must be � 2n1 . As for J , |J| ≈ 2n2 |J ′| for
some n2 ≥ 0. For each fixed n2, the number of such J ′ ’s is less than a constant
independent of n2, since 3J

⋂
3J

′ �= ∅ and |J| ≥ |J ′|.
Again, by Assumption 3.1, if 2−k1 , 2−k

′
1 ≥ 1, then 2−k

′
1(m+2) ≈ |I ′| ≈

2h−1+n1 |I | ≈ 2h−1+n12−k1(m+2). This yields that diam(I)

diam(I′)
≈ 2−

h−1+n1
m+2 .

Similarly, if 2−k
′
1 ≥ 1 ≥ 2−k1 , then 2−k

′
1(m+2) ≈ |I ′| ≈ 2h−1+n1 |I | ≈

2h−1+n12−k1·4. This implies that diam(I)

diam(I′)
� 2−

h−1+n1
m+2 .

Finally, if 2−k1 , 2−k
′
1 ≤ 1, then 2−k

′
1·4 ≈ |I ′| ≈ 2h−1+n1 |I | ≈ 2−k1·4. Hence,

diam(I)

diam(I
′
)
≈ 2−

h−1+n1
4 .

Combining the above cases, we have diam(I)

diam(I′) � 2−
h−1+n1

m+2 . Similarly, diam(J
′
)

diam(J) �

2−
n2

m+2 .
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Thus ∑
R∈case1

r(R,R
′
)v(R,R

′
)

=
∑

R∈case1

( |I |
|I ′|

)( |J ′|
|J|

)(
diam(I)

diam(I
′
)

)ε1(diam(J
′
)

diam(J)

)ε2

|I ′||J|

�
∑

n1,n2≥0

2−(h−1+n1)(1+
ε1

m+2
)2−n2(1+

ε2
m+2

)2n1|I ′|2n2|J ′|

� 2−h(1+
ε1

m+2
)|R′|.

Case 2. |I ′| ≤ |I |, |J ′| ≥ |J|.
This can be handled similarly as Case 1. We have∑

R∈case2

r(R,R
′
)v(R,R

′
) � 2−h(1+

ε2
m+2

)|R′|.

Case 3. |I ′| ≥ |I |, |J ′| ≥ |J|.
Similar to Case1, by comparing 2−ki and 2−k

′
i with 1 respectively, we can obtain

that diam(I
′
) � diam(I) and diam(J

′
) � diam(J). Thus we have

|R| � |3R′ ⋂
3R| ≤ |3R′ ⋂

Ω0,0| ≤ 1
2h−1

|3R′|.

thus 2h−1|R| � |R′|. Hence |R′| ≈ 2h−1+n|R| for some n ≥ 0. For each fixed n,
the number of such R’s is � 2n.

Now we further consider the diameter of the cubes I, I ′, J, J ′.
If 2−k1 , 2−k

′
1 ≥ 1 and 2−k2 , 2−k

′
2 ≥ 1, then 2−k

′
1(m+2)2−k

′
2(m+2) ≈ 2h−1+n

2−k1(m+2)2−k2(m+2). Hence diam(I)

diam(I
′
)

diam(J)

diam(J
′
)

� 2−
h−1+n

m+2 .

Similarly, by continuing comparing 2−ki and 2−k
′
i with 1, respectively, we have

diam(I)

diam(I
′
)

diam(J)

diam(J
′
)

� 2−
h−1+n

m+2 . As a consequence, we have

∑
R∈case3

r(R,R
′
)v(R,R

′
) =

∑
R∈case3

|R|
|R′|

(
diam(I)

diam(I
′
)

)ε1( diam(J)
diam(J ′)

)ε2

|R′|

�
∑
n≥0

2−(h−1+n)(1+
ε3

m+2
)|R′|

� 2−h(1+
ε3

m+2
)|R′|,

where ε3 = ε1 ∧ ε2.
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Case 4. |I ′| ≤ |I |, |J ′| ≤ |J|.
Similar to Case 3, we have diam(I

′
) � diam(I) and diam(J

′
) � diam(J),

which implies that

|R′| � |3R′ ⋂
3R| ≤ |3R′ ⋂

Ω0,0| ≤ 1
2h−1

|3R′ |.

Hence there exists a constant h0 > 0 independent of R and R′ such that 0 ≤ h ≤ h0.
We obtain that |R| ≈ 2h−1+n|R′ | for some n ≥ 0 and that for each fixed n, the
number of such R′’s is less then a constant independent of n. Also, by using the
same skills as in Case3, we have diam(I

′
)

diam(I)
diam(J

′
)

diam(J) � 2−
h−1+n

m+2 . Therefore∑
R∈case4

r(R,R
′
)v(R,R

′
)

=
∑

R∈case4

|R′|
|R|

(
diam(I ′)
diam(I)

)ε1(diam(J ′)
diam(J)

)ε2

|R| � 2−h
ε3

m+2 |R′|,

where ε3 is the same as in Case3.
Now let us turn to I1.

I1 =
1
|Ω|

∑
h

∑
R

′∈D0,0
h

( ∑
R∈ case1

+
∑

R∈ case2

+
∑

R∈ case3

+
∑

R∈ case4

)
r(R,R

′
)v(R,R

′
)TR

′

= : I11 + I12 + I13 + I14.

Obviously, combining the fact that |Ω0,0
h | � h2h|Ω| for h ≥ 1, |Ω0,0

0 | � |Ω|,
εi ∈ (ϑi, 1) for i = 1, 2, we have

I11, I12, I13 � 1
|Ω|

∑
h

∑
R

′∈D0,0
h

2−h(1+
ε3

m+2
)|R′|TR′

�
∑

h

2−h(1+
ε3

m+2
) |Ω0,0

h |
|Ω|

1
|Ω0,0

h |
∑

R
′⊂ Ω0,0

h

|R′|TR′

�
∑

h

2−h(1+
ε3

m+2
)h2h sup

Ω̄

1
|Ω̄|

∑
R

′⊂Ω̄

µ(R
′
)TR

′

� sup
Ω̄

1
|Ω̄|

∑
R′⊂Ω̄

µ(R
′
)TR

′ .

As for I14, noting that 0 ≤ h ≤ h0 then we can get the same estimate as above.
Then, following the same routine and skills as in the proof of Theorem 3.2 in

[10], we can obtain the estimates of other three terms in I and similarly we can
deal with II, III and IV with only minor differences that we need to compare the
diameter of the dyadic cube with 1 according to the volume of the cube.

This completes the proof of Theorem 3.3.
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4. PRODUCT SEQUENCE SPACES AND DUALITY

In this section, we introduce the product sequence space c1 and prove that c1 is
the dual space of s1. Let M̃ = M ×M , where M is mentioned in Section 2.1. We
first recall the definition of s1 introduced in [11].

Definition 4.1. [11]. Set χ̃R(x1, x2) = |R|−1/2χR(x1, x2) for any dyadic
rectangle R in M̃ . The product sequence space s1 is defined as the collection of
all complex-value sequences s = {sR}R such that

‖s‖s1 =
∥∥{∑

R

(|sR|χ̃R(x1, x2))2
}1/2∥∥

L1(M̃)
.(4.1)

Definition 4.2. The product sequence space c1 is defined as the collection of
all complex-value sequences t = {tR}R such that

‖t‖c1 = sup
Ω

{ 1
|Ω|

∑
R⊆Ω

|tR|2
}1/2

,(4.2)

where the sup is taken over all open sets Ω ∈ M̃ with finite measure and R ranges
over all the dyadic rectangles in M̃ .

The main result in this section is the following duality theorem.

Theorem 4.3.
(
s1

)′
= c1.

Proof. First, we prove that for all t ∈ c1, let

L(s) =
∑
R

sR · tR, ∀s ∈ s1,(4.3)

then |L(s)| � ‖s‖s1‖t‖c1 .
To see this, let

Ωk =
{
(x1, x2) ∈ M̃ :

{ ∑
R

(|sR|χ̃R(x1, x2)
)2}1/2

> 2k
}
;

Bk =
{
R : |Ωk

⋂
R| > 1

2
|R|, |Ωk+1

⋂
R| ≤ 1

2
|R|};

Ω̃k =
{
(x1, x2) ∈ M̃ : Ms(χΩk

) >
1
2
}
,

where Ms is the strong maximal function on M̃ . By (4.3) and the Hölder inequality,
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(4.4)

|L(s)| ≤
∑

k

( ∑
R∈Bk

|sR|2
) 1

2
( ∑

R∈Bk

|tR|2
)1

2

≤
∑

k

|Ω̃k| 12
( ∑

R∈Bk

|sR|2
) 1

2
( 1
|Ω̃k|

∑
R⊂Ω̃k

|tR|2
) 1

2

≤
∑

k

|Ω̃k| 12
( ∑

R∈Bk

|sR|2
) 1

2‖t‖c1 .

Combining the facts that
∫

Ω̃k\Ωk+1

∑
R∈Bk

(|sR|χ̃R(x)
)2
dx ≤ 22(k+1)|Ω̃k\Ωk+1| ≤

C22k|Ωk| and that∫
Ω̃k\Ωk+1

∑
R∈Bk

(|sR|χ̃R(x)
)2
dx ≥

∑
R∈Bk

|sR|2|R|−1|Ω̃k\Ωk+1

⋂
R|

since R ∈ Bk then R is contained in Ω̃k

≥
∑

R∈Bk

|sR|2|R|−1 1
2
|R|

≥ 1
2

∑
R∈Bk

|sR|2,

we have
( ∑

R∈Bk

|sR|2
)1

2

� 2k|Ωk| 12 . Substituting this back into the last term of

(4.4) yields that |L(s)| � ‖s‖s1‖t‖c1 .

Conversely, we need to verify that for any L ∈ (
s1

)′
, there exists t ∈ c1 with

‖t‖c1 ≤ ‖L‖ such that for all s ∈ s1, L(s) =
∑
R
sRtR. Here we adapt a similar idea

given by Frazier and Jawerth in [8] in one-parameter case to our multi-parameter
situation.

We define si
R = 1 when R = Ri and si

R = 0 for all other R. Then it is easy to
see that ‖S i

R‖s1 = 1. Now for all s ∈ s1, s = {sR} =
∑
i
sRis

i
Ri

, the limit holds

in the norm of s1, where {Ri}i∈Z are denoted by all dyadic rectangles in M̃ . For
any L ∈ (

s1
)′

, let tRi = L(si), then L(s) = L(
∑
i
sRis

i) =
∑
i
sRitRi =

∑
R

sRtR.

Let t = {tR}. Then we only need to check that ‖t‖c1 ≤ ‖L‖.
For any open set Ω ⊂ M̃ with finite measure, let µ̄ be a new measure such that

µ̄(R) = |R|
|Ω| when R ⊂ Ω, µ̄(R) = 0 when R � Ω. And let l2(µ̄) be a sequence

space such that when s ∈ l−2 (µ̄),
( ∑

R⊂Ω

|sR|2 |R||Ω|
)1/2

< ∞. It is easy to see that
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(l2(µ̄))′ = l2(µ̄). Then,

{ 1
|Ω|

∑
R⊂Ω

|tR|2
}1/2

=
∥∥|R|−1/2|tR|

∥∥
l2(µ̄)

= sup
s: ‖s‖l2(µ̄)≤1

∣∣∣∣ ∑
R⊆Ω

(tR|R|−1/2) · sR · |R||Ω|
∣∣∣∣

≤ sup
s: ‖s‖l2(µ̄)≤1

∣∣∣∣L
(
χ{R⊆Ω}(R)

|R|1/2|sR|
|Ω|

)∣∣∣∣

≤ sup
s: ‖s‖l2(µ̄)≤1

∥∥L∥∥ ·
∥∥∥∥χ{R⊆Ω}(R)

|R|1/2|sR|
|Ω|

∥∥∥∥
s1

.

By (4.1) and the Hölder inequality, we have
∥∥∥∥χ{R⊆Ω}(R)

|R|1/2|sR|
|Ω|

∥∥∥∥
s1

≤
( ∑

R⊆Ω

|sR|2 |R||Ω|
)1/2

.

Hence,

‖t‖c1 ≤ sup
s: ‖s‖l2(µ̄)≤1

‖L‖ · ‖s‖l2(µ̄) ≤ ‖L‖.

This completes the proof of Theorem 4.3.

5. DUALITY OF H1(M̃) WITH BMO(M̃)

In this section, we prove Theorem 1.1. Let M̃ = M ×M , where M satisfies
Assumption 3.1. First, we define the lifting and projection operators as follows.

Definition 5.1. Suppose ϑi ∈ (0, 1) and 0 < βi, γi < ϑi for i = 1, 2. For any
f ∈ (

◦
Gϑ1,ϑ2(β1, β2; γ1, γ2))′, define the lifting operator SQ by

SQ(f) =
{
|I | 12 |J| 12Qk1Qk2 [f ](xI, yJ)

}
k1,k2,I,J

,(5.1)

where k1, k2 ∈ Z, I, J are the same as in Lemma 2.5 and R = I × J , xI and yJ

are the centers of I and J , respectively.
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Definition 5.2. For any complex-value sequence λ = {λk1,k2,I,J}k1,k2,I,J , de-
fine the projection operator T

Q̃
by

T
Q̃
(λ)(x, y) =

∑
j,k

∑
I,J

|I | 12 |J| 12 q̃k1 q̃k2(x, xI, y, yJ) · λj,k,I,J ,(5.2)

where q̃s1 q̃s2(x, xI, y, yJ) are the same as in Lemma 2.5, and k1, k2; I, J; xI , yJ

are the same as in the above definition. Moreover,

T
Q̃

(
SQ(f)

)
(x, y)=

∑
k1,k2

∑
I,J

|I ||J|q̃k1 q̃k2(x, xI, y, yJ)Qk1Qk2 [f ](xI, yJ).

For the above lifting and projection operators, we first recall the following result
on H1(M̃) showed in [11].

Lemma 5.3. ([11]). For any f ∈ H 1(M̃), we have

‖SQ(f)‖s1 � ‖f‖
H1(M̃)

.(5.3)

Conversely, for any s ∈ s1,

‖T
Q̃
(s)‖

H1(M̃)
� ‖s‖s1 .(5.4)

Moreover, T
Q̃
SQ equals the identity on H 1(M̃).

We now establish a similar result on BMO(M̃) as follows.

Lemma 5.4. For any f ∈ BMO(M̃), we have

‖SQ(f)‖c1 � ‖f‖
BMO(M̃)

.(5.5)

Conversely, for any t ∈ c1,

‖TQ(t)‖
BMO(M̃)

� ‖t‖c1 .(5.6)

Moreover, T
Q̃
SQ equals the identity on BMO(M̃).

Proof. According to Definition 4.2, 5.1 and 3.2, (5.5) follows directly from the
Plancherel-Pôlya-type inequality for BMO(M̃) (Theorem 3.3).
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Now let us prove (5.6). For any t ∈ c1, by Definition 3.2 and 5.2 and using the
same skills as in the estimate of (3.5), we obtain that

1
|Ω|

∑
k1,k2

∑
I×J⊂Ω

|I ||J| sup
u∈I,v∈J

∣∣Qk1Qk2 [TQ̃(t)](u, v)
∣∣2

� 1
|Ω|

∑
k1,k2

∑
I×J⊂Ω

∑
k
′
1,k

′
2

∑
I′,J ′

[ |I |
|I ′| ∧

|I ′|
|I |

][ |J|
|J ′| ∧

|J ′|
|J|

][ diam(I)
diam(I ′)

∧ diam(I ′)
diam(I)

]ε1

×
[ diam(J)
diam(J ′)

∧ diam(J ′)
diam(J)

]ε2 · (|I | ∨ |I ′|)(|J| ∨ |J ′|)
× |I | ∨ |I ′|
Vdist(I,I′)(xI) + |I | ∨ |I ′|

( diam(I) ∨ diam(I ′)
diam(I) ∨ diam(I ′) + dist(I, I ′)

)γ1

× |J| ∨ |J ′|
Vdist(J,J ′)(yJ ) + |J| ∨ |J ′|

( diam(J) ∨ diam(J ′)
diam(J) ∨ diam(J ′) + dist(J, J ′)

)γ2

×∣∣t
k
′
1,k

′
2,I′,J ′ |I ′|− 1

2 |J ′|− 1
2

∣∣2.
In fact, we now deal with the same estimates as (3.5) with only minor modification
that inf

u∈I′,v∈J ′

∣∣Qk
′
1
Qk

′
2
[f ](u, v)

∣∣2 is replaced by
∣∣tk′

1,k
′
2,I′,J ′ |I ′|− 1

2 |J ′|− 1
2

∣∣2. Thus,

following the proof of Theorem 3.3, we can obtain that

‖T
Q̃
(t)‖

BMO(M̃)
�

(
sup
Ω

1
|Ω|

∑
k1,k2

∑
I×J⊂Ω

|I ||J|∣∣tk1,k2,I,J |I |− 1
2 |J|− 1

2

∣∣2)1
2

� ‖t‖c1 .

Finally, we can easily get that from the Calderón reproducing formula T
Q̃
SQ is the

identity operator on BMO(M̃ ). The proof of Lemma 5.4 is completed.

We now prove the main result, Theorem 1.1.

Proof of Theorem 1.1. First, for any g ∈ ◦
Gϑ1,ϑ2(β1, β2; γ1, γ2) with 0 <

βi, γi < ϑi for i = 1, 2 and f ∈ BMO(M̃), from Lemma 2.5, we have

< f, g >=
∑
k1,k2

∑
I,J

|I ||J|Q̃k1Q̃k2[f ](xI, yJ)Qk1Qk2[f ](xI, yJ).

Here we use Q̃ki to denote the operator whose kernel is q̃ki(x, y). Following the
idea of (4.4), we have | < f, g > | ≤ C‖S

Q̃
(g)‖s1‖SQ(f)‖c1 , where S

Q̃
(g) ={|I | 12 |J| 12 Q̃k1Q̃k2[g] (xI , yJ)

}
k1,k2,I,J

.
From the Definition 4.1, the Calderón reproducing formula and the Plancherel-

Pôlya-type inequality (6.2), we can get that ‖S
Q̃
(g)‖s1 � ‖g‖

H1(M̃)
. And from
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Lemma 5.4, we have ‖SQ(f)‖c1 ≤ C‖f‖
BMO(M̃)

. Thus,

| < f, g > | ≤ C‖f‖
BMO(M̃)

‖g‖
H1(M̃)

.

Since
◦
Gϑ1,ϑ2(β1, β2; γ1, γ2) is dense in H 1(M̃), it follows from a standard density

argument that BMO(M̃) ⊆ (H1(M̃))′.
Conversely, suppose L ∈ (H1(M̃))′. Then L1 = L ◦ TQ̃ ∈ (s1)′ by Lemma

5.3. So by Theorem 4.3, there exists t ∈ c1 such that L1(s) =< t, s > for all
s ∈ s1 and that ‖t‖c1 ≈ ‖L1‖ � ‖L‖ since T

Q̃
is bounded. Hence for any

g ∈ ◦
Gϑ1,ϑ2(β1, β2; γ1, γ2), L(g) = L(T

Q̃
SQ(g)) =< t, SQ(g) > . From Definition

4.2, we have

< t, SQ(g) > =
∑
k1,k2

∑
I,J

|I | 12 |J| 12Qk1Qk2 [g](xI, yJ) · tk1,k2,I,J

=
∫

M̃

∑
k1,k2

∑
I,J

|I | 12 |J| 12 qk1qk2(x, xI, y, yJ)tk1,k2,I,J · g(x, y)dxdy

= < TQ(t), g > .

By using the Plancherel-Pôlya-type inequality in Theorem 3.3, we can get that
‖TQ(t)‖

BMO(M̃)
≤ C‖t‖c1 ≤ C‖L‖. By the density argument, we have that for

any g ∈ H1(M̃),
L(g) =< TQ(t), g >,

which shows that (H 1(M̃))′ ⊆ BMO(M̃).

6. PRODUCT CASE OF n FACTORS

In this section, we describe the results on M̃ = M1 × · · · ×Mn, where each
Mi satisfies Assumption 3.1, since the method we used on M̃ = M ×M can be
applied for the product case of n factors.

To begin with, we state some necessary results in [11]. Denote by
◦
Gϑ1,··· ,ϑn(β1, γ1;

· · · ; βn, γn) and (
◦
Gϑ1,··· ,ϑn(β1, γ1; · · · ; βn, γn))′ the test function space and its dual

space, where ϑi ∈ (0, 1) and 0 < βi, γi < ϑi for i = 1, 2, · · · , n. The Littlewood-
Paley square function associated to the sequence of operators {Qki}ki∈Z on each
Mi is defined by

S̃(f)(x1, · · · , xn) =
{∑

k1

· · ·
∑
kn

|Qk1 · · ·Qkn(f)(x1, · · · , xn)|2
} 1

2

.
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In [11] we can see that ‖S̃(f)‖
Lp(M̃)

≈ ‖f‖
Lp(M̃)

for 1 < p <∞. And the Hardy

space H1(M̃) is defined as follows.

Definition 6.1. ([11]). Let 0 < ϑi < 1 and 0 < βi, γi < ϑi for i = 1, · · · , n.
The Hardy spaceH1(M̃) is defined to be the set of all f ∈(

◦
Gϑ1,··· ,ϑn(β1, γ1; · · · ; βn,

γn))′ such that ‖S̃[f ]‖
L1(M̃)

<∞, and we define

‖f‖
H1(M̃ )

= ‖S̃[f ]‖
L1(M̃)

.

Now we give the definition of BMO(M̃) via the sequence of operators {Qki}ki∈Z

on each Mi as follows.

Definition 6.2. Let 0 < ϑi < 1 and 0 < βi, γi < ϑi for i = 1, · · · , n. We
define the space BMO(M̃) to be the set of all f ∈ (

◦
Gϑ1,··· ,ϑn(β1, γ1; · · · ; βn, γn))′

such that
‖f‖

BMO(M̃)

= sup
Ω

{
1
|Ω|

∫
Ω

∑
k1,··· ,kn

∑
I1×···×In⊆Ω

∣∣Qk1 · · ·Qkn [f ](x1, · · · , xn)
∣∣2(6.1)

×χI1 (x1) · · ·χIn(xn)dx1 · · ·dxn

} 1
2

<∞,

where the sup is taken over all open sets Ω in M̃ with finite measure and for each
ki, Ii ranges over all the dyadic cubes in Mi with length 
(Ii) = 2−ki−N0 for
i = 1, 2, · · · , n.

Following the same routine as in the product case of two factors, we can establish
the Plancherel-Pôlya-type inequality for BMO(M̃ ).

Theorem 6.3. Let all the notation be the same as in Definition 6.2. Then for
all f ∈ BMO(M̃ ),

sup
Ω

{
1
|Ω|

∫
Ω

∑
k1,··· ,kn

∑
I1×···×In⊆Ω

sup
u1∈I1,··· ,un∈In

∣∣Qk1 · · ·Qkn [f ](u1, · · · , un)
∣∣2

×χI1 (x1) · · ·χIn(xn)dx1 · · ·dxn

} 1
2

≈ sup
Ω

{
1
|Ω|

∫
Ω

∑
k1,··· ,kn

∑
I1×···×In⊆Ω

inf
u1∈I1,··· ,un∈In

∣∣Qk1 · · ·Qkn [f ](u1, · · · , un)
∣∣2

×χI1 (x1) · · ·χIn(xn)dx1 · · ·dxn

} 1
2

.
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Next, we can extend the result of sequence spaces on product space of 2-factors,
namely, Theorem 4.3, Lemma 5.3 and 5.4, to product spaces of n-factors. Then, by
working on the level of sequence spaces, we can obtain Theorem 1.1 on product
case of n factors. For the detail, we omit it here.
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